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The theory presented deals with propagation of magnetohydrodynamic waves in a plasma whose propaga-
tion characteristics vary along the path of propagation. Plane waves with wave normals in the direction of
the gradient of the medium are assumed. Modified Alfv&n waves and acoustic waves obey a set of coupled
wave equations. Alfvdn waves are decoupled by a restricting assumption on the variation of the static mag-
netic field. The main aim of the paper is to demonstrate the generation of fairly intense acoustic waves in
propagation of modified Alfv&n waves in a steep gradient of the propagation conditions. This eGect is in-
vestigated at a boundary which is equivalent to a very steep gradient.

1. INTRODUCTION
'T is assumed that waves are propagated in the +z

- - direction in a medium varying with z, i.e., in a one-
dimensionaGy strati6ed medium. All wave functions
that will appear are consequently of the form

'u=A(z) exp i k—(s)dz

The vector quantity U denotes the combination of all
individual wave functions. Kith inclusion of four wave
functions (corresponding to two propagation modes)
there is

(4)

or
"I

to=8(z) exp i k(z)dz

Boldface roman type is used for vectors, sans-serif type
for matrices. The matrix N, a diagonal matrix com-
posed of the refractive indices I;=k;c/co, is defined as

Symbols I and m are used to characterize waves travel-
ing in the two opposite directions ~z.

In the case of electromagnetic mares in a plasma with
presence of a static magnetic field, one is concerned with
ttvo modes of propagation (termed "ordinary" and
"extraordinary") with different propagation constants
(k&,k.„). There are accordingly four wave functions u&,

m», n2, z», referring to the two modes in ascent and in
descent. In the present study of mugnefohydrodynamic
zones, three modes have to be distinguished: Alfven
waves, modified Alfven waves, and acoustic (more
strictly termed "ion-acoustic") waves. Varying nomen-
clature for 'these modes is in use in the literature.

All formulations will be kept one-dimensional. Re-
fraction of waves does not appear in the one-dimensional
considerations.

In a slowly varying medium, the individual wave
functions (u;,to;) are (nearly) independent of each other.
The amplitude of any of the waves (A; or 8,), though
varying slowly with z, is in this case not affected by the
presence of other waves. This is the geometric-optical
situation, in which Eqs. (1) and (2) represent the WEB
approximations.

With a more rapid variation of the medium, one wave
may gain intensity at the expense of some other wave
or it may lose while the other gains. This is coupling
between the waves, caused by the gradient of the param-
eters of the medium. The wave functions are determined
by a set of coupled wave equations. Written as a single
vector equation, this set is expected to have the form

nl
0
0.
.0

0 0 0
—n1 0 0

0 n2 0
0 0 —n2.

The matrix M is supposed to disappear in a homo-
geneous medium. Its elements consequently must be
terms or sums of terms, that contain some derivative
with respect to z as a factor.

The matrix M, generally speaking, determines the
variation of amplitudes (A., and 8;) of the waves that
results from the inhomogeneity of the medium. The
nondiagonal elements of M express coupling between
the component equations of Eq. (3); they refer to varia-
tion of the amplitudes by coupling between waves. The
diagonal elements of M correspond to amplitude varia-
tions independent of the presence of other waves. These
amplitude variations may simply indicate that the
amplitudes are functions of some parameters of the
medium. As an example may be noted the case of elec-
tromagnetic waves in a nonhomogeneous dielectric, in
which the amplitude of E is a function of e. The entire
term M U in Eq. (3) will be called the "coupling term, "
despite the two types of amplitude variations indU, ded
in it.

Couphng occurs between any two wave functions.
Coupling between the two waves of one mode traveling
in opposite directions (u.; and to;) is nothing but partial
reAection.

Coupling of electromagnetic waves under ionospheric
conditions has been treated in the literature' to some

Bll iv)—+—N U=M U.
Bz c

'K. G. Hudden, Radho Waves tn the IonosPhere (Cambridge
(3) University Press, Cambridge, England, 1961), in particular,

pp. 394-408.
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extent. (More references were given elsewhere. ') The
aim now is a similar representation of coupling of mag-
netohydrodynamic waves. The formulations that will

follow resemble those given by Sudden' for electro-
magnetic waves. In order to obtain coupled wave equa-
tions of the form of the above Eq. (3), it will be neces-

sary first to define the wave functions in an appropriate
way. The elements of the coupling matrix M for these
wave functions have to be derived. It will be seen that
coupling leads to generation of acoustic waves in
passage of modi6ed Alfven waves through an inhomo-

geneous medium, a process believed to be of interest in
applications of the theory.

As mentioned above, it will be assumed that the wave
normals are in (or opposite to) the direction of the gradi-
ent. The magnetic field may have arbitrary and varying
direction, but with the restraint that it has to stay in
one plane with the direction of the gradient. Attenua-
tion of waves, known to result from collisions, friction,
and Landau damping, will not be considered.

S. Weinberg' (in Sec. III and V of his paper) de-

veloped a method for the study of coupling between
magnetohydrodynamic waves on the basis of more
general formulations (not limited, for example, to one-
dimensional strati6cation). Weinberg includes coupling
between Alfven waves and modified Alfven waves,
which now is eliminated by the specializing assumption
on the magnetic field, but he omits in his more specific
formulations acoustic waves, with which the present
paper is particularly concerned. I ejer4 indicated already
how to use coupling theory in the case of magnetohydro-
dynamic waves in the atmosphere.

Effects of a stratification of the medium under con-
ditions under which coupling between individual mag-
netohydrodynamic waves can be ignored have been
investigated in a number of papers. ' ' The reader is
referred to these papers for effects not discussed here.
(Some more references will be found in those given and

in a paper on atmospheric phenomena that is in

preparation. )

2. BASIC RELATIONSHIPS OF MAGNETO-
HYDRODYNAMICS

In the common simple formulation of magnetohydro-
dynamics the basic equations are Maxwell's equations,
the hydrodynamic continuity condition for the plasma,
and the two macroscopic equations connecting the

s H. Poeverlein, in Fortschrctte der Hochfreqlertztechrsih
{Akademische Verlagsgesellschaft, Wiesbaden, 1959), Vol. 4, pp.
75-76.

3 S. Weinberg, Phys. Rev. 126, 1899 (1962}.
4 J.A. Fejer, J.Atmospheric and Terrest. Phys. 18, 135 (1960}.
~ V. C. A. Ferraro and C. Plumpton, Astrophys. J. 127, 459

(1938).
6 J. H. Piddington, Geophys. J. Roy. Astronom. Soc. 2, 173

(1959}.
~ W. E. Francis, M. I. Green, and A. J. Dessler, J. Geophys.

Res. 64, 1643 (1959}.
s G. J. F. MacDonald, J. Geophys. Res. 66, 3639 (1961).
e J. Bazer and J. Hurley, J. Geophys. Res. 68, 147 (1963).

motion of the plasma with the electromagnetic field,

po(8v/c)t) =J x Bo—V'(tt'p),

E+v xBp ——0.

The notations introduced are:

(6)

(7)

plasma density without oscillatory part,
oscillatory part of the plasma density,
gravity center velocity of a volume element of the
plasma,

a'p oscillatorv part of the plasma pressure,
a ionacoustic velocity (plasma sound velocity),
J (oscillatory) current density,
E electric 6eid strength,
B magnetic vector of the wave 6eld,
Be magnetic vector of the static magnetic field.

po

p
V

The units are supposed to be in the mksA system.

' C. O. Hines, Can. J. Phys. 38, 1441 (1960}.

All equations are linearized. The only spatial deriva-
tives that appear are with respect to s (because of the
limitation to the one-dimensional problem). The plasma
density po, plasma sound velocity u, and direction and
magnitude of the magnetic 6eld Bo may now be func-
tions of s. The time variation of all oscillatory quanti-
ties is supposed to follow exp(icot). The s)cobol 8/Bt will

accordingly be replaced by ice.
In Eq. (6) it was assumed that the oscillatory pres-

lure is p=it'p. This is an approximation only. The re-
sationship between p and p given in the literature"
is more complicated. Proportionality between pressure
variation and density variation exists in general not at
a fixed location, but in a plasma parcel that travels with
velocity v. If however both the stationary quantities

pp po as functions of z and the oscillatory p and p in a
plasma parcel follow the same adiabatic law, the pro-
portionality assumed here is exact.

It will be assumed further on that the static magnetic
held remains in one plane, the x,s plane. A variation of
the magnetic field strength Bo with s requires under this
assumption a curl Be and a dc current density Jo. If
the plasma is the carrier of this current density, a force
term Jo x B must be added in Eq. (6). The consequences
of this term, which might be essential in discharge
tubes, are not investigated now. The current density
Je may however result from processes foreign to the
plasma, for example from corpuscular beams passing
through the plasma. Only such dc currents are com-
patible with the present formulations.

It is necessary to select a set of variables for descrip-
tion of the wave 6eld and the state of the plasma. The
formulations will be simplified by using as these vari-
ables the quantities that appear under the 8/c)s sign
in the basic equations LMaxwell's equations, the con-
tinuity condition, and Eqs. (6) and (7)). It proves
advantageous to multiply these quantities by certain
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constants and to combine them in two "vectors" con-
sisting of four and two components respectively. These
vectors are

poem

(1/c)u'p
eoE„

.(eo/po)'"&. .

T ~o~~

(e /p )1/og3

ctF
= ——P F (10)

and
ct6 oco

= ——Q G,
Bz c

with the two matrices

C2

82

P= Bp,2

pp +p~

~p &p.'

(with the vacuum dielectric constant eo, the vacuum
permeabilitv tto, and the vacuum light velocity c). The
vectors F and 6, characterizing the electromagnetic
field and the state of the plasma in the waves, may be
called "fieM vectors. "

Now it is desirable to have some differential equations
for the field vectors. A possible way of deriving these
differential equations will be sketched only.

The basic equations are a set of linear homogeneous
equations for the components of F and 6, their first-
order derivatives, and the additional set of variables

J„J„,J„~,v„, E„and 8,. The equations may be
solved for the derivatives of the F and 6 components
and the set of variables listed just now. All these quanti-
ties appear in the solution expressed in terms of the F
and 6 components. In an earlier paper" two equations
PEqs. (25) and (27) of that paperj were given that are
helpful in deriving the solutions for the J-components
and (8/Bs)(u'/p). (The equations were then written
under the assumption of constant sound velocity u.)

The solutions obtained for the derivatives of F and 6
express these derivatives in terms of F and G. They are
the two equations

and

Q= &o'+po/eo
0

Bp

(13)

Equations (10) and (11) are the desired differential
equations for the field vectors or the "field equations. "
The taro equations are independent of each other. This
fact justifies the definition of two field vectors F and 6,
as made in Eqs. (8) and (9).

The formulas for the two matrices will not be needed
later on, but it is essential that the elements of the ma-
trices are functions of pp, a, 8p, Bp, and 8p, only and not
of any derivative of these parameters, which character-
ize the medium (cf. similar formulations by Sudden'
and Fejerz). This is a consequence of choosing as com-
ponents of F and 6 all the quantities whose spatial
derivatives appear in the basic equations.

The independence of Eqs. (10) and (11) from one
another results ultimately from the assumption that
the magnetic field remains in the x,z plane. Authors who
assumed a constant magnetic field observed this separa-
tion of equations (cf. MacDonald' and Grad" ). Alfven
waves are deducible from Eq. (11), whereas Eq. (10)
leads to the other two modes, modified Alfven waves and
acoustic waves. Thus, Alfven waves are now not coupled
with the other two modes. They are consequently not of
interest in this study of coupling. Only the two coupled
modes, obtained from Eq. (10), will be considered in the
following.

