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The two-particle cluster approximation of Strieb, Callen, and Horwitz is extended to ferromagnets and
paramagnets with nearest- and next-nearest-neighbor exchange, with particular reference to FuO, EuS, EuSe,
and EuTe. Curie temperatures, magnetization curves for general values of the applied field, susceptibility,
spin-correlation functions, energy, and specific-heat curves are calculated. Using the values of the exchange
constants of EuS obtained from low-temperature spin-wave analysis (and no adjustable constants) we find
excellent agreement with the observed Curie temperature, very close agreement with the observed "para-
magnetic Curie temperature, " and very good agreement with the X-like discontinuity in the specific heat
near the Curie temperature. The magnetization data for arbitrary applied fields and the susceptibility data in
the paramagnetic region also can be fit closely with these values of the exchange constants. To explore the
sensitivity of the theory to the exchange constants, the results of the cluster approximation are given for
various ratios of the first- and second-neighbor exchange constants, including the special case of vanishing
second-neighbor exchange (in this latter case the approximation generalizes the constant-coupling approxi-
mation to arbitrary spin). We find that all the presently measured magnetic properties are rather insensitive
to the particular choice of exchange constants, provided that these are chosen to be consistent with the ob-
served Curie temperature; measurement of the spin-correlation functions, however, would provide a sensi-
tive criterion for the choice of exchange constants.

I. INTRODUCTION

A VARIETY of methods existf or the statistical-
mechanical analysis of a ferromagnet: some

rigorous in restricted temperature regions (spin-wave
theory, Opechowski series expansion), some approxi-
mate, powerful, and relatively complex (diagrammatic
series summations, Green function methods), and some
whose chief advantage is simplicity (small-cluster
approxima, tions). The simplest of the latter class, the
Weiss molecular field theory, is in fact the work-horse
of magnetism, providing a convenient and qualitatively
reasonable theory of those properties (such as the
magnetization) which are the sum of single-spin contri-
butions. However, those properties which depend on
two-spin interactions, or spin correlations, are beyond
the reach of the Weiss theory. The various small-
cluster approximations (Oguchi two-spin cluster, Bethe-
Peierls-Weiss method) attempt to extend the Weiss
theory, but they characteristically exhibit internal
inconsistencies, such as the anti-Curie temperature of
the Bethe-Peierls-Weiss theory. However, the "constant
coupling" approximation of Kasteleijn and van
Kranendonk' (which can be viewed as a two-spin
cluster approximation defined for systems with nearest-
neighbor interaction only) is distinct among the cluster
approximations in that it is at least self-consistent. And
in fact this method is widely used as the most convenient

simple theory of correlation-dependent properties of
nearest-neighbor systems.

A rigorous cluster expansion for the Heisenberg
ferromagnet has been derived recently' by Streib,
Callen, and Horwitz (SCH). The leading term of the
SCH series is the Weiss molecular field, and the two-spin
cluster term becomes identical to the constant-coupling
approximation for the special case of nearest-neighbor
interaction. However, whereas the constant-coupling
approximation is restricted to nearest-neighbor inter-
action, the SCH two-spin cluster approximation
provides a simple, convenient procedure applicable to
arbitrary types of exchange interactions. In this paper
we evaluate and study the SCH two-spin cluster
approximation for the physically interesting case of
ferromagnets with nearest- and next-nearest-neighbor
exchange.

The Heisenberg model with first- and second-neighbor
exchange is of particular interest because of the applica-
bility of this model to the europium chalcogenide series
(Euo, EuS, EuSe, EuTe). These salts are simple
insulators with the Eu ions on a face-centered cubic
lattice. The nearest-neighbor exchange is positive
whereas the next-nearest-neighbor exchange is probably
negative throughout the series. The oxide and sulfide
are ferromagnetic, whereas the negative second-
neighbor interaction dominates in the telluride. In the
selenide the balance is so close that a small applied field

* Supported by the U. S. 0%ce of Naval Research.
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induces ferromagnetic ordering, although the zero-field
ordering is still uncertain. n.'

When applied to the oxide and sulfide the two-particle
cluster approximation gives magnetization curves below
T, and susceptibility curves above, specific-heat curves
through the X-like anomaly at T„ the ferromagnetic
Curie temperature T„and the "paramagnetic Curie
temperature" 0. For the selenide it provides magnetiza-
tion curves in the presence of ferromagnetically aligning
fields below T~, and for the selenide and telluride it
gives susceptibility curves, Neel temperatures TN, and
"paramagnetic Neel temperatures" 0. In addition the
theory provides spin-correlation functions for the
analysis of neutron scattering, magnetostriction, or the
magnetic contribution to the thermal expansion
coefficient. "

A considerable amount of experimental data on the
europium chalcogenides is available, as well as a few
pertinent theoretical investigations. Matthias, Bozorth,
and Van Vleck4 have measured the susceptibility of
EuO. Busch, Junod, Risi, and Vogt' have measured
magnetization and susceptibility of the sulfide, selenide
and telluride, and McGuire, Argyle, Shafer and Smart'
have measured the susceptibility of these materials. The
magnetization of EuS for various applied fields has been
measured by Enz, Fast, van Houten, and Smit' and
by Argyle7; it agrees quite closely with the prediction
of molecular field theory. The specific heat of EuS has
been measured at low temperatures by McCollum and
Callaway' and over a broad temperature range by
Moruzzi and Teaney, ' who find a pronounced )-like
discontinuity at the Curie temperature.

Boyd' has made accurate NMR measurements of
the magnetization of EuS at liquid-helium temperature,
and Charap and Boyd" have attempted to evaluate
the exchange constants of this material by fitting
spin-wave theory to the magnetization" and specific-
heat data. In agreement with the spin-wave analysis
of McCollum and Callaway, Charap and Boyd find a
broad range of exchange constants to be compatible
with the observed behavior. A particular pair of values,

' S. Pickart (private communication).
~ Note added in proof. Subsequent investigations have shown

that the cluster theory also gives the celebrated 3-power law for
the magnetization below T,. This work will be reported in the
1965 J. Appl. Phys. Suppl. , Proceedings of the Decennial Con-
ference on Magnetism and Magnetic Materials.
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selected by Charap and Boyd as the most plausible,
will be referred to henceforth as the "spin-wave values
of the exchange constants of EuS." Wojtowicz" then
showed that these values give reasonable agreement
with the observed high-temperature specific heat when
used in his extension of the high-temperature series
expansion. Furthermore, the suggested' exchange con-
stants of EuO are roughly consistent with those ob-
tained by Calhoun and Overmeyer" in their measure-
ments of paramagnetic resonance of Eu'+ pairs in CaO
and SrO.

The relationship of the Curie temperature to the
exchange constants has been studied by a Green func-
tion method by Tahir-Kheli and Jarrett, "and we shall
find fairly close agreement with their results.

We brieQy summarize the general formulation of the
SCH two-spin cluster approximation in Sec.2.As anillus-
tration of the method we evaluate it in Sec.3 for nearest-
neighbor interactions, thereby obtaining the constant
coupling approximation for general spin (which, to our
knowledge, has not been given in the literature). Curie
temperature, magnetization curves, susceptibility
curves, and the spin-correlation functions are evaluated
and given graphically. In Sec. 4 we then particularize
the two-spin cluster approximation to nearest- and
next-nearest-neighbor interactions and we calculate the
Curie temperature as a function of Ji and Js (the two
exchange constants). We find the predicted Curie
temperature of EuS is in excellent agreement with
experiment' "if we use the exchange constants obtained
from the low-temperature spin-wave analysis. ' Simi-
larly the "paramagnetic Curie temperature" is in very
good agreement with that obtained by extrapolation
of the measured reciprocal susceptibility curves. ' The
magnetization data for arbitrary applied fields' 7 and
the susceptibility data' above T, can be fit closely with
the Charap-Boyd exchange constants, although the
number of ions in the nonstoichiometric sample here
provides an adjustable parameter. In Sec. 5 we explore
the sensitivity of the results to changes in J~ and J2.
We find that there is a considerable range of values
of J& and J2 which produce very good and substantially
equivalent agreement with the presently available
experimental data.

We conclude that the two-particle cluster approxi-
mation provides a convenient and successful theory of
the ferromagnetic europium chalcogenides throughout
the entire temperature range. It applies as well to the
antiferromagnetic europium chalcogenides above their
Keel temperatures, and below their Neel temperatures
when they are ferromagnetically aligned by an external

"P.J. Wojtowicz, J. Appl. Phys. 35 (Part 2), 991 (1964)."B.A. Calhoun and J. Overmeyer, J. Appl. Phys. 35 (Part 2),
898 (1964)."R. A. Tahir-Kheli and H. Jarrett, Phys. Rev. 135, A1096
(1964).

'4P. Heller and G. B. Benedek, Phys. Rev. Letters 8, 428
(1962); International Conference on Magnetism, Nottingharq
U. K., September, 1964 (unpublished).
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field. Application to the antiferromagnetic pha, se will

be given separately. However, the presently measured
magnetic properties are rather insensitive to the partic-
ular choice of exchange constants, provided that these
are chosen to be consistent with the observed Curie
temperatures. Measurement of the spin-correlation
functions near the Curie temperature would provide a
sensitive criterion for the choice of exchange constants.

2. THE CLUSTER SERIES

We brieQy summarize, without proof, the structure
of the SCH cluster expansion. As an introduction to the
more general case we then exhibit the consta, nt coupling
approximation as the two-spin cluster result for nearest-
neighbor interactions.

The Hamiltonian of the system is

Se= I2H P 5,'——2 g J;;S,'S;.

Strieb, Callen, and Horwitz replace the operator 5
by a spin-deviation operator o,—=S—5,* where S is a
pa, rameter later to be determined variationally. They
treat those terms that are linear in 0; as the unperturbed
portion of the Ha, miltonian, expanding the free energy
in powers of the remaining perturbation. Resummation
of the in6nite subseries of terms involving not more than
two spins constitutes the two-spin cluster result, and
similarly for larger clusters. After the summation to
desired order the parameter S is determined to minimize
the free energy. The power of the method lies to a
considerable extent in this variation procedure, which
corresponds to a diagrammatic vertex renormalization;
the "two-spin cluster" diagra, ms in fa,ct conta, in much
more extensive classes of "bare" diagrams, or of
diagrams with "undressed" vertices.

The result of the method is simply stated in terms of
an effective one-spin unnormalized density operator p™,

de6ned by

3. NEAREST-NEIGHBOR INTERACTIONS s

CONSTANT COUPLING

As a second illustration we evalua. te the two-spin
result for a model in which all spins are equivalent and
only nearest neighbors interact. Let 2J be the strength
of the interaction between neighbors and let s be the
number of nearest neighbors. The number of interacting
pairs (ij) is then 21Vs, and the free energy F2 becomes

pF.= —(a——1)Xln tripl
+2'.Vs ln trltr2 exp{2pJS1 ~ S2

+P[&H+2(.—1)JS](5;+5,)). (~)

To evaluate S we differentiate F2 with respect to S and
equate to zero; the resulting equation can be written
in the heuristically-appealing form

where
tl 151 pl/tripl tr ltl 251 p12/tl ltr2p12 (10)

p,2= exp{2PJS,.S2

+p[&H+2(z —1)J8](5;+52)). (»)

where ( )p denotes the average taken with respect to
the density operator p;p;,

(8)p—= tr~tr;Op;p;/tr, tr;p;p;

and the summation in Eq. (6) ranges over all spin pairs
in the system. S is determined by minimization of F2.

To illustrate the method consider first the zero-order
approximation. Then the free energy is given by Fo
[Eq. (5)] above, but it remains to evaluate 8 by
minimizing Fp. Evaluation of the trace in Eq. (5) is
elementary, and minimizing with respect to S gives

= SBB (PATHS+ 2P Jo58), (8)

where Bs(x) is the Brillouin function. Thus the method
achieves the Weiss result in zero order.

p.;—=exp+(pH+2JpS) 5,'],
where P= 1/kaT and

Jo=—Z J,,

(2) Furthermore, differentiation of Ii~ with respect to II
gives the magnetiza, tion as

(5 ) tl ltr251 p12/trltr2pl2 ~ (12)

Then SCH show that the two-spin approximation to
the free energy is the sum of a zero-order contribution
J 0 and a term F2 arising explicitly from two-spin terms;

F2 F0+F2

where the zero-order contribution is

Fo=XJoS2—P 'E ln tr, p, .

Here Ã is the number of spins in the system and tr;
denotes a trace taken over the states of the single
spin i. The two-spin correction is

F — P
—1

X P ln(exp{2PJg[S,'S;—8(5 '+5 *)+8']))p, (6)

Equations (10)—(12), together with the definition (2)
of p~, constitute the self-contained solution. The
quantity p» can be looked on as an e6ective two-particle
density operator, and the quantity in the square
brackets in Eq. (11) can be viewed as an effective
two-spin Hamiltonia, n. It can, in fact, be visualized as
the Hamiltonian corresponding to two interacting
spins surrounded by a medium in which all other spins
are "frozen" with S'=S. The relation determining the
parameter 8 is equiva, lent to the requirement [Eq.
(10)] that the effective single-spin density operator pl
a,nd the effective two-spin density operator p» give the
same magnetization. 8 is 21ot the magnetization.

Kasteleijn and va, n Kranendonk' postula, ted the form
of p12 as given in Eq. (11) on the basis of certain



H. B. CALLEN AND I:. CALLEN

necessary restrictions on its form for the specific case
of spin —„plus a liberal measure of intuition. For spin
greater than —,

' the constant-coupling argument is less
clear, and although Kasteleijn and van Kranendonk
mentioned this general case in passing, we known of no
reference in which the method is given explicitly for
general spin, or in which its results are described. We
therefore believe it useful to present them here.

The calculation of the constant-coupling equations
(10)—(12) is most conveniently carried out by replacing
PJ, PS, and PI4H by the parameters

I.O
I

.8—

,6—

(ss& 2}-
S

I I I I

whence

X—=e
—t'J~2 y=e—2P(z—1)JS ~—e

—P @II .4

where

and

PI'2= ——(z—1)cV 1nZ1 j-2cVS lnZ12,

tripl tr I
yz((z—1)WJS4* (15)

~ 2

zl2= trl"12p12= trltr2I a—4sl sl(wy) (sl + 2')] (]6)

The single-spin sum in Eq. (15) is identical to that
calculated in Eq. (8), giving

(7 lnZ1
=SBsI —8 lnw-

a lnw

8
lny I, (17)

s—1

8 or y is eliminated by equating (Sz), from Eq. (17),
to the magnetization calculated from Z~2,.

(S')= 2(rl ln—Z,—2/8 ln(yw)) .

Magnetization curves for 5=—', 1, -'-, 2, 27, and for z= 12
(e.g. , face-centered cubic, hexagonal close-packed) have
been calculated on the NOL-7090 computer and are
shown in Fig. 1.

The Curie temperature is determined by the equation

2S

P x 'B(B+') (2Rj1)L(z—1)E(Ej1)—2zS(Sj1)]=0
B=Q

(20)

as has been shown by Kasteleijn and van Kranendonk,
and as we shall demonstrate in the following section.

The scalar correlation function (Sl S2) is given by

whereas the two-spin traces required for Z» are best
evaluated in the spaces in which J('2—= (S,+S2)' and
2(.',=—(51'jS2*) are diagonal:

g4$(S+1) 2S g—2B(B+1) g4S(S+1) 2S (yW)B
Z„= P j g . (18)

yw B p (yw)B 1 (yw)
—1 B p&2B (B+1)

I I I I I I I I I I

0 .I z2 .5 .4 z5 .6 .7 .8 z9 I.O
T /Tc—

Fzo. 1. Magnetization versus T/T, for nearest-neighbor exchange
(constant coupling), for various spin values.

4. TWO-SPIN CLUSTER WITH FIRST- AND
SECOND-NEIGHBOR EXCHANGE

We now turn to a model in which all spins are crystal-
lographically equivalent and in which an exchange
interaction exists between nearest and next-nearest
neighbors. Let 2J~ be the strength of the nearest-
neighbor interaction, and 2J2 be the strength of the
next-nearest-neighbor interaction. Also let z& and z2 be
the numbers of such neighbors, respectively. Then
Eq. (6) contributes iVzl nearest-neighbor terms and
-,'Nz2 next-nearest-neighbor terms, which, when added
to the zero-order contribution (5), give

pP2 —(zl+s2 —1)Ã ln tripl

+ 2 l~zl ln trltr2pl2+ 2Ãz2 ln trltrop13, (22)
where

p12=—exp(2p J}S1S2

jpf(14H j2(» 1)J1S+2z2J28$(S,zj—S2z)}, (23)

p13—=exp(2pJ2S1 S3

jpt pH j2z,J,8j2(z2 —1)J28j(S,zj53z)}. (24)

Again 8 is determined by minimizing Ii2, giving the
condition

(zl+z2 —1)Jo(&*)1=»(Jo—Jl) (8') 12

+z2(Jo—J2) (&'}13, (25)

8 lnF2 1 8 lnZj2
(Sl S2)=

c}(2PJ) 4 c} 1nx

where

21
and where

Jo=&)J1jz2J2)

We have also evaluated this quantity for several spin
values, with z=12; the results are shown in Fig. 2.

(8)1=tr18pl/tripl (8)12=trltr28pl2/tl ltr2p12 (27)

and similarly for (8}13.
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Equation (22) completely characterizes the two-spin
cluster approximation, with 8 to be determined by
Eq. (25). The simple heuristic interpretation of the
constant-coupling approximation is not maintained in
this more general case, although the forrnal simplicity
of the method remains. In particular, it must be stressed
that pl, p»,. and p» are purely formal, and none of these
can be interpreted as a true density operator, as will

become increasingly clear.
To evaluate the results of the approximation we

again introduce the variables

I,O

.8—

z7

.6-

SI S~
$2

.4-

(28)

(30)

x =—e—&~'I'21= g2= e—~»~2
z2

z22 =e
—2p J1(gl—1)S z22 =e

—2p» (z2 l)53'1 ~ 3'2

P I I I I I I I I I I I I I I I I I

0 .I .2 .5 z4 z5 .6.7 .8 z9 1.0 I.I l.2 1.5 I.4I.SI.6I.7I.8
T/TC ~

m—=e»~
)

and the notations

ZI —tr I/) I trl (y Iz I/ (zl—I)y sz2/ (zz-I) I(/)
Sl* (31) FIG. 2. Nearest-neighbor spin correlation versus T/T„ for

nearest-neighbor exchange (constant coupling), for various spin
values.Z12—=trltr2p12

trltrsplmSI S2(tpylysz2/(z2 —I)) (Sl*+S2*) (32)
The magnetization isZ18—= trltr8p18

tr trpb
—4sl Sz (tpy zl / (zl 1)y2) (Sl +Szz) (33) 1 (/P 1 8( PP)—

pg BH E 81nm
(39)

The single-ion expectation value of Sl', which is rot
equal to the actual magnetization, is defined by which becomes

8 lnZ1 (5 ) (SIJI/Jp) (5 )12+ (s2J2/Jp) (5 )ls ~ (40)(5') =—(5') —=—
8 lnm As we have remarked above, it is noteworthy that

the magnetization is not given by its one-particle
average (5')I, nor by either of the two-particle averages
(5')12 or (5')12, nor is it equal to 8; it is the weighted
average of (S')12 and (5')12, with the weight factors
sIJI/(SIJI+s2J2) and s2J2/(SIJI+zsJ2), respectively.

Finally, the correlation functions of nearest-neighbor
spins and of next-nearest-neighbor spins are given by

S1S=5J3s —$1nw — lnyl — lny2, (34)
s] 1 s2 1

and the two-ion expecta, tion values of S' a,re similarly
defined by

1 8 lnZ12
(S*)I2=-',(SI*+52')12=—— —, (35)

f) ln (u/ylysz2/ (z2—I))

1 8(—PF)
(SI S2)=

ESI B(pJI)

= (SI.Ss)„+28{(S*)—(S*)12}, (41)

1
(S')12———,

' (SI'+Ss') 12
————

0) ln (I(/ylzl/(zl —
1)y2)

(36)

The two-particle pa, rtition sums are explicitly

g 4S(S+1) g —2B (8+1)1
( p

1' 3
1VS2 c)(pJ2)

2S
Z12—

1—7//Iylysz2/(22
—I) B p LIeyly222/(z2 —1))B

= (SI Ss)+28{(S')—(S')12}, (42)
2S Ptey y z2/(z2 —1)]R

—Lt(/ylyszz/(z2 1)g I B—p a 2R (B+I)
(37) where

(SI Ss)= ,'(8 lnrZI—2/—& 1»I) (43)

g 4S(S+1) g —2R (8+1)
22S

Z13—
14/ylzl/(zl 1)y B—p LIeylzl/(zl 1)y gR (SI Ss)= ——;(c)1nZI2/c) 1nx2) . (44)

At the Curie temperature, 8 vanishes. We determine
this temperature by expanding the partition sums to
third order in the small quantities (yl —1) and (y2 —1),

&24S(S+I) 2S t'tpylzl/(zl —1)ys/B

Etpylzl/(zl —
1)y2$

—I B~ a22R (B+I)

CLUSTER AP P ROX I M ATION FOR I'E R ROMAGN ETS
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whence Eq. (25) becomes

2S(S+1)(stJr+ssJs) t st(sr —1)Jt+ss(ss —1)Js+slss(J1+ J2)j
28 28

=s,f(st —1)Jt+s,J j'Q x '"&n+'&R(R+1)(2R+1) Q x ~ta+'&(2R+1)

28

+ss[stJr+(ss —1)Jsj'Q x ' ' +' R(R+1)(2R+1) P x,—' t +'l(2R+1). (45)

It is reassuring that this condition reduces to the con-
stant coupling condition Eq. (20) if we let Js——0; for
this purpose we must also invoke the identity

28

Q R(R+1)(2R+1) Q (2R+1)=2S(S+1). (46)

In Fig. 3 we show k~T,/S(S+1)Jt versus Js/Jr for
5= ~ with z~=12 and z2=6, appropriate to the europium
chalcogenides. Curves for some other spin values are
also given. For comparison, on the same figure, we show
the Curie temperatures predicted by molecular field

theory Lk~T.=~S(S+1)Jt(s&+ssJs/Jr) j and by the
Green function theory. " Furthermore, for J2=0 the
system is a nearest-neighbor ferromagnet, which has
been investigated" extensively by Pade extrapolation
of the high-temperature series; the resultant predicted
Curie temperatures are indicated by isolated points
ln Flg. 3.

For KuS, Charap and Boyd" have found

Jt/ksr =0.20'K, Js/k~ = —0.08'K, (47)

by comparison of spin-wave theory with low-tempera-
ture magnetization and specific-heat data. %ith these

I I I I I I I I I I I l I I I I I

l9—
l8-
I7—
l8-
l5—
l4— S 7/2t5— S~I
l2— S R I/2II—

k'Q TQ IO
JI S(S+I) 9— '0

8— 'V

7— PADE, S&
6— PADE, S ~ I

o~ PADE, S NI/2
@0

SREEN FUNCTION

2
I—

I I il I I I I I I I I I I I I I

-I.S -I-2 ".8 -.4 0 .4 .8 l.2 I.S ~ 2
Jg/J) ~

FIG. 3. Curie temperature as a function of exchange constants,
for various spin values. The molecular field result, the Green
function result (Ref. 13) and the Pade approximant estimates
(Ref. 15) at J's=0 are also shown.

"G. S. Rushbrooke and P. J. Wood, Mol. Phys. 1, 257 (1958).

values we find, from Fig. 3,
T,= 16.9'K. (48)

The measurements of Argyle~ give T,=16.5'K, and
those of Benedek and Belier'4 give T,= 16.52'K,
although Moruzzi and Teaney have reported
T,=16.3'K from specific-heat data. Ior the same
values oi exchange constants the molecular field theory
predicts T,=20.2'K.

In Fig. 4 we show the theoretical reciprocal suscepti-
bility in the paramagnetic region, and the experimental
data of McGuire, Argyle, Shafer, and Smart. ' The
theoretical calculations were carried out for J2/'J~ =0
and —0.4, but the numerical results superpose so
exactly that only a single curve appears in the figure.

The 1/X=O intercept in Fig. 4 is independent of the
assumed g value, and we find a paramagnetic Curie
temperature 0= 17.5'K. McGuire, Argyle, Shafer, and
Smart report 0=18'K, and McGuire and Shafer"
later report 0= 19'K.

The slope of the theoretical 1/x versus 2' curve
depends on the assumed value of gX~, the product of
the g factor and the number E~ of Eu ions per mole of
sample. The g factor has been independently evaluated"

IOBX 7

I

5—

4—
X

o 2,—

O
hl
lK I—

0 20 40 80 80 l00 2040 60 8020020 40 60 80

FIG. 4. The reciprocal of the susceptibility versus temperature
for EuS. The theoretical curve applies both to J'2/J& 0and to-—
om/A= —0.4. Experimental points from the measurements of
McGuire, Argyle, Shafer, and Smart (Ref. 5}.

"T.R. McQuire and M. W. Shafer, J. Appl. Phys. 35, Suppl.
2, 984 (1964)."W. Low (private communication).
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Fn. 5. Magnetization of KuS as a function of temperature, for
several values of applied Beld. Solid curves indicate theoretical
results corresponding to the labeled values of field. Operi circles
are the measurements of Argyle (Ref. 7) for j.4 kOe. All other
data are by Enz, Fast, van Houten, and Snnt (Ref. 6), for 143
kOe (solid circles), for 25 kOe (squares), and for 32.1 kOe (crosses).

by paramagnetic resonance as 1.99. However, McGuire
informs us that the samples of EuS, on which magnetic
measurements have been made, devia, te from stoichi-
ometry. Hence Vz is uncerta, in and the value of gE& is
best treated as an adjustable parameter. To obtain
agreement of the slope in Fig. 4 with the experimenta, l
data we have chosen a value of g)V~ which corresponds
to g= 1.99 and 1V~/(Avogadro's number) =0.941.

In Fig. 5 a comparison is made of experimental and
theoretical magnetization curves for FuS, with various
values of the applied Geld.

The open circl.es indicate the measurements of
Argyle modified for demagnetization by use of Fig. 3
of his paper; the effective field (applied field minus
demagnetizing field) is 14 koe. The remaining data
points, from Enz, Fast, van Houten, and Smit, ' for
6elds of i4.3, 25, and 32.1 kOe, have not been corrected
for demagnetization. Such a correction would raise the
experimental points slightly, particularly in the range
of the Curie temperature.

The theoretical curves are drawn with the spin-wa. ve
values of J~ and J2 for EuS. For nonzero 6eld the curves
also depend upon the assumed'value of gE~, and
the curves shown correspond to g=1.99 and X~/
(Avogadro's number) =0.873.

In Fig. 6 we show the temperature dependence of the
nearest-neighbor and the next-nearest-neighbor corre-
lation functions (St Ss) and (St Ss). Again the spin-
wave values of the exchange constants of EuS have

I I I j i I I I

0 2 4 6 8 IO l2 l4 IS l82022 242628
T( x)

FIG. 6. Qearest- and next-nearest-neighbor spin correlations
as a function of temperature, for EuS.

been adopted, and the external field has been taken
as zero.

Two features of Fig. 6 are of interest. The nearest-
neighbor correlation function falls at the Curie tempera-
ture to about 16% of its T=O value, abruptly changes
slope, and persists far into the paramagnetic region.
This behavior is in at least qualitative agreement with
the known high-temperature behavior of nearest-
neighbor ferromagnets, and it is in marked contrast to
the prediction of molecular field theory. According to
the latter theory the correlation functions fall abruptly
to zero at T„being simply proportional to the square
of the ma, gnetization. The next-nearest-neighbor corre-
lation function falls to a negative value at T„abruptly
changes slope, and again persists far into the para-
magnetic region. This negative correlation, mediated of
course by the negative value of J2, is a novel and
interesting feature which might well be observable
experimentally, particularly in EuSe in which Js/Ji is
more nega, tive.

The magnetic contribution to the speci6c heat is
given by

c= —XztJi (Si Ss)—XssJs (Sl'Ss). (49)
dT 8T

This quantity ha. s been mea, sured at low temperatures
by McCollum and Callaway, and over a broa. d tem-
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in the ferromagnetic region, above the Curie tempera-
ture it is only about half of the observed value, or of
that calculated by Wojtowicz, "who has extended the
Rushbrooke and Wood high-temperature power series
to include next-neighbor interactions.

5. EFFECT OF VARIATION OF
EXCHANGE CONSTANTS

In evaluating the theory above we have calculated
magnetization curves and correlation functions for
EuS, using the spin-wave values of Ji and J2. It is of
interest to explore the sensitivity of these curves to
changes in the J&/Ji ratio.

In Fig. 8 we show magnetization curves for zero field
as a function of T/T„plotted for several values of
Js/Jt. All the curves are quite close together, the
Js/Ji ——0 curve lying lowest. Although the curves for

0
P 2 4 6 8 IO l2 I4 I6 l8202224262850525456

T('K)

0.8
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l j I

Fic. 7. Magnetic specific heat of EuS as a function of tempera-
ture. Dashed curve from the measurements of Moruzzi and
Teaney (Ref. 9), solid curve theoretical with Ji/ks=0 2'K,
J~/ks = —0.08'K.

perature range by Moruzzi and Teaney. s In Fig. / we
show a comparison between theory and experiment.
The dashed curve is taken from Moruzzi and Teaney,
who have subtracted the lattice contribution to the
specific heat by means of the Debye theory. The solid
curve is the theoretica, l specific heat using the spin-wave
va, lues of the exchange constants for KuS, and taking
the derivatives of the correlation functions from I ig. 6;
there are no adjustable constants. While our calcula, ted
specific heat is in accurate agreement with experiment
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FIG. 9. Magnetization at the Curie temperature as a function

of Js/J4 for an applied field of 14 ltOe.
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Fio. g. Magnetization as a function of 7/T„ for various values
of Js/J~. The molecular 6eld result (the Hrillouin function) is also
shown for comparison.

both negative and positive Js/Jt lie slightly above the
Js/Ji ——0 curve, we show only those for Js/Jr=0, 0.4
and 0.8, for clarity. The molecular field result (the
Brillouin function) is also shown in Fig. 8, and it is seen
that the two-spin cluster theory and molecular field
theory are in rather close agreement for the
magnetization. '

The insensitivity of the zero-field magnetization
curves to Js/Ji, as observed in Fig. 8, precludes the
determination of Js/Ji on the basis of this type of data.

Turning to magnetization data in the presence of
applied fields, in Fig. 9 we show the magnetization at
the Curie temperature as a function of Js/J&, for an

"Although the two-spin cluster curves for the magnetization
are slightly more "square" than the molecular Geld curve, this
deviation does not appear to be large enough to account for the
squareness observed in many ferrimagnets and antiferromagnets
Lcf. D. S. Rodbell, I. S. Jacobs, J. Owen, and E. A. Harris,
Phys. Rev. Letters 11, 10 (1963)g.
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applied field of 14 kOe. In this curve we have taken
g=2 and assumed perfect stoichiometry. The Geld of
14 kOe has been selected for comparison with the data
of Argyle, whose value is shown on Fig. 9 (and given in
detail in Fig. 5). We find that at this field, as in zero
field, the magnetization is lowest if Js/Jr=0; the rise
is more rapid for negative Js/Ji than for positive Js/Ji,
and the minimum is rather broad. The experimental
value lies close to this minimum. Thus magnetization
data at 14 kOe merely indicates that Js/J& is in the
vicinity of zero, but is again rather insensitive to Js/Ji
in this region. To illustrate the type of agreement to
be obtained we show, in Fig. 10, magnetization curves
for Ji/kn ——0.146'K, Js——0, g=2, and perfect stoichi-
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Fio. 11.Nearest- and next-nearest-neighbor spin correlations as
a function of temperature, for various values of A/Jr. For each
value of Js/J& the value of Ji is adjusted to give 2', =16.6'K.
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Fro. 10. Magnetization of EuS as a function of temperature.
Theoretical curve with A/kn=0 146'K, A=O, g=2, and perfect
stoichiometry. Experimental points as in Fig. 5.

ometry. These exchange constants would predict a
Curie temperature of 16.6'K.

Perhaps the properties most sensitive to the Js/Ji
ratio are the spin-correlation functions. These are shown
in Fig. 11 as functions of T/T, for various values of
Js/Ji. The negative value of (Si Ss) at T„noted
previously in Fig. 6, vanishes at Js/Ji ——0 and becomes
positive for Js/Ji) 0. Conversely, the nearest-neighbor
correlation function at T„ fairly large at Js/Ji= —0.4,
decreases as Js/Ji increases.

The inverse behavior of the erst- and second-neighbor
correlation function results in a relative insensitivity of
the magnetic energy,

Usr= —1VsiJi(Si Ss)—XssJs(Si Ss),

to the ratio Js/Ji. In fact for values of Js/Ji ——0.8, 0.4,
0.0, and —0.4 the magnetic energies at the Curie tem-
peratures stand in the ratios 1.04, 1.02, 1.00, and 0.997,
respectively. These differences all lie within the experi-
mental error. Similarly the specific heat, being the
derivative of the energy, is extremely insensitive
to Js/Ji.

We conclude that the single-spin effects, such as
magnetization and susceptibility, are rather insensitive
to Js/Ji (when Ji is chosen to give the proper T,).
Similarly the magnetic energy and specific heat are
insensitive because of the compensatory variations of
the first- and second-neighbor correlations. The corre-
lation functions themselves are quite sensitive, par-
ticularly in the neighborhood of the Curie temperature.
A direct measurement of the correlation functions would
provide the most reliable criterion for the evaluation of
the exchange constants.
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