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The behavior of collective phonon waves interacting with a drifting electron distribution under conditions
of acoustic gain in piezoelectric materials is analyzed and discussed. The electrons are bunched by the
phonons, and the resulting electrostatic fields become an important element in the collective-wave behavior.
This results in a tendency to set up an electrostatic oscillation involving phonons as well as electrons. The
oscillation frequency is the plasma frequency for electrons with mass heavily dressed by the phonons. In CdS,
this frequency is about 10' sec '. The collective wave exhibits a great deal of dispersion and is greatly ampli-
Ged at frequencies near the oscillation frequency. It is believed that the spontaneous oscillations observed in
piezoelectric materials at large drift velocities are the collective waves described in this analysis. The oscilla-
tions involve wavelengths which are simultaneously those of the electrostatic oscillation frequency and mul-
tiples of the length of the crystal involved.

I. INTRODUCTION

HIS paper analyzes the collective behavior of elec-
trons and a strongly coupled band of phonons

(hereinafter referred to as the active band) under con-
ditions of acoustic gain. It is found that a new collective
phenomenon exists which can best be characterized as
an electrostatic oscillation in which the electrons and
the active-band phonons participate. It is believed that
those spontaneous current oscillations observed under
conditions of acoustic gain which are not associated with
simple ultrasonic ringing are related to this phe-
nomenon. ' The predictions of this theory agree qualita-
tively with the observed oscillations as a function of
electron density in CdS. Spontaneous oscillations, which
have been reported in other materials, ' may also be re-
lated to the collective phenomenon described here.

In a previous theoretical development of collective-
wave propagation' (hereinafter referred to as paper I),
it was shown that a restricted band of phonons could be
amplified by drifting electrons and support collective
phonon waves similar to second-sound propagation in
He II. However, in that analysis, the accumulation of
charge which is expected to be associated with the col-
lective wave was not included. This restricted the
validity of the analysis to short wavelengths where
charge accumulation is least important.

The effects of this accumulation become important,
and even dominant, at long wavelengths, giving rise to
the oscillation behavior mentioned above. In the case of
the spontaneous oscillations, wavelengths are the order
of the size of the crystals.

The behavior of these collective waves can be likened
to the oscillatory motion of a mass supported by two
springs in parallel whose spring constants can be altered.
The frequency of oscillation will be determined by the
stiffest spring. In the analogy to the collective wave, one

' H. Kroger, E. W. Prohofsky, and H. R. Carleton, Phys. Rev.
Letters 12, 555 (1964).' J. B. Gunn, Solid State Commun. 1, 88 (1963); J. B. Gunn,
IBM J. Res. Develop. 8, 141 (1964).

3E. W. Prohofsky, Phys. Rev. 134, A1302 (1964); R. W.
Damon, H. Kroger, and E. W. Prohofsky, Proc. IEEE 52, 912
(1964).

spring would be that of the phonon-density gradient.
This spring constant increases quadratically with collec-
tive wave vector. The other spring is that of the electro-
static forces due to electron density fluctuations. The
"spring constant" of this force increases for smaller wave
vectors, as the electron bunching is greatest for long
wavelengths. In the short-wavelength limit, the collec-
tive wave will be dominated by the phonon-gradient
"spring, "and the wave will be similar to second sound,
somewhat affected by, or dressed by, electrons. In the
long-wavelength limit, the wave will be dominated by
electron forces somewhat affected by, or dressed by,
phonon-density fluctuations. In the intermediate-wave-
length region the two "springs" are roughly equal, and
the collective wave has the nature of both an electro-
static oscillation and a phonon-density wave. The spon-
taneous oscillations are associated mainly with the
electrostatic wave aspects of the collective waves.

In Sec. II, a phenomenological description of the col-
lective wave is given which stresses the difference be-
tween the interaction of the collective wave with elec-
trons and the interaction of a coherent ultrasonic wave
with electrons. The coupling of these collective waves
with the experimental configuration used in observing
spontaneous oscillations is discussed.

In Sec. III, first-order moment equations, represent-
ing the phonon-crystal mornenturn, phonon energy,
electron momentum, electron density and Poisson's
equation, are simultaneously solved, and the resulting
dispersion relation for the collective behavior of these
elements is analyzed. The use of these moment equa-
tions is similar to the use of hydrodynamic equations in
that the variables are equivalent to densities and drift
velocities. The resulting solutions can be separated into
three distinct regions: (1) the short-wavelength region
which is the simple collective-phonon propagation
analyzed in paper I, (2) the intermediate-wavelength
region in which spontaneous oscillations are likely to
occur, and (3) the long-wavelength region in which the
collective wave degenerates into an electron-density
fluctuation traveling at the electron-drift velocity. A
cutoff for the collective waves occurs at some frequency
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(c)
Fro. 1. (a) The large-amplitude sine wave (solid line) with

wavelength gr represents the electric potential associated with a
coherent sound wave in piezoelectric material. The accumulation
of electrons in regions of positive potential reduces the potential.
The sound wave with accumulated charge is represented by the
broken-line sine wave. The largest amount of charge accumulation
which can occur would completely counterbalance the piezoelectric
potential, in which case no further electron attraction occurs.
(b) The broken sine wave in (b) represents the density of phonons.
The phonon distribution has a density fluctuation which corre-
sponds to a collective wave with wavelength 8'. There is no
coherent electric potential associated with this wave. The local
electric potentials are associated with the short-wavelength
phonons m«W and are represented by the jagged lines contained
within the density fluctuation. The individual electrons interact
with the potentials of individual phonons. The total effect of the
phonon-density fluctuation with period W is to give rise to a
resistance fluctuation felt by the entire electron distribution with
period W. (c) The resistance fluctuation causes the accumulation
of space charge diagrammed in (c). Since no net piezoelectric
potentials exist over distances W the only contribution to coherent
potentials comes from the accumulated charge. The phase relation-
ship between charge density and electric potential in this situation
is opposite to that which exists in (a). The electric fields due to
charge accumulation represented by arrows in (c) are such as to
increase phonon emission in the regions of highest phonon density.

below the intermediate region. No wavelike solutions
exist for all lower frequencies.

In Sec. IV, the behavior of the spontaneous oscilla-
tions predicted by this analysis is described.

II. PHENOMENOLOGICAL DESCRIPTION

A "phonon fluid" may, in principle, propagate a den-

sity Quctuation which is similar to a sound wave in
ordinary Quids. The phonon-density Quctuations set up
temperature gradients which play the same role as
pressure gradients which would be set up by the density
Quctuations in ordinary fluids. For these waves to exist,
however, the loss or gain of momentum per cycle must
be a small part of the total momentum associated with
the wave.

Under conditions of acoustic gain, the large electron-
drift velocity can supply momentum to a restricted

group of phonons which can overcome the usual losses,
making collective-wave propagation possible.

In paper I, it was shown that one would expect this
to be the case in CdS, where the phonon Quid was com-
prised of a band of piezoelectric phonons with frequency
centered about Aoi/ti, '=m, *, where ti, is the velocity of
sound and nz, * the electron effective mass. The exist-
ence of phonon-phonon collision losses4 would cause the
higher frequency phonons to be damped more heavily
than those at lower frequencies. Because of this, the
phonons participating in collective phenomena may be
of lower frequencies than indicated by the maximum in
the analysis of the gain. These phonons can be con-
sidered a somewhat isolated Quid as they interact
strongly with each other via higher order electron-
phonon interactions and are fairly well isolated from
other phonon modes of the crystal by a relaxation
bottleneck.

The interaction between electrons and such a collec-
tive phonon wave is considerably different from the in-
teraction between electrons and a single coherent sound
wave. For example, a coherent piezoelectric sound wave
appears to the electrons as a sinusoidally varying elec-
tric potential. This is diagrammed in Fig. 1(a). The
electrons tend to accumulate in the regions of positive
potential. ' This accumulation of negative charge, how-
ever, decreases the potential, reducing the tendency
to accumulate more charge. This process cannot make
the regions of high-electron density regions of negative
potential, since the reason for further charge accumula-
tion vanishes at zero potential.

In the case of a collective phonon wave, there is no
coherent piezoelectric potential associated with the col-
lective wavelength. This case is diagrammed in Fig.
1(b). The coherent potentials are associated with the
individual phonons making up the collective wave, and
these phonon wavelengths zv are considered small com-
pared to the collective wavelength W. The phonons
mak. ing up the collective wave are randomly distributed
with random phase within the collective wave; only the
density of the phonons varies coherently. The regions
of large phonon density appear as regions of large resist-
ance in electron Row. Drifting electrons will tend to
bunch against the high-resistance regions as diagrammed
in Fig. 1(c). Accumulations of space charge over dis-
tances of the order of collective wavelengths have nega-
tive potential, as there is no long-range piezoelectric
potential to overcome.

The electrostatic fields associated with the space
charge are represented by arrows in Fig. 1(c). These
6elds cause the larger voltage drop which occurs across
regions of large resistance. The fields are oriented so as
to accelerate the electrons in the regions of large phonon
density and deaccelerate the electrons in the regions of

4T. O. Woodruff and H. Ehrenreich, Phys. Rev. 123, 1553
(1961).

~ D. I,. White, J. Appl. Phys. 33, 2547 (1962).
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low density. In addition, the large phonon density
stimulates a greater number of phonon emissions in
these regions. That is, large resistance implies greater
electron-phonon interactions. This selectivity in the rate
of emission further increases the phonon density in
dense regions which in turn increases the space-charge
accumulation, etc. In this sense, these phonon-electron
density distributions form a normal mode. It is different
from most normal modes, as it requires external elec-
tric fields to give rise to the necessary electron-drift
velocities.

Returning now to the situation considered in paper I,
any propagating collective-phonon wave in the presence
of rapidly drifting electrons will cause a bunching of
electrons. In the limit of small electron bunching, the
repelling potentials associated with the bunching cause
an increase in the frequency. This frequency rise be-
comes more important at lower frequencies and it
brings about an increase in the phase velocity of the col-
lective wave.

In the intermediate-wavelength region the collective
wave phase velocity becomes comparable to the electron-
drift velocity, and the bunching of electrons within the
wave greatly increases. In this region, the effect of
charge bunching and the electrostatic field become of
comparable importance to the phonon temperature
Quctuations, and the character of the collective wave is
considerably modi6ed. At these intermediate wave-
lengths, the negative potential in the region of large
electron density is similar to the situation which occurs
in a plasma oscillation, and the electrostatic 6eld would
give rise to oscillatory motion of the charged particles.
However, the electrons are not free to respond to this
field as they are strongly coupled to the phonon density
distribution. The only motions available to the elec-
trons are those which displace the phonon density as
well. The mass associated with this behavior is the com-
bined mass of the phonons and electrons, which is
essentially the phonon mass. The wave in this region is
amplified since its phase velocity is comparable to, or
less than, the electron-drift velocity; and energy trans-
fer to the collective wave can occur.

In this intermediate region, where the frequency of
the wave is increased by the electrostatic or "plasmalike
effects, " the dispersion curve Q(Q) can be flat or even
have negative slope. At still lower frequencies, the dis-
persion curve is modi6ed, as the unmodified electro-
static wave would have a phase velocity greater than
the electron-drift velocity. This would cause the elec-
tron and phonon-density fluctuation to become de-

coupled. The modi6ed dispersion relation in this region
degenerates into an electron density fluctuation travel-
ing at the electron-drift velocity and locally causing dis-

tortions in the phonon distribution. This situation is

highly unstable, as the collective wave is in resonance
with the electron-drift velocity, causing the growth rate
of such a wave to exceed the frequency. The wavelike

solutions in this limit have no meaning and do not rep-
resent modes of the system.

The spontaneous oscillations occur when a feedback
mechanism exists which can maintain oscillations. The
feedback mechanism can exist when the wavelength of
the collective wave becomes comparable to the length
of the crystals. If this wavelength is in the intermediate
region, large electrostatic fields extending over the length
of the crystal will be present. The application of a fixed
voltage across the crystal, from a low-impedance source,
will select those electrostatic waves which give rise to
time-independent voltage drops across the crystal. The
external circuitry applies a boundary condition which
in linearized form becomes

Ei(x,t)dx=0, (2.1)

where Ei(x,t) is the ac part of the electric field of the
collective wave.

As pointed out previously, in a macroscopic view,
the effect of space charge and its associated eleotro-
static 6eld would be described in terms of a greater volt-
age drop occurring over the regions of large phonon
density. %'ith a 6xed voltage across the crystal there
would be a smaller voltage drop across regions of low
phonon density. This difference in voltage across various
regions gives rise to differences in the phonon emission
in the different regions, and this, coupled with a Row of
the phonon-density fluctuations down the crystal, would
give rise to oscillations.

III. SOLUTION OP THE MOMENT EQUATIONS

The model system being studied consists of a free-
electron distribution which is strongly interacting with
a particular group of phonon states called the active
phonon band. The rate of interaction of the electrons
and the active-band phonons with other phonon states
(and all other degrees of freedom of the crystal) is con-
sidered to be much slower than the rate of interactions
between the electrons and the active phonon band. It is
assumed that the loss of crystal momentum and energy,
by the system to the other degrees of freedom, can be
adequately described by relaxation-time approxima-
tions. The transport properties of the active phonon
band must satisfy the energy and crystal-momentum
conservation equations

(8/Bt) (h)+ (8/Bx~) (n; 8)=a8„... (3.1)

(8/Bi) (P;)+(8/Bx~) (P;s,)= AP;,.i, (3.2)

where the brackets ( ) imply a summation has been
taken over all states making up the active phonon band,
8 is phonon energy, v, is the jth component of phonon
velocity, and I'; is the ith component of the phonon-
crystal momentum. These equations have been dis-
cussed in Paper I.
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Similarly, the transport properties of the electron dis-
tribution satisfy the equations of momentum and par-
ticle conservation

8 8 Bf
(p'-)+ (~ p')-F-' — p' =~p'-»

Bt . Bx, Bp,

(~/~~)( )+(~/~ )( ' )=0. (3.4)

In this case, the brackets imply a summation over all
electron states, p; is the ith component of electron mo-
mentum, v, is the jth component of electron velocity, n
the electron density, e the electronic charge, and E; is
the jth component of the electric 6elds.

When local Quctuations in the electron density occur,
electrostatic fields are set up. The fields, due to these
space-charge effects are described by Poisson's equation

(8/itx;)E; = (4m'/e), (3.5)

where ~ is the dielectric constant. When the electrons
and phonons are strongly interacting, and when dis-
tortions in the distribution of either aBect the interac-
tion rate, Eqs. (3.1)—(3.5) should be solved simul-
taneously. Equation (3.3) can be simplifld by restrict-
ing the solutions to frequencies much smaller than the
frequency of electron relaxation. The frequencies here
are the collective-modulation frequencies 0, not the fre-
quency of individual phonons ~ which may be a part of
the system. In these low modulation-frequency regions,
the transport behavior of the electrons is determined by
the electric fields acting on them and the resistance they
encounter. Equation (3.3) becomes

eE[(8f/Bk) p]=A(p),.) . (3.6)

In this equation, the electron inertial terms have been
ignored. This is equivalent to excluding all electron-
plasma effects.

As in Paper I, it is assumed that the disturbances in
both the electron and phonon distributions can be de-
scribed in terms of departures from equilibrium dis-
tributions. This requires a rate of normal collisions
within the system which is fast compared to the fre-
quencies of interest Q. It is assumed that to 6rst order
these disturbances can be described by macroscopic
parameters which correspond to net-drift velocities and
quasiparticle densities. The simplest distribution func-
tions which incorporate these parameters are

electron-drift velocity. Making use of a linearized ex-
pansion of Eqs. (3.7) and (3.8) to evaluate the moments
on the left-hand side of Eqs. (3.1), (3.2), (3.4), and
(3.6), they become

(8/at)MXg+(8/Bx)y'CTg= (&P)..i, (3.9)

(8/Bt)CT, +(8/Bx)DX, =v, (AP) g, (3.10)

( nmIJ/—r,)(FO+F,)= (Ap)..(, (3.11)

8 8 8
ng+—v~n, +ep vg —0,——

Bt Bx Bx
(3.12)

where "y=1/V3 because of the angular spread of the
various phonons contributing to the transport of the
collective wave

I'
JI/I= —=

@(@max

cosOAq
Aq coso-

&To

X&,(q) P&,(q)+1]d'q, (3.13)

Aq cose
(Av, q) (m, costt)—

kTQ

D=—
g(@max

x1vo(q) LEO(q)+1]d'q. (3.14)

(AP),.i= Xr g+ FXg+Zeg —(MXg/r~), (3.15)

D/.V=v, ', and C is the phonon speci6c heat summed
over all states; q&q„„,where q, , is the upper limit of
the active-phonon band. Extending the lower limit of
these integrals to q= 0, even though long-wavelength
phonons play little or no role, does not greatly affect
these parameters. M is, in a sense, the inertial mass per
unit volume of the active phonon band.

The expression ((Bf/Bk)p) has been replaced by
gamp/r„where p is the normal mobility assumed con-
stant, i.e., evaluated at drift velocities less than the
sound velocity where no saturation effects occur, and
where a simple relaxation time v, is su%cient to de-
scribe the resistive processes.

When the electron-drift velocity is greater than the
velocity of sound, an electron-population inversion exists
with respect to phonon emission. In such a case, the
right-hand side of Eqs. (3.9)—(3.11) can be written in
linearized form as discussed in Paper I as

E((.,q) = Lexp(A(o —AXq/K(TO+ T&))—1] ' (3.7)
(m)...=~,(SP)..„ (3.16)

|'8—Ak(vg+ng) —hp(mo+eg) )
f(8,k) = exp~ — —— ~+1

kTQ

(3.g)

where TQ is the ambient temperature, Tj the local varia-
tions in phonon temperature, no the ambient electron
density, n& the local variations in electron density, e&

the electron-drift velocity, and v& the local variations in

(Ap).„g= —Xvg —I'lI.g
—Zeg
—L(eo+n, )m(wg+eg)/r. ], (3.17)

where X is the linearized coefficient of the increase in
local phonon emission due to local increases in the
electron-drift velocity, F is the coeKcient associated
with the local increase in stimulation occurring with in-
creases in ) ~, and Z is the local increase in emission due
to larger local electron densities. Because the interac-
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tion is basically due to velocity-induced population in-
versions, we expect Z/X or Z/Y to be small except at
largest drift velocities.

It should be pointed out that the phonon emission
term developed in Paper I applies only when q/&1,
where q is the wave vector of the phonon in the collec-
tive wave, and 4 is the electron mean free path. For
those phonons participating in the collective wave
which do not satisfy this condition, one should use an
interaction term based on a classical analysis such as
that of White. ' At present, it is not completely clear
which phonon frequencies are most important in the
collective wave, as the rate of phonon-phonon collision
losses is not known. It has been shown that the mixing
rate for classical phonons (qg(1) under gain conditions
is quite fast, ' and these phonons could take part in col-
lective wave propagation. In any case, one can define an
electron-phonon interaction term which can be linear-
ized in some region as described above, and the equa-
tions then become

8 8
MX+—7'CT—z (Y M/z. „)Xg———+Xv,+Zzzg,

Bt 8$
(3.18)

mP RpSSP—-&ozzi+-
Tg &e

zzozzz) me~
X vg —I'P

g
—Zeg —

mg ) 3.20
7

8 8
ng+ —zdzzz+ —zzoztg —0, ——

8f Bx Bx
(3.21)

(3.22)

In infinite and isotropic material, one would look for
plane-wave solutions to exist where

T~,Xg,~g,eg Eg e'("'—@'~. (3.23)

Substituting Eq. (3.23) into Eqs. (3.18)—(3.22), one can
solve for the dispersion relation of the combined system,
which is

8 8
CT4+ DX~—e, (Y —M/r„——)X~+v,—Xsz+w, Zzz~, (3.19)

Bt 8$

where the undisturbed roots of the equations are

~i = (n+vz. g)

~,= (n—~.,g),
~,=(n —z,g),
zz4= (n —pEOQ) ~

~,= (ny~-",Q),
and

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

Qp'=
4me'epQpm

CO~ =2=
M 43I/No

(3.30)

5= Y M/—r~,

Dphil 7 q

(3.31)

(3.32)

Qp is a plasma frequency for charged particles with the
charge of an electron and a mass M/00, which is the
phonon mass per electron.

The quantity 6 is related to the net stimulated rate of
growth of the phonon crystal momentum. As pointed
out earlier, I' is that part of the momentum transfer
driven by the ac phonon amplitude. The term M/z ~ is
the momentum loss driven by the same ac phonon ampli-
tude. The term X is the rate of crystal momentum trans-
fer driven by displacements of the electron distribution,
as distinguished from I", which is driven by the phonon
displacement. This momentum-transfer term is not
selective, as momentum is pumped to both the ac
phonon wave as well as the dc thermal background. The
ratio of 6,/'X, then, is a measure of both the viscosity
and selectivity of the electron-phonon collective-wave
interaction. The larger this ratio is, the better the
coupling of the ac component of the phonon wave to the
electrons.

The factor cpm, /'v-, is the rate of usual resistive losses
of electrons in the absence of inverted populations and
strong coupling to phonons. The factor X is also that
part of the electron resistive losses specifically related
to the inverted population. It is the term responsible
for the saturation of currents observed when v~) v, . The
factor g is the ratio of these two electron loss mecha-
nisms. The cases of interest are assumed to have strong
interactions, a,nd we assume for simplicity that p«1.
However, qpEp is comparable to vd. In the absence of a
very strong electron-active phonon-band interaction,
~~= pEp. When the current is saturated, one expects ~g

to be reduced from pE~p by the ratio p., therefore,
epZ

zzzcxzQ3+'Qzz]zzzzz4+ Qnznz+ no zzz —z 17 4z44zz

X X M
QP,Ep 'vg . (3.33)

Qp' RpZ
MO!](X2 7 y lX A Tp Q5 ) (3.24)

A physically revealing approximate solution of Eq.
(3.21) can be made for very short wavelengths. From
the previous analysis in Paper I, one expects that at
short wavelengths

(3.34)' H. Kroger, Appl. Phys. Letters 4, 190 (1964).
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vz' = z)~+ 2)/4&o —(NoZ/X);

where pv, &v, &v&, and the root n3 is far from resonance. Since g«1, we may drop the terms containing p, ex-
In this case, one can divide Eq. (3.24) by no and use cept for those which contain g/4Ep. A simplification can
Eq. (3.34) to eliminate the ratios of Q/Q which occur in be made by letting
the denoninator.

Substituting from Eqs. (3.25)—(3.29), this becomes (3.40)

v(1+v)
Q2 —~22) 2Q2+Q 2

L('~/z'. )—»L2(o~/o )—» &

(Q+yzv. Q) f I' 1 ) /zap 1—
(3 35)

L2(vd/2, )—» kM 2 ~t' 2/q yz/, —T„

The solution, Eq. (3.35), is like that of an electrostatic
wave. The value of Q rises above the linear "sound-like"
value of yz),Q and approaches a finite frequency at
Q=O. This frequency is the heavy-mass plasma fre-
quency Qp modified by the ratio

and Eq. (3.39) becomes

M Pi-
Q2— (~v,+~.')QyzI P~——Q,2—

Ix .„i

XQ+2 a'yz), Q2+P—Qo'+iI 2/ /4Eo-
x

M P PnpZ—0 'yv, —ra+, ')Q=O, (3.41)
X 7-„X

Q l(z)d~+ Yz) )Q~(l)2/2((g2+b2)1/2+42)1/2

v(1+v) 1/2 4)1 1/2 (g 1/2

. (3.36)
L("/.)-»L2("/.)-»

where

—(z/2)(I Q j~LP)2/'((a'+$')'/' —/z)]'/2) (3.42)

The ratio 6/X as pointed out before, contains effects of
viscosity of the phonon distribution and the selectivity
of the coupling of ac parts of the electron and phonon
distributions. This solution is what one would expect
from the phenomenological discussion of Sec. II, if the
electron-drift velocity were always greater than the
phase velocity of the solution. However, at small values
of Q, this dispersion curve crosses that of no and the
solution is no longer valid.

A better solution, valid for small values of Q, comes
from dividing by n&, which is far from resonance for all
forward traveling waves. Equation (3.24) becomes

/z
—(z)~~ pz) )2Q2 4P Q 2 Q~2

X

M
b=2Q Qpo—(z)q' —yz), )

X

(3.43)

M PQ'= —Qp'+ ——
g
—.

X v.„M (3.45)

p F'(' v—.—)+P —-'n/ ~o,—(3 44)
Tp M

epZ
422/22+2/422424+ Q422+P—Qo'

X X

where
—2'(1+y) &P=422/ni(1.

3f 6 n3 npZ=i —n2—Qp'+ g
—Pn4 —P——P Q

X M 7„X7.„
(3.38)

a= (~~'—so.)'(Q' —Qo'),

b=2(z)g' —yz) )2CQ

(3.46)

(3.47)

The solution, Eq. (3.42), is correct for b)0, which is
true for I') 7.„'.There are two solutions: a higher fre-
quency one which has only negative terms in Im(Q)
and is therefore always damped, and a low-frequency
sohition which has positive terms in Im(Q) and is ampli-

(3.37) fied. The analysis of Eq. (3.42) is simplified by setting

Thus, )8 shows only slight Q, Q dependence and can be
considered constant.

Substituting Eqs. (3.25)—(3.29) into Eq. (3.37) gives

4P(~/X) Q,2+Q'2
02—

(o~' —Vo.)'
(3.48)

zzpZ)
(&+a)p' —(~~+vs, +ave, +nuE, ~og+qr,xi

zzpZ~
X

I
z)~+2//4Eo — IQ'+P Qo'= z 2/

—P—(Q —)MEoQ)xi x

RegiorI, 1. The short-za7)ele~g'h limit is defined by
Q&&Qp. In this limit

((422+$2)l/2+zz)gl/2 —
(z) pz) )Q (2) pz) )Q
X(Q./n+-:(. -~.)c(~/Q),

(3.49)

Q 2(Q pz) Q) (Q z) Q) (3 39) I:l((o'+&')'"—~)j'"=(o.'—rz")C+2 (2"—7~ )Qo

X (Qo/C) (Qo/Q) . (3.50)
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The solution capable of amplification is

Re(n) =~v,Qy-;(v. '—~v.)(Qp —C )(1/Q) (3.51)

C)1/2
«(n) =2 (vd'+Vv. )——

I

i Q,i

&&(v&' 7v ) Qo+' (v&'+tv. )

-//Q ~»2

kci Q)
2 Im(n) = (vd' —yv, )(CQp)'/2-n'

(vg' —yv, ) q, (3.53)

(Qp) '" ( C ) '/'-

&C) kQ)
(vg' —yv, )q. (3.54)

Region 3. The long vt/avelength r-egion where Q(Qp. Ex-
panding to first order in Q/Qp, the amplified solution
becomes

«(n) = 2(v~'+V v.)Q —2(v~' —Vv.)C(Q/Qp) (3 55)

2 Im(n) = (v~' yv. )Q—p
n'—

—51—(C'/Qp') j(v~' —vv. )Q(Q/Qp) (3 56)

It can be shown that the wave is ampli6ed in all three
regions by combining the Q-independent terms in
Im(n). Equation (3.52) becomes

F PwFp P
2 Im(n) =2—— —2—

M 'Vd —P'V

Qp't/Qp '
+-'(v.'—vv. ) I

—,(3 57)
C

which is expected to be positive for V/3E) 1/r„, i.e.,
whenever the phonon distribution can be excited out of
equilibrium. Equation (3.56) becomes

( g 1/2

2 Im(n) =
~

4P n,2+a"- —n'—
x

C2) 2

vd —+Pa —
~ 3.58

Qp') Qp

in which the first two terms must be positive. The
second term in Eq. (3.54) is just the geometric mean of
the positive terms in Eqs. (3.52) and. (3.56) and, there-
fore, the Im(n) in region 2 lies between the values for
regions 1 and 3. The value of Im(n) approaches a 6xed

2 Im(n) = (vg' —yv, )C—n'

+4(v~' —vv. )Qo(Qp!C)(Qo/Q)' (3 52)

Region Z. The ietermeChate-wavelength region where
Q=Qp. Let Q=Qp+q where q((Qp, then the amplifmd
solution is

This ratio can be larger than one only for large V/M.
The last two terms in the numerator can be considered
a measure of the net-phonon amplification by the drift-
ing electrons, and the denominator is the frequency of
the electrostatic oscillation. YVhen this ratio is large,
the phonon amplitudes become so large as to dominate
the properties of the collective wave. The contribution
from the first term in Eq. (3.59) is small, provided

Oo (1
L(6/M) (X/M) ji/2

ol'
Qp

(3.60)
[(1/7 „X//l/I) ]'"

where Qp is the natural plasma frequency of the collec-
tive system and the denominators are the geometric
means of relaxation times which transfer momentum
from the electrons to the phonons, and out of the phonon
distribution, to either return to the electrons or be
dissipated into the thermal background.

The dispersion relation for the collective electron-
phonon wave can be described for various values of
C/Qp.

Case i:C/Q (I.For Q) Qp, the wave is that one de-
scribed as an amplified collective-phonon wave in paper
I, except that the frequency rises as Q —+ Q„ in a manner
given by Eq. (3.51). The gain is given by Eq. (3.57),
which is in close agreement with that found in paper I.
For Q=Qp, the frequency is given by Eq. (3.53), where

n =-2' (vg'+yv, )Q. (3.61)

However, the slope of the dispersion relation can be
zero or even negative. For some Q(Qp, the Im(n) be-
comes greater than Re(n), and the wave solutions no
longer represent modes of the system.

Case 2: C/Qp= l. In this case, there is no dispersion.
The solution is

Re(n) =yv, Q. (3.62)

The lack of coupling, Eq. (3.60), or the large phonon
growth rate, Eq. (3.59), causes the phonon fluctuations
to dominate the collective behavior, and the electro-
static fields cannot greatly effect the wave. For some
Q((CQp)' ', the wave solutions cease to be a mode of
the syste~,

value for Q —&0. At some value of Q, Im(n)&Re(n),
and the wavelike solutions cannot be considered modes
of the system. The detailed behavior of the waves de-
pends on the ratio C/Qp, where

( M I' g/2Ep P
c/Q, =~ n, +2p—

X 3E (vg' yv, )—
M P q2-'/2q

4P—n, 2+ n, 2—+—
[ [. (3.59)x x r, i i
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Vd'+yV,

a""go

Fn. 2. The dispersion relation for collective waves. The solid
line is for C/Qo(1, the dotted line for C/QO&1. For C=QO, the
curve would be the straight line with slope pv, ending at cutoff.
In the intermediate region Q=QO the group velocity of this wave
can be very small, zero, or even negative.

Case 3: C/Qs)1. In this limit, the large imaginary
parts of the dispersion relation cause a reduction in the
real frequency below the linear value yv, Q. For some
Q(C, the waves cease to be a mode of the system. The
dispersion curves are diagrammed in Fig. 2.

IV. DISCUSSION AND CONCLUSION

The description in Sec. II and the analysis in Sec. III
are based on plane-wave solutions in bulk matter. The
observed oscillations are expected to involve wave-
lengths which are comparable to the size of the crystals.
An exact solution of the oscillation problem would re-
quire solutions of Eqs. (3.18)—(3.21), (3.3), and boundary
condition (2.1). However, one can examine the be-

havior of the oscillations approximately by assuming
that (1) the solutions are close to plane-wave solu-
tions, and (2) the boundary conditions select values of
Q which are not very dependent on the parameters
being varied. In the absence of large variations in ampli-
tude of the collective wave (not to be confused with the
changes in density which occur in a harmonic wave)
along the crystal, the boundary conditions are approxi-
mately satisfied by whole wavelengths. The smallest
value of Q which satisfies the boundary conditions Q'
will represent the fundamental mode expected to be
most strongly coupled to the external circuitry. Oscilla-
tions could occur at harmonics of this wavelength.
This fundamental mode is in the long-, intermediate-,
or short-wavelength region, depending on whether Q'
is less, comparable to, or greater than Qs.

Simplified versions of the collective-wave dispersion
relations are diagrammed in Fig. 3. It is assumed that
Ds) 0' and C/Qs(1. In this figure, the frequency of the
fundamental mode Q' can be found for various values
of 00 which is equivalent to various locations of the
intermediate region. Qo can be varied by varying eo, the
number of electrons. The lowest frequency solutions for
a given Q' are

Q=ye, Q'

at the edge of the short-wavelength region. In the inter-
mediat. e region, 0 changes rapidly with 00. For large 00,
the solution is in the long-wavelength region, and

where it has been assumed that nsZ/X is small. It is in
the long- to intermediate-wavelength region where
oscillations are most likely, because (a) the gain is
greatest, and (b) the electrostatic fields which couple
to the external circuitry are most important.

Q
I

FIG. 3. A simpli6ed dispersion
relation for various values of Qo.
The intermediate region occurs
at Q=QO. In this region, the slope
of the dispersion curve changes
from —,'(ed, '+yv, ) =vq to pv, . For a
6xed wave vector Q', the frequency
Q will be yv, Q' for QO=QI(yv, Q'.
It will rise with Qo for QO=Q2,
where vdQ'&Q2&yv Q', and satu-
rate at vs' for QO=Q3&vqQ'. At
Qo=Q4, the wave vector Q' will be
below cutoR.
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duction in the frequency observed at largest /'Lp and Ap

would be due to an increase in the ratio of C/Q, . This
brings the system close to the conditions of case 2,
which lowers the frequency, as shown in Fig. 2. The in-
crease in C/Qs comes from overdriving the phonon dis-
tribution, as discussed above. The quantity Y in Eq.
(3.59) depends on Fe and Ns.

The oscillations observed in GaAs may 6t this analy-
sis.' Larger values of ep, smaller values of m* and larger
v~ will increase Qp. For ep=10' —10", up=10, and
ns„.*=0.02m, , the value of Op=10'. The fundamental
mode of crystals, of the order of 10 ' cm, would then be
in the long- to intermediate-wavelength region, and the
spontaneous oscillations observed would correspond
roughly to the behavior exhibited in Fig. 4.

The large drift velocities required for oscillation could
be necessary to bring the fundamental mode of the
crystal to the high-Q side of the cutoff, i.e., e&Q'=Os.
Similarly, the high drift velocities may be necessary
before strong electron-phonon coupling occurs. The
theory developed in paper I should be limited to the
cases where vq —v, /v, & 1, and the extrapo1ation to
oscillations in GaAs,

wherever/v,

=100, should be viewed
with caution.
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Therlnoelectric Size Effect in Pure Gold*
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The difference between the thermoelectric power of thin gold foils and a 0,010-in.-diam gold wire was
measured between 77'K and room temperature. The electrical resistance difference between the foils and the
wire was determined simultaneously. From the experimental results, the energy dependence of the electron
mean free path and of the area of the Fermi surface in gold was obtained. Both the electron mean free path
and the area of the Fermi surface decrease with increasing electron energy, which is opposite to the behavior
expected from the free-electron model of a metal. The electron mean free path obtained from the resist-
ance measurements is in agreement with the value derived from the anomalous skin effect.

I. INTRODUCTION

HE positive sign of the electronic component of
the absolute thermoelectric power of the noble

metals has been discussed recently in a series of theoret-
ical papers. ' ' The electronic component 5,' of the
thermoelectric power depends on the way in which the
area of the Fermi surface and the electron mean free
path vary with the electron energy. In the free-electron
model of a metal the energy dependence of both the
area of the Fermi surface and the electron mean free
path yield a negative term in the electronic thermo-
electric power. When it was found. that the Fermi sur-

face in the noble metals is distorted and touches the
zone boundaries, it was suggested' that the area of the
Fermi surface might decrease suKciently rapidly with
increasing energy of the electrons to yield a positive
electronic thermoelectric power. However, it appears
today that the positive value of 5,' in the noble metals

*Based on work performed under the auspices of the U. S.
Atomic Energy Commission.

' J. M. Ziman, Electrons and P/zonons {Oxford University
Press, Oxford, England, 1960), p. 399.

2 J. M. Ziman, Advan. Phys. 10, 1 {1961).
3 P. L. Taylor, Proc. Roy. Soc. {London) A275, 209 {1963).
4 F. J. Blatt, Phys. Letters 8, 235 (1964).

is caused by deviations from the free electron value of
both the term contain'ng the area of the Fermi surface
and the term containing the electron mean free path. '

Since in the electronic thermoelectric power of a, pure
metal, the term containing the area of the Fermi sur-
face and the term containing the electron mean free
path always appear combined, it is usually not possible
to measure each term separately. However, the term of
5, containing the electron mean free path can be
determined separately by measuring the eGect of the
specimen size on the electronic thermoelectric power.
In the present investigation the inQuence of the speci-
men size on the electronic thermoelectric power is
studied with high-purity gold foils in the temperature
range between 77 and 296'K. From the results, the
term of 5,' containing the electron mean free path and
the term containing the area of the Fermi surface are
obtained separately.

II. THEORY

The absolute thermoelectric power 5 of a pure metal
consists of a contribution 5, , arising from the non-
equilibrium distribution of the conduction electrons,
and a contribution 5,', caused by the intera, ction be-