3. MODIFIED ALFVEN WAVES AND
ACOUSTIC WAVES

Treatment of coupling requires a de6nition of the
wave functions of the coupled waves. The coupled
waves, as noted, are modified Alfven waves and acoustic
waves, both derived from Eq. (10) and described by the
behavior of the field vector F. One of the components of
F may be selected to be split up into the contributions
of individual waves, which then are taken to be the
wave functions.

A quantity of particular interest in atmospheric
problems is the plasma Aux density. Its vertical or
longitudinal component pg„ i.e., the first component of
F, is therefore chosen for the definition of wave func-
tions. The wave functions represent the vertical com-
ponents of the Aux densities of the individual waves.
Hence, there is

po&z =Ni+wl+ tt2+w2 ~

0 0

0
+oz +po/&o

The four wave functions are those of modified Alfven
waves traveling in the +s and —s directions (Ni and
wi) and of acoustic waves (tto and wo). All wave func-

Bp 2

"H. Poeverlein, Zeit. Angew. Phys. 15, 441 (j.963).

's H. Grad, in The 3fagzzetodyrzarpzzcs of Cozzdlctzlg FlIzds, edited
by D. Bershader (Stanford University Press, Stanford, California,
1959), p. 37.
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tions in combination may be represented by one vector
symbol U as shown in Eq. (4).

Two auxiliary quantities that will be used frequently
are the ratio between vacuum light velocity c and plasma
sound velocity u,

tic data may be taken from the numerous literature on
waves in plasmas. '" "The refractive indices under the
present assumptions

I including, in particular, in-
equalities (17)] are

(18)

X=c/u, (15) and
(19)

and the ratio between c and Alfven velocity,

l = (pp/epBp')'".

It is assumed that

X)&p,)&1. (17)

That is to say, the Alfven velocity is well below c and
the sound velocity is well below the Alfven velocity.

In a homogeneous medium, each of the four types of
waves (corresponding to Ni, wi, Np, wp) is characterized
by its refractive index and the ratios between the vari-
ous quantities oscillating in the wave. These characteris-

F=T.U
with the matrix

(20)

The 6rst refractive index relates to modi6ed Alfven
waves, the second one to acoustic waves, the sound
waves in the ion gas, which are affected by electromag-
netic forces. The angle u between Bp and the z-direction
is supposed to be not close to 90 deg.

Some of the oscillating quantities have been combined
in the vector F. The ratios of these quantities for the
individual waves, as given in the literature for a homo-
geneous medium, are represented by

p, 'Bp sinn p, Bp sinn

XI cosnI

sino.

X'Bp

sine

xIcosuI

X'Bp

sinn

(21)

pBp sin p,Bp sinn XBp
I
coscK

I
XBp

I
cosQ

I

In order to obtain from Eqs. (20) and (21) the known
ratios of oscillatory quantities for a single wave, one
lets all components of U but one disappear.

Transverse and longitudinal magnetic fields Bp have
to be excluded. In case of a transverse field (correspond-
ing to n= 90 deg), the refractive index formula Eq. (19)
becomes invalid. In case of a longitudinal held the pres-
ent choice of wave functions appears inappropriate.

4. COUPLED WAVE EQUATIONS

The various parameters of the medium are now sup-
posed to be functions of z. The field vector F will be
used as before to describe the electromagnetic 6eld and
the state of the plasma in the waves. The four wave
functions, which were introduced with reference to the
well-distinguishable four waves in a homogeneous me-
dium, are now considered in an ieIEomogeneous medium.
It is assumed that the individual waves exhibit at any
location the same characteristics as in a homogeneous
medium of the local conditions. In other words, Eq. (20)
and the matrix T of Eq. (21) are left unchanged. The
two equations with a given field vector F determine now
how ppv, and the field vector at any location are split up
into contributions of individual waves.

It may be shown now that the wave functions (com-
bined in the vector U) obey a set of coupled wave equa-
tions such as Eq. (3). An expression for the coupