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netization, thus working against the antiferromagnetic
exchange as well as the anisotropy forces.

With regard to the distribution of the ferromagnetic
spin density, it is dificult on the basis of these few
reQections to assign any unique interpretation to our
results. What is clear, however, is that the ferromagnetic
component has a significant different spin density dis-
tribution from the antiferromagnetic component. In
other words, the spin density in this compound must be
thought of as a vector rather than a scalar function,
that is, varying spatially in direction as mell as magni-
tude. It may very well be that this is a special case of a
more general phenomenon that occurs whenever spin-
orbit coupling is present. Because of the smallness of

the effect, it is impossible in the present case to get
much of a detailed picture of such a spin density, other
than to show that it exists and probably resides in
directions away from the antiferromagnetic super-
exchange bonds. It is planned to investigate the
phenomenon further in other antiferromagnets where
the canting angle is larger, such as the rare-earth
orth oferrites.
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The properties of the symmetry-adapted functions for the irreducible representations of the magnetic
translation group are used to derive a one-dimensional difference-differential equation for a two-dimensional
Bloch electron in a constant magnetic field.

'HE dynamics of an electron in a two-dimensional
periodic potential and a constant magnetic field

perpendicular to the plane of motion is discussed. Using
symmetry-adapted functions, defined previously, an
exact one-dimensional Schrodinger equation for this
"two-dimensional Bloch electron in a magnetic field"
has been derived. Since no approximations were intro-
duced in this derivation, our one-dimensional equation
contains all the information for describing the dynamics
of the problem. By contrast, in all other existing
methods, such as the effective-mass approximation, the
equations are approximate.

It is well known that the energy spectrum of a free
electron in a magnetic field consists of two parts: one
part is connected with the motion in the direction of
the magnetic field and is continuous; the other part
comes from the motion in the plane perpendicular to
the magnetic field and is discrete. The effective-mass
approximation' ' shows that one may expect this same
division of the energy spectrum to hold also in the case
of a Bloch electron in a magnetic field. Since quantum
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effects in solids are connected with the discrete part of
the energy spectrum, it is of great interest to investigate
the behavior of a Bloch electron in the plane perpen-
dicular to the external magnetic f~eld.

To derive the one-dimensional equation, symmetry-
adapted functions for a Bloch electron in a magnetic
field4 are used. In the case of "rational" magnetic
fields' ' these functions are given by
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Here j takes values from 0 to S—1, / is the magnetic-
band index, K1 and K2 are unit-cell vectors ot the
reciprocal lattice,
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4 J. Zak, Phys. Rev. 134, A1602, A1607 (1964).
'The rationality of the magnetic field is defined here by the

relation H a)Xas/(hc/~e)) =n/N, where H is the magnetic Geld,
a&, a2 are the unit cell vectors, hc/~ e) is the elementary tluxon,
and m, E are integers. This relation divers by a factor of 2 from
the relation (42) in Ref. 4 and is more convenient, because it
leads to representations of dimensionality X for both even and
odd N. (See also E. Brown, Phys. Rev. 133, A1038 (1964) and
Ref. 6.)' J. Zak, Phys. Rev. 136, A776 (1964).



J. ZAK

and the function m~~ satisfms the conditions
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achieved by the following transformation:
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The two-dimensional Schrodinger equation for a The final equation is
Bloch electron in a magnetic 6eld is

Let us find the equation that the function rr)), (r+jas)
in Eq. (1) satisfies' (the index/ is omitted here because
it does not enter the equation). Since the function rr).

is periodic in direction ai I relation (3)$ it can be ex-

panded in a Fourier series

re&(r+ jas) =Q C
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From Eq. (4) we obtain the following relation between
the coefficients:

Cm+l LK2 (r+jas+i»s) j=C LKs (r+ja2)j ~ (7)

This recurrence formula allows one to 6nd all the coeffi-
cients when m coefficients, say, Co, C», . -, C„ i, are
known. Expanding the periodic potential U(r) in a
Fourier series

V(r)=P V (Ks. r) exp{imKi r},

by substituting the symmetry adapted function (1) into
the Schrodinger equation (5), and by using relations (6)
and (7) we obtain rs coupled equations for defining the
coefficientsC

I
m=0, 1, , e—1].Thesecoupledequa-

tions will not be written down here'; instead we treat
the special case for m=1. In this case only one coeEi-
cient, say Co, has to be defined and its equation is as
follows (we put j=0 because the energy does not de-

pend on this index):
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Here Xy and X2 are unit vectors in the direction of the
unit-cell vectors Ki, Ks, respectively,
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For a discussion of Eq. (9), it is more convenient to
perform a unitary transformation and to introduce the
dependence of k into the potential energy. This is

7 A similar method was used in the paper by P. G. Harper, Proc.
Phys. Soc. (London) A68, 879 (1955). However, Harper uses dif-
ferent starting functions which are not specined according to the ir-
reducible representations of the magnetic translation group. It is
therefore doubtful whether these functions can be solutions of
Schrodinger's equation.

The case of the coupled equations will be discussed in a future
publication.
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Equation. (13), or (13a), is a one-dimensional dif-

ferential-difference equation which replaces the two-
dimensional Schrodinger Eq. (5). For deriving Eq.
(13), or (13a), we used the rationality condition on the
magnetic field' with m=1

H ai x as/(hc/lel) =1/& (14)

Apart from condition (14) no other assumptions have
been made.

The energy spectrum that follows from Eq. (13), or
(13a), is in agreement with the general description given
in Refs. 4 and 6, and in the paper cited in Ref. 5. For
a fixed k vector (fixed mi and ms), we get an infinite
set of energy levels. If one ignores the dependence of
the potential of its first coordinate, i.e., if one assumes
from the beginning a one-dimensional equation, ' this
set of energy levels will be discrete, because for very
large y one can neglect V in Eq. (13) and one gets a

simple harmonic-oscillator equation. This is no longer
true when V depends also on p„. In this latter case, the
energy spectrum for a fixed k can be either discrete or
continuous: for the discrete case the dependence of the
energy on k will lead to a magnetic band structure or
what is usually called Landau-level broadening', the
continuous case is more complicated and requires
special investigation.

The dependence of E on k is given through the de-

pendence of the potential energy on k. Thus, the sym-

metry of the energy as a function of the k vector is
defined by the symmetry of the potential energy.

Equation (13),or (13a), is very convenient for apply-
ing a perturbation procedure when the potential energy
can be considered as a small perturbation. Equation
(13a) shows at once the orbits that will be coupled by
the periodic potential, namely, those orbits will be
coupled that are shifted by (2s X/Es) i, for any integer /.
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Equation (13) Pand also Eq. (13a)] becomes much
simpler for the special case of cubic symmetry

2fuu(-q'+p')+Vip —ma, Xq+mia)]p(q)=htp(q) (15)

where

(u= ~e~H/mc, Xq=y, (A/X)p=p„,
7'=Ac/eH, (p,q]=- i—

For a one-dimensional potential the energy spectrum
of Eq. (15) will be independent of the particular co-
ordinate upon which the potential energy depends. This
is to be expected physically, because for a magnetic
field perpendicular to the plane of motion both direc-
tions x and y are equivalent.

As an example, let us treat Eq. (15) for the potential

V= Vo(cos2m x/a+cos2sy/a) . (16)
We have

L-',-A&o (q'+P)+ Vo cos (2~Xp/a —2vrm2)

+Ve cos(2mAq/a+2~mi)]P(q) =EP(q) . (17)

y= (q+ip)/~2,
y'= (q ip)/~~—

We get
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Equation (17) looks very simple and is fully symmetric
in q and p. It can be called the Mathieu problem for a
two-dimensional Bloch electron in a magnetic field.

Because of the symmetry in q and p the potential
energy of the Hamiltonian in Eq. (17) contains a
diagonal part with respect to states of a harmonic
oscillator. To find this diagonal part let us write the
Hamiltonian H of Eq. (17) in terms of annihilation (y)
and creation (yt) operators

where L„(n.N) is a I.aguerre polynomial. Expression
(21) gives a very simple description of the Landau-
level broadening and was also obtained by a perturba-
tion treatment in Ref. 6.

It is interesting to note that by using Pippard's
argument' it is very easy to derive the magnetic break-
down criterion" from relation (21). To do this, let us
evaluate the second term in Eq. (21) for large quantum
numbers e (metals). The order of magnitude of this
term can be found by using the asymptotic expression
for L (7rN). We have

Vo(mNn) '~ (cos2mmi+cos2vrm~) . (22)

According to Pippard, ' magnetic breakdown occurs
when the broadening caused by the term LEq. (22)]
is smaller than Ace

h(u )4VO (nNN)
—'~'.

Since Vo AE (the first Fourier coeflicient of the po-
tential Vo is of the order of the energy gap hE), and
since both m and N are of the order of EF/Ace (Ei is the
Fermi energy), relation (23) leads to the usual magnetic
breakdown criterion

Ah, ( (A(uE p)'~'.
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where N is given by relation (14), and

3f„(mim2)
= i'+' exp(2mimi)+ (—i)"+' exp( —2vrimi)

+ (—1)' exp(2nim. 2)+ (—1)' exp( —2vrim2) . (20)

Equations (19), (19a), and (19b) show the structure of
the Hamiltonian: Ho is diagonal in the harmonic-
oscillator states, while H' has only off-diagonal elements.
By neglecting H' in the Hamiltonian PEq. (19)]we get
the following energy spectrum:

Z„"i=Ace(g j-,')+ Vp(cos2xmi+cos2nm2)

XL„(AN) exp( —-', ~N), (21)


