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but the disagreement is so large that it cannot be easily
explained. The parameter L;/LttEtt of Shockley's expres-
sion is reported in Fig. 4.

According to the assumption that all the charge is
generated by a shower following the primary electrons
ejected by the incident particle, one cannot expect to
find relevant differences from one particle to another,
at least in a first approximation. Nevertheless, our
results could be explained on the basis of some second-
order effect related either to a slight dependence of e„
upon the energy of the primary particle (though up to
now, there is no evidence for it), or to the fact that
different particles have both different spectra of
primary electrons and can also lose energy in different
ways.
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A general equation for the impurity correlation factor is derived in terms of effective escape frequencies.
This equation applies even when the vacancy-jump frequency for association of a vacancy-impurity complex
differs from the frequency far from an impurity. Parameters in this equation are calculated for body-centered
cubic, diamond, and face-centered cubic structures. In these calculations, it is assumed that vacancy jumps
which do not involve a nearest neighbor of the impurity are unaffected by the impurity but that association
and dissociation jumps, which do involve nearest neighbors of the impurity, are affected, Analytical ez-
pressions for the correlation factor in terms of vacancy-jump-frequency ratios are obtained. In the bcc and
fcc structures, results are given for two cases: (A) where all dissociative jumps are equally likely, and (B)
where a vacancy which makes a dissociative jump to a second-nearest-neighbor site is still partially bound to
the impurity, but vacancies which make dissociative jumps to other sites are not. In the diamond structure,
case A cannot be distinguished from case B.Results for the diamond structure and for case A in the fcc struc-
ture differ only slightly from previous more approximate results. A comparison is made between the present
random-walk method of calculating correlation factors and the pair-association method.

I. INTRODUCTION

HFN diffusion occurs by a vacancy mechanism,
the atoms do not pursue a random walk. . Instead,

an atom, after exchanging with a vacancy, has a
greater-than-random probability of making a reverse
jump by re-exchanging with the same vacancy. This
causes the atom to pursue a correlated walk and
introduces a correlation factor f into the diffusion
equations. ' '

~ J. Bardeen and C. Herring, Atom Movements (American
Society for Metals, Cleveland, 1951),p. 87; also Imperfections in

The correlation factor for impurity diffusion depends
on the vacancy-jump frequencies near the impurity. 2 '
Simple expressions for the impurity-correlation factor
in terms of vacancy-jump frequencies have been cal-
culated previously for a number of cubic structures. 4

These expressions apply when every vacancy jump from

Nearly Perfect Crystals, edited by W. Shockley Qohn lVviley fk
Sons, Inc. , New York, 1952), p. 261.

~ A. D. LeClaire and A. B.Lidiard, Phil. Nag. 1, 518 (1956).
3K. Compaan and Y. Haven, Trans. Faraday Soc. 52, 786

(1956).
e J. R.. Manning, Phys. Rev. 116, 819 (1959).
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a site which is a second-nearest neighbor or farther from
the impurity has the same jump frequency. When there
is a vacancy-impurity interaction, it is not reasonable
to expect the associative jump, which moves a vacancy
into a nearest-neighbor position, to have the same
frequency as other vacancy jumps originating outside
the set of first-nearest neighbors. Consequently,
equations v ere developed which allow the calculation
of f in a face-centered cubic structure in terms of this
additional frequency. ' In the present paper, these
equations are written in general form and applied to a
calculation of f in the body-centered cubic structure.
Also, cases where there is special binding at second-
nearest-neighbor sites in bcc and fcc structures are
considered, and previous calculations for the diamond
and face-centered cubic structures are corrected to give
somewhat more accurate results for these structures.

II. GENERAL EQUATIONS

In cubic crystals, the correlation factor for diffusion

by a vacancy mechanism is given by'

1+(cos8)

1—(cos8)

Here 0 is the angle between 2 successive jumps by a
given atom, and the symbol ( ) indicates an average
over all pairs of successive jumps made by the atom.

The calculation of (cos8) is begun by considering an
atom M that has just exchanged places with a vacancy
V. After this exchange, atom M is on site 0 and vacancy
V is on the n.eighboring site a. To find (cos8), one must
calculate the probability that vacancy V will re-
exchange with M from the various possible directions.

Complications can arise if, after exchanging with V,
atom M exchanges with some other vacancy in the
crystal and only later re-exchanges with V. However, at
normal vacancy concentrations (less than 10 ' mole-
fraction) and in the absence of vacancy-vacancy inter-
actions (which might form bound vacancy pairs), this
effect is small. When there are no vacancy-vacancy
interactions and impurities are present in only dilute
concentration, other vacancies in the crystal approach
atom M from random directions. Then all contributions
to (cos8) except those from a re-exchange with Y
average out to zero; and, for diffusion of a dilute
impurity by a single vacancy mechanism, it is a very
good approximation to consider only exchanges of M
with V. This approximation is made in the following
discussion.

If, after the original exchange with M, vacancy V on
its next jump re-exchanges with M, just the reverse of
the original jump is obtained, and the angle between
successive jumps of atom M is 180'. The probability
that V and M will re-exchange oui this next jump is
w2/R, , where w2 is the jump frequency for re-exchange

' J. R. Manning, Phys. Rev. 128, 2169 (1962).

and R, is the total vacancy jump frequency to sites
neighboring on site a. Sites on the 6rst coordination
shell (which can be reached in one jump from site 0)
can be designated as sites P and, those in the second
coordination shell (which can be reached in two jumps
away from site 0) as sites q. Then

R,=wm+Q w,p+Q w, ~.
'y

(2)

Here m, p and w ~ are the vacancy-jump frequencies
from site a to sites P and y, and only sites which can be
reached in 1 jump from site a are included in the summa-
tions. To a first approximation, we find (cos8)= —wg/R, .

Even if V does not immediately re-exchange with M
it may eventually return and do so. Therefore, more
accurately,

(cos8p) (cos8~)- —'
(cos8) = —w2 R.—g w.p

—g w.. . (4)
p (cos8,) v (cos8,)

and, with Eq. (2),

(cos8)= —w2(w2+g w,pPp+P w.,P„j
P v

where
Fp 1—(cos8p)/(cos8——.),
F„=1—(cos8~)/(cos8, ).

Equation (5) has the form

(cos8)=—w2/R~~,

where R ' is identical with R except that vv ~ and z „
are replaced. by w, pFp and w, ~F~.

Equation (8) can be discussed in terms of effective
escape or randomization frequencies. If a vacancy V
after making a m, ~ jump returns to site a without having
exchanged with atom M, the physical situation is the
same as if V had merely remained at site u and had not
left this site at all. Any m, , jumps which are followed

782 Ãgp VOgp

(cos8)=—(—1)+P (cos8p)+P (cos8~) . (3)
R, p R, 7 R.

The first term on the right gives the contribution from
vacancies which immediately re-exchange with atom
M (with cos180'= —1). The terms involving (cos8p)
and (cos8„) take into account the eventual contributions
to (cos8) made by vacancies which jump to sites P or y
instead of re-exchanging directly with M. By definition,
(cos8 ) equals the value of (cos8) which would be
obtained if, after the atom jump a—0, the vacancy V
were immediately transported to site e and only then
allowed to diffuse and possibly exchange with M. The
contribution to (cos8) from a vacancy which jumps to
site I thus is the probability w „/R, of jump to site e
multiplied by (cos8„).It also follows that (cos8)= (cos8,).
Consequently, Eq. (3) can be rewritten as
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by a return to site u thus do not contribute to the
effective frequency of escape from site a and can be
treated as if they had never taken place. Vacancies
which arrive at other sites p neighboring on M have
partially randomized their position with respect to
atom M and on average make a smaller contribution to
(cos8) than if they had returned to site a itself. This has
the same effect on (cos8) as if a certain fraction of these
vacancies returned to site u and the remaining fraction
completely escaped. Thus, these vacancies make a
partial contribution to the effective frequency of escape.
Vacancies which never return to a site neighboring on
M contribute fully to the effective escape frequency.
In Eq. (5) the fractions F~ and F7 represent the fractions
of z,p and z 7 jumps which contribute to the effective
frequency of escape, and Fpm ~ and F,m, are the
effective escape frequencies. The frequency R, -' is the
total effective jump-frequency from site a, equal to
nr& plus the effective frequency for escape from site a
by exchange with atoms other than M. The fractions
(1—P~) and (1—F„) equal the probabilities that the
vacancy will effectively return to site a, either directly
or by arriving at some other site,8 (which is equivalent
to a partial return to site a).

Values of P w.~P~ and P w,F, have been found
previously for a number of simple structures where a
vacancy jump which originates in the second coordina-
tion shell or farther from atom M is assumed to have
the same frequency as that in a pure crystal. 4 In the
present paper, the calculation is taken one step further.
Jumps which do not involve a site in the first coordina-
tion shell are still assumed to have a single frequency
zoo. However, mvp jumps from the second to the first
coordination shell a,re allowed to differ from zo. Other
vacancy-jump frequencies are zv& from one nearest-
neighbor site to another, z 2 for exchange with atom M,
and. w~~ from site P in the first coordination shell to
site y in the second coordination shell.

To calculate Fp and F~, one must relate (cos8p) and

(cos8„) to (cos8,). The relation for (cos8p) can be found
as follows: In the cubic structures considered here, there
is at least two- or threefold symmetry around the lines
connecting site 0 to each site P. The vacancy distribu-
tion from a vacancy which originates on site p is there-
fore symmetrical around the line 0—P, and. vacancies
which start a diffusion path at site P but eventually
exchange with atom 3f along some line other than
0—P yield on the average no net displacement of M
normal to 0—P. As a result, the contribution to (cos8)
from these vacancies is some factor f multiplied by
cosop, where Op is the angle. between the direction u —0
and the direction 0—P. Because of the cubic symmetry,
the factor f must be same for all nearest-neighbor sites

P, including site a, and

(cos8p) cos8~ = —cosgp.
(cos8,) cos8,

In the face-centered cubic structure, m p jumps are
possible to 4 separate P sites, and cos8p= —-', for each
such site. Therefore, Fp ——1—

~ =~. In the other struc-
tures considered, m, p jumps do Iiot occur as nearest-
neighbor jumps so, if consideration is restricted to
nea, rest-neighbor vacancy mechanisms, only the J'7 need
to be calculated.

To calculate the (cos8~) and F~, we may consider a
vacancy on a particular site y on the second coordination
shell and allow it to diffuse until it arrives either back at
site y or at some other site on the first or second
coordination shell. If p„p and p» are the probabilities
that the a.rst such site at which the vacancy arrives is
a given site p on the erst coordination shell or a given
site y on the second coordination shell,

(cos8w) =Z Pwp(cos8p)+Z Puv(c»87) ~ (1O)

A7= —p p&p cos8p.
P

(12)

It follows from Eqs. (9) and (10) that

U„=A„+Q p»Ui, . (13)

Equations similar to Eq. (13) can be written for each
site p. Since y is a given one of the sites p, this yields ~
linear equations relating the m separate U'7. These can
be solved for the U~. Then F~= 1—U~.

In the calculation of p„p and p», vacancies which
arrive at a site p or y after leaving y are removed from
further consideration. The only vacancies which can
arrive at sites p are those that jump directly there on
their erst jump from y. (Otherwise the vacancy must
first arrive at some site on the second coordination shell
and be eliminated from further consideration before
reaching the first coordination shell. ) Consequently, p„~
merely equals the probability that the vacancy's initial
jump from y will take it to site P; and the quantities

p„p and A~ are easily determined from the lattice
geometry and the jump frequencies xvp and zo. The
coeKcients p» are somewhat more dificult to calculate,
but even these can be determined to reasonable accuracy
in a step-by-step calculation of the probability that the
vacancy will arrive at site y after a given number of
jumps.

The number of simultaneous linear equations that
must be solved can be reduced by symmetry considera-
tions. All sites y which are the same distance from site 0
and whose positive vectors 0—y make equal angles
with the line 0—u are equivalent sites and give the
same value of (cos8,). Also sites at the. inversion points
through site 0 from these sites y give the value —(cos8,).

Here site y is one of the sites y, and the summations are
over all sites P and &. One may define quantities
U~ and A~

U~ = (cos8~)/(cos8, ),



CORRELATION FACTORS FOR I M PU RI T Y D I FF USI ON A"1761

These sites can be grouped together to reduce the
number of independent U~ that need to be treated. For
example, if sites q and r have the same {cos8~) and their
inversion points are s and t, the contributions from these
sites to the summation in Eq. (13) can be combined into
one term (p„,+p„„—p„.,—p„,)U, . The sum (p„,+p„,—p„,—pg~) can be called P„„and sites q, r, s, and f can
be said to comprise set q.

1h

(cos8;)/{cos8g) = -', ,

and it follows that

(14a)

(14b)

The considerations above allow one to write Eq. (13)
in terms of only three unknowns, U„U~, and U;

U, =A,+P„U,+P,aUa+P„( ,'U, )+P„U;, -(15)

Ua=Aa+PagUg+PaaUa+Pa (s Ug)+Pa, Ug, (16)

U; =A, +P;g Ug+P, aUa+P;;( ,'Ug)+P;„U;. -

All Dissociative Jump Frequencies Equal

(17)

The A~ and P» can be calculated in terms of the
jump-frequency ratios. In this calculation, one might
assume four jump frequencies: z» for exchange of a.

vacancy with atom 3f, m» for a m p~ jump, m4 for a x~p
jump, and ws for other jumps (which involve only sites
in the second coordination shell or farther from atom
M). This allows the associative jump frequency w4 to
differ from m 0. It also assumes that all dissociative jump
frequencies m p„are equal to one another.

Sites P in the 6rst coordination shell in a body-
centered cubic structure can be divided into four sets.

III. BODY-CENTERED CUBIC STRUCTURE

In the body-centered cubic structure, site a lies at
(1,1,1) from site O. In the second coordination shell
(see Fig. 1), the sites at (2,2,2) and (2,2,2) comprise a
set which can be called set g. The sites in this set are
fifth-nearest neighbors of O. )Fourth-nearest neighbors
of 0 are at sites (3,1,1) on the third coordination shell. )
Sites at (2,2,0), (2,0,2), (0,2,2), (2,2,0), (2,0,2), and
(0,2,2) form set h and are third-nearest neighbors of O.
Sites at (2,2,2), (2,2,2), (2,2,2), (2,2,2), (2,2,2), and
(2,2,2) form set i and, are fjfth-nearest neighbors of O.
Sites at (2,0,0), (0,2,0), (0,0,2), (2,0,0), (0,2,0), and

(0,0,2) form set j and are second-nearest neighbors of O.
The remaining sites X at (2,2,0), (2,2,0), (2,0,2),
(2,0,2), (0,2,2), and (0,2,2) are on the symmetry plane
normal to 0—u and passing through site 0. Since there
is twofold rotational symmetry around the lines con-
necting site 0 to these sites X on the symmetry plane,
(cos8~) and U„are zero for these sites.

In addition, there is threefold rotational symmetry
around the lines 0—

g a,nd 0—i. Since groups g and i
are both fifth-nearest neighbors of site 0, the same
argument as that which led to Eq. (9) gives

h"

FIG. i. Body-centered cubic structure. Sites g, h, i, and j are
on the second coordination shell from site 0. Site e, not shown, lies
at (1,1,1) halfway between sites 0 and g. Sites designated by X
are on the symmetry plane passing through site 0 and normal to
the line 0—u—g.

Site a at (1,1,1) with cos8, = —1 forms set a, the 3 sites
b at (1,1,1), (1,1,1) and (1,1,1) with cos8a= —is form
set b, the 3 sites c at (1,1,1), (1,1,1) and (1,1,1) with
cos8, =-

s forms set c, and site d at (1,1,1) with cos8q= 1
forms set d. From site g at (2,2,2), site u is the only P
site to which the vacancy can jump. Therefore, accord-
ing to Eq. (12), A, =p„(1)=tn4/R„where R, is the
total jump frequency from site g. (In the present model,
Rg=tn4+7tno. ) From site b, a vacancy can jump to P
sites a and b, so A a ——w4 (1+st)/Ra, where Ra= 2w4+ 6tt s.
From site j, jumps to sites u, c, and two separate b sites
are possible. Therefore, j,=w4(1+a+ —,

' —s)/R;, where
R;=4w4+4tt s. Probabilities P» can be determined by
a straightforward Bardeen-Herring' diffusion-of-prob-
a,bility calculation. One first calculates the probability
that the vaca.ncy arrives at various sites on the second
coordination shell after one jump from site y. Vacancies
which arrive at sites on the first or second coordination
shell are removed from further consideration and one
proceeds to calculate the probability that the remaining
vacancies will arrive at a site on the second coordination
shell on the next jump. This can be repeated for as many
jumps as necessary.

The P» for a body-centered cubic structure were
calculated by the above method for y=g, h, i, or j
with p =g, h, i, or j.In each case, the vacancy distribu-
tion was calculated in detail for 10 jumps, and the
probability that a vacancy would arrive at each site on
the second coordination shell was determined for these
jumps (No. 1—10). Then, the contributions from the
remaining jumps (No. 11—~) were estimated by
a,ssuming that successive contributions would continue
to decrease in a regular manner. Results are given in
Table I. Since approximately 10%of the total contribu-
tion to the P» comes from jumps No. 11—~, the values
in Table I may very well be inaccurate in the second



A 1762 JOHN R. MANNING

TABLE I. bcc structure. a

Pgg =1.33mpRg I

PgIo =1.80moRg &

Pgo =0 24moRg 1

Pgg 0.63moRg 1

Ag ~'N4Rg

Pp, g =0.60moR@ '
Pf Ii ~1.50moRIi 1

Phoo =0.60WPRli 1

PI, g =0.72moRa —1

Ap =4m4RI

Pog =0.08mpRg &

Pox =0.60moRg 1

Poo =1.17mpRg 1

Poj =0.2iwoRg 1

Ao =~m4Rg '

P&g =0.21moR& '
PgI =0.72moRf I

Pip =0.21urpRi 1

Pgg =0.63moR~ 1

AII =4a&4Rj 1

5
O
4
X
O
Eh

4
CL
X
IJLI

X

3
O

X
LLI

2
O
CJ

0 0.2 0.4 0.6 O.S 1.0 O. 8 0.6 0.4 0.2 0

& Here, Rg =7wo+zv4, RI =6wp+2w4, and Rq =4mp+4m4.

consistent manner to give agreement to almost four
significant figures with the Compaan-Haven values.
The remaining discrepancy can be attributed to errors
introduced from rounding off the I"» to two decimal
places.

With these values of the I'», solution of Kqs.
(15)—(1'7) gives

U =o' [28.85(w4/wp)+36. 02(w4/wp)

+8(w4/wp)'), (18)

Ui, =o '[33.82(w4/wo)+38. 47 (w4/wo)'

+(16/3) (w4/wo)'j (19)

U, = (r '[39 49(w4/. w p)+22 43 (w4/. w p)'

+ (8/3) (w4/wp)'j, (20)
where

o'= 75.50+146.83(w4/wp)+69. 46(w4/wp)'

+8(w4/wo)' (21)
W4 /NoNp N4

Fn. 2. Values of 7Ii3 for the body-centered cubic and face-
centered cubic structures and of 3F3 for the diamond structure,
calculated from Eqs. (25), (53), and (40), respectively. In our present model, all wp7 equal z 3. Therefore,

(cosg) = —wp(wp+wp[(1 —U,)+3(1—Uo)

+3(1—U)3 ' (22)

(23)

decimal place. However, even a erst estimate of these
values led to a (cos8) for self-diffusion (where wo=wp
=wp ——w4) that agreed to better than three significant
figures with the Compaan-Haven values. ' The final f= 7wpF p/(2wp+ 7w,F,),
values which appear in Table I were adjusted in a where

7Fp
= 1—Up+3 (1—Up)+3 (1—U;)

528.50+779.03 (w4/wo)+267. 50(w4/wo)'+24(w4/wo)'
7I'3=

75.50+146.83(w4/wp)+69. 46(w4/wp) +8(w4/wo)'

(24)

(25)

It may be noted that 7Ii3 does not go to zero when
wp/w4 goes to zero, but instead goes to 3. This occurs
since the m4 jump need not return the vacancy directly
to site a. A partial escape of the vacancy from this site
is possible even when wp/w4=0. In the other limit, 7Fp
goes to 7 when w4/wo goes to zero. When w4 ——wo,

7Fp 5 33 (see Fig.——2)..

a first- to a second-nearest neighbor, w;p from a second-
to a 6rst-nearest neighbor, m; for other jumps from a
second-nearest neighbor (to a fourth-nearest-neighbor
site), w~ from a first- to a third- or fifth-nearest
neighbor (sites g, h, or i), wp for exchange with the
impurity, and Gfp fol all other jumps. To avoid any net
accumulation of vacancies at sites p, j, or w, it must be
true that

Syecial Binding at Second-Nearest-
Neighbor Sites

cm zvpm ~pq ~q'm

Cp ZOp 'N~p 'Rp
(26)

It is possible th@,t a vacancy at a second-nearest-
neighbor site j to an impurity may be much more
strongly bound to the impurity than one at a third-
nearest-neighbor site. Then, the true jump frequencies
might be approximated by defining frequencies nr p; from

Here c and cp are the equilibrium vacancy concentra-
tion at sites nz and P. Also wp=w p=w;, with m
representing a general site that is not a first- or second-
nearest neighbor of the impurity but that does neighbor
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where

Ug ——o. 'L42. 79(w, p/w; )+30.08],
Ua=o 'I 45.34(w, p/w, )+32.27],

U&=o' I 55 19(.w& p/wj )+9 39].,

o = 165.57 (w, p/w;„, )+134.21.

(27)

(28)

(29)

(30)

Equation (5) becomes

on such a site. In the present case, sites m include
third-, fourth-, and fifth-nearest neighbors of O.

The analysis leading to Eqs. (15)—(17) is valid in
general for impurity diffusion in a body-centered cubic
structure. In the present model of jump frequencies,
the numerical coefficients in the expressions for I'»
and A~ are the same as those in Table I. The only
changes needed to make Table I apply in the present
case are to set wIIR, '=wIIRA '=w4R, '=w4RA ' ——s,
wIIR,

—'=w; /(4w, +4w, p), and w4R, '=w, p/(4w;„
+4w;p). Solution of Eqs. (15)—(17) then gives E

O

SOLID LINE: 7F

DASHED LINE, 7F(wp /wp )

(cosg) = —wsLws+3w p;(1—U )
+wp„(4 3UA U—o)] '. —(31)

With Eq. (26) relating wp, to wp„Eq. (1) yields
I I I l

0 0.2 0.4 0.6 0.8
l I I

I.O 0.8 0.6 0.4 0.2 0

f=7Fwp /(2ws+7Fwp ), (32) ps/ pm pm/ ps

where

331.14(w;p/w, )'+857.93(w;p/w, )+409.95
7P=

165.57 (w, p/w, „)+134.21
(33)

Fro. 3. Values of 7F and 7F(wp /wp, ) for the body-centered
cubic and face-centered cubic structures, calculated from Eqs. (33)
and (62). Here mp, is the vacancy jump frequency from a Qrst-
nearest-neighbor to a second-nearest-neighbor site. For bcc, mp,
equals mp;, while for fcc, m p, equals mp;.

When m;p&)z, , the term 7Fwp. reduces to 2'~, and

f=w@/(w +wsp;) The dep.endence on wp disappears
since, according to Eq. (26), w@))wp in this case.
Values of 7F and 7F(wp /wp;) are shown in Fig. 3.

IV. DIAMOND STRUCTURE

The preceding method can also be applied to the
diamond structure. Here three sets of sites in the second
coordination shell can be distinguished (see Fig. 4).
If site a is at (1,1,1) from the impurity, sites at (2,2,0),
(2,0,2), (0,2,2) form set c. Sites at (2,2,0), (2,2,0),
(2,0,2), (2,0,2), (0,2,2), and (0,2,2) form set d, and sites
at (2,2,0), (2,0,2), and (0,2,2) form set p. All of these
sites are second-nearest neighbors of the impurity.
However, there is not full inversion symmetry through
the impurity site, so sets t,. and e cannot be combined.
Because of this lack symmetry, (cosgz) will not equal
zero, even though set d lies on a plane passing through
site 0.

One can define vacancy-jump frequencies z» for
exchange with impurity 3f, ma for jumps from first- to
second-nearest neighbors, m4 for jumps from second- to
first-nearest neighbors, z» for jumps from second- to
third- or fifth-nearest neighbors, and zoo for jumps origi-
nating at third-nearest neighbors or farther from the
impurity. The first coordination shell contains the four
first-nearest neighbors, the second coordination shell

the 12 second-nearest neighbors, and the third coordina-
tion shell only the 24 third- and fifth-nearest neighbors.
Direct jumps between two first-nearest neighbors are not
possible with a nearest neighbor vacancy mechanism nor
are jumps between two second-nearest neighbors, so the
description above covers all possible jumps. The A7

DIRECTION

d &rr &r
&rrr

Fio. 4. Diamond structure. Sites c, d, and e are on the second,
coordination shell from site 0. Site e lies at (1,1,1) in the Grst
coordination shell. The other sites in this shell are at (1,1,1),
(i,1,1), and (1,1,1).



A'„1764 JOHN R. MANNING

c to a third- or fifth-nearest neighbor would effectively
return to site c. In present notation, the expression for
F~ found in this manner wa, s F3 [1——+-', (w4/wq)j '.
Since there is a lack of rotational symmetry around the
line 0—c, this assumption of effective returns is not
really correct. Nevertheless the expression for Ii 3 agrees
very well with Eq. (40), at the very worst diRering by
less tha, n 3 Fz. This good agreement is not surprising,
since there is a considerable amount of symmetry
(though not complete rotational symmetry) a,round
the line 0—c.

FIG. 5. Face-centered cubic structure. Sites g, h, i, j, k, and l
are on the second coordination shell from site 0. Site a, not shown,
lies at (1,0,1) half way between sites 0 and g. Sites designated by
X are on the symmetry plane passing through site 0 and normal to
the line 0—a—g.

(cos8) = —w2[w2+3w3(1 —U~) j
and, from Eq. (1),

f=3w3F3/(2wm+3wgF3),
where

(3g)

(39)

2.76+4.93 (w4/wg)+2. 05(w4/wg)'
F~3 —— (40)

2.76+6.33 (w4/wg)+4. 52 (w4/wg)'+ (w4/w5)'

For self-diffusion, where w~ ——m3 ——m4 ——m5 ——mp, F3———,

and f agrees with the Compaan-Haven value' of -', .
When w4/w5 goes to zero, F3 goes to unity. In the other
limit where w4/w, goes to infinity, Fa goes to zero (see
Fig. 2).

Equation (40) is very nea, rly the same as that found
previously4 by assuming that a certain fraction of
vacancies which jumped from a second-nearest neighbor

and I'» relating U„Uq, and U, for a diamond structure
with these jump frequencies are given in Table II. The
I'» were calculated by summing contributions from the
first 14 vacancy jumps exactly and estimating the
contributions from the remaining jumps, while the A~
were calculated exactly from Kq. (12). Solution of the
resulting three simultaneous equa, tions for U„U~, a,nd
U, derived from Eq. (13) gives

U, = o
—'[1.40(w4/wg)+2. 47(w4/w5)'+ (w, /wg)'g, (34)

Up= a '[—0.31(w4/w5) —0.64(w4/w5)'
—

3 (w4/wa)'3, (35)

U.=o-'[—0.79 (w4/w5) —1.18(w4/w )'
—

a (w4/w5)'j, (36)
where

o =2.76+6.33 (w4/w5) +4.52 (w4/ws)'+ (w4/ws)'. (37)

Then, from Eq. (5),

(cos8) = w/2( w+23F 3w)3. (41)

For self-diffusion, m. =me and, as shown by Compaan
and Haven, ' (cos8)= ——',. By substituting these values
into Eq. (41), one finds that F3 must equal exactly 3 for
self-diffusion. If m4 ——x5=mp, a vacancy outside the
6rst coordination shell will diffuse as if it were in a pure
crystal, and Ii3 will be the same as for self-diffusion.
Thus, when m4=@5——nrp, E3———', and

= ZV3 W2 G)3

When w4 ——wq, this same result is obtained from Eq. (40)
or the expression Fa [1+-',(w——4/w5)j '. These expres-
sions therefore are exact when m4

——z5.

V. FACE-CENTERED CUBIC STRUCTURE

In the face-centered cubic structure, there is mirror

symmetry across the plane passing through site 0
normal to the line 0—a. Therefore (cos87)=0 for any
site on this plane. The other 34 sites on the second
coordination shell can be divided into 6 sets (see Fig. 5).
With site a at (1,0,1) from atom M, sites at (2,0,2)
and (2,0,2) for example form set g. There are eight sites
in seth with a representative site in the first octant being
at (2,1,1), four sites in set i are represented by (2,0,0),
four in set jare represented by (1,2,1), eight sites in set k
a,re represented by (2,2,0), and eight sites in set I are
represented by (2,1,1). Sets g and k are both fourth-

TABLE II. Diamond structure. a

P„=4.94m5R '
Pcs=3.40~sR '
P,.=0.09m5R '
A. =4m4R '

Pd, ——1.70w5R '
Pqq=6. 03m5R '
Pd, =0.70m5R '
A d = —3704R

P„=0.09wsR '
P,q=1.40mqR '
P„=6.94zgR '
A, = —-', w4R '

a Here R =4(3m~+m4).

Exact Expressions for F3 When m4 ——ms= wp

The method of effective return frequencies4 yields an
exact expression for Iia when +4=m»=zap. Since there is
threefold rotational symmetry around the line 0—a,
the return of the vacancies which make ws jumps from
site a to sites on the 6rst coordination shell will have
the same effect on (cos8) as if a certain fraction (1—F3)
returned to site a itself. Therefore
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TABLE III. fcc structure. a

Pgg=1.04~oRg '
Pgp, =5.56wpRg '
Pg, ——-0.40zvpRg '
Pgj=0.16mpRg ~

Pgp=0. 40zpRg '
Pg)=0.20vpRg '
A g ='N4Rg

P'y, g
——1.39m pRp, '

Py, I,=2.2(hgpRg '
Pp,.=1.34mpRp, '
Ppj 1 o 22K pR&

PI,(, =1.52zpRg '
Py, i=0.28zvpRy, '
Ag ——-', m4Ry, '

P;g =0.20wpR

P;p, =2.68m oR

P;;=0.50mpR; '
P;;=0.06mpR; '

0.40m pR

P;)=2.56zpR; '
A;=2m»; '

P~'g =0.08moRg

Pjp =2.44wpRQ

Pj;=0.06mpRg, '
P,, =0.66mpRq '
PjI, ——2.68xoRy, '

Pj)=0.08@oRy, '
A j='N4R&

Plog =0.10M'pRg

P» =1.52moRg

P7„.——0.2(hepRg '
PI,j=1.34mpRg '

PIoIo = 1.04K'pRg

Py~ = 1.36K'oRg

AI, ———,'m4Rg '

P)g =0.05mpRg

Pig =0.28'NpÃg

Pf,; ——1.28moRa '
P]j——0.04mpRp, '
P)7, ——1.36mpRp, '
P~~ = —0.32zopRg

A g= 2R'4Rg

a Here Rg =11mo+m4, Rg =10mo+2w4, and Rs =Swo+4m4.

and
(cos8s)/(cos8, )=cos8s/cos8, = ss, (43a)

nearest neighbors of atom M and there is twofold ro-
tational symmetry around the lines 0—

g and 0—k.
Therefore, as in Eq. (9),

where

Us no——'( .n+—27 8n'+. 140n+ 187),

Us=no '(n'+19 8n'+118n+215)

U =no '(n'+18. 7n'+95n+122),

(46)

(47)

(48)

Up=-,' Ug. (43b) o =2n'+ 40.2n'+ 254n'+ 597n+ 436, (49)

In a previous paper, ' it was assumed that a relation

ssU& ———',U;= UI, similar to Eq. (43b), was valid for the
third-nearest neighbors h, j, and l. Since there is not
rotational symmetry around the lines 0—h, 0—j, and
0—l, this relation is only approximate. As noted by
LeClaire, ' however, there is still the exact relation,

and

0,'=704 8)0. (50)

Since P w,aFo ——2wi, as discussed below Eq. (9),

(cos8)= —ws(ws+2wi+wsL(1 Ug)

+4(1—Us)+2(1 —U')7) ' (51)

(44) aIldUa= U,+«.
2wi+7Fsws

(52)This can be derived from our preceding relation between
U& and V,. A vacancy which starts from site g can in
one jump reach four h sites. A vacancy which makes
equivalent jumps from site k would arrive at one h site,
one j site, one 3 site, and one site in the plane where
(cos8~) =0. Thus, for the relation s U, = U& to be obeyed,
one must have ss (4Us) = (Us+ U;+ VI+0), which
reduces to Eq. (44).

Set i contains second-nearest neighbors of M; and
U; is independent of the U~ for third- and fourth-
nearest neighbors.

All Dissociative Jump Frequencies Equal

One can de6ne vacancy-jurnp frequencies m2 for
exchange with atom JI/I, F1 for jumps from one first-
nearest neighbor to another, m 3 for jumps from a first- to
a second-, third-, or fourth-nearest neighbor (first
coordination shell to second coordination shell), W4

for the reverse of a m3 jump, and m 0 for all other jumps.
The A~ and I'» relating U„Up„U;, U;, UI„and U~

with these jump frequencies are given in Table III.
The I'» were calculated by summing contributions
from the First six vacancy jumps exactly and estimating
the contributions from the remaining jumps, while the
A„were calculated exactly from Eq. (12).The six equa-
tions from Eq. (13) can be reduced to four by Eqs. (43)
and (44). Solutions of these equations gives

2ws+2wi+ 7Fsws
where

10n4+ 180.5n'+927n'+ 1341n
7F3=7— (53)

2n4+40. 2n'+ 254n'+597n+ 436

When W4((wp, 7Fs=7; when w4=wp, 7Fs 5.15 (in-—
agreement with the Compaan-Haven value for self-
diffusion' ), and when w4))wp 7F,= 2 (see Fig. 2).

Values of 7Fs from Eq. (53) agree to three significant
figures with those obtained previously. ' In the present
work, additional use was made of symmetry properties
to estimate the I'». The resulting revision of the I'»
accounts for most of the difference in J 3. It was assumed
previously that —', U~ ——-', U,.= U~. When the present
values of the I'» are used, the assumption, -', VI,=-,'U,
= U~ changes the Ii values only in the fifth significant
figure. It can be seen from Eqs. (44), (46), and (48) that
this relation between U&, U;, and V& is very nearly, but
not exactly, obeyed. This is not surprising since 3 cos8&
=-', cos8;=cos0~ and there is considerable symmetry,
though not complete rotational symmetry, around the
lines 0—h, 0—j, and 0—l.

Special Binding at Second-Nearest-Neighbor Sites

There is some evidence, particularly for a divalent
impurity in a monovalent sublattice, ' that a vacancy

U =no'(2n'+ 29 7.n'+ 131n+.163),

' A. D. LeClaire (private communication).

7 G. D. Watkins, Phys. Rev. 113, 79 (1959); 113, 91 (1959).
R. W. Dreyfus and R. 8. Laibowitz, Phys. Rev. 135, A1413

(1964).
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at a second-nearest-neighbor site is strongly bound to
the impurity. Then, as in the bcc structure, one might
de6ne vacancy jump frequencies zap, for jumps from
first- to second-nearest neighbors, m;p for jumps from
second- to 6rst-nearest neighbors, m, for other jumps
from second-nearest neighbors, zp for jumps from
first- to third- or fourth-nearest neighbors, and mo for
all jumps from third- or higher order nearest neighbors.
To avoid any net accumulation of vacancies at sites P
or m, it must be true that

~p~ ~pi ~&~

o =32.04+19.22(w;p/w; ).
Equation (5) becomes

(59)

(cos8) = —w&(w2+2wr+2wp, (1—U;)
+ p-L4(1 —U )+(1—U.)]) ' (60)

With Eq. (54) relating wp; and wp, Eq. (1) then yields

2wr+7Fwp~

2w2+2wr+7Fwp~
where

121.72+123.03(w,p/w, )+19.22(w;p/w, )'
7

32.04+19.22 (w,p/w, )

When w,p))w;, 7F equals w;p/w; and

2wr+wpg

(61)

(62)

(63)
2w2+2wr+wpr

Values of 7F and 7F(wp /wp;) are shown in Fig. 3.

VI. COMPARISON WITH OTHER CALCULATIONS

In Sec. II, general equations for impurity correlation
factors are derived. Results for particular crystal
structures and jump frequencies are given in Secs.
III—V. These results are more general than previous
calculations since w~p/wo is allowed to range from zero

Cp 'Ng ZO&p 'Ro

as in Eq. (26).
In the present model, the numerical coe%cients in

the expressions for P» and A~ are the same as those in
Table III. The only changes needed to make Table III
apply in the present case are to set waR; '=w; /
(4w;p+8w; ), w+; '=w, p/(4w, p+8w, „),and all other
zvR ' combinations equal to yg.

Solution for U„U~, U;, and U, then gives

U, = o
—'L7.28+5.31(w;p/w;„)], (55)

Ug ——o
—'L7.80+5.95 (w;p/w, )], (56)

U;=a rL4.02+9.61(w;p/w, )], (57)

U, =o. 'L5.45+3.70(w,p/w; )], (58)
where

to infinity and the xvp are allowed to differ from one
another. Previous calculations usually have included
restrictions on w~p/wo, for example requiring that
3)&p =0 ol Yv&p= 3)p .A2 4

In some crystals, vacancies may be strongly bound to
an impurity even when they are third-nearest neighbors
or farther from the impurity. Such a situation would
require even more detailed calculations than those
above. However, the general approach presented in
Sec. II could still be applied.

In Refs. 1—5 and in the calculations above, particular
vacancies which originally are on site u are followed as
they move through the crystal by a more or less random
walk, and a resulting (cosg) is calculated. This may be
called a "random-walk" approach to the calculation of
correlation factors. A second general method is the
"pair association" method, where the creation, destruc-
tion, and reorientation of vaca, ncy-impurity complexes
on a number of neighboring planes are followed in detail.
It is interesting to compare approximations in the two
methods. Lidiard using the pair association method,
found f= (2wr+7ws)/(2w2+2wr+7w3) for the correla-
tion factor in the face-centered cubic structure. Thus,
the coefficient 7F3 in Eq. (52) is replaced by 7, which
with Eq. (53) would seem to imply w4/wo ——0. Lidiard
however did not assume m4 ——0; on the contrary, he
required @4@0with m4 being related to zv3 by an equa-
tion similar to Eq. (26).

The explanation for this apparent paradox is as
follows: Vacancy concentrations in Lidiard's model
were assumed always to be at their equilibrium values
at sites y on the second coordination shell. Under these
conditions, a x3 jurnp by a particular vacancy V to a
particular site y cannot cause an increase in the average
vacancy concentration at site p. The effect on (cos8) is
the same as if vacancy V disappeared upon reaching
site p. In a random-walk model, this is equivalent to
saying that return of the particular vacancy V to the
impurity is forbidden. Since return of the vacancy is
forbidden only when m4 ——0, one obtains the apparent
paradox above. In general, the assumption in the pair
association model that the vacancy concentration on
site e is maintained at equilibrium leads to the same
effect as an assumption in the random-walk model that
arrival at site e removes the vacancy from the crystal
and prevents it from returning to the impurity.

No arbitrary boundary where vacancies are removed
from the crystal is introduced in the present calcula-
tions. The calculation of the P» is still not exact
however, since contributions from later vacancy jumps
are only estimated. From the agreement which is
obtained with the Compaan-Haven values for self-
diffusion, one might expect the present results for F
to be correct to 3 significant 6gures. This of course leads
to an even smaller error in expressions for the correlation
factor f

9 A. B.Lidiard, Phil. Mag. 46, 1218 (1955).


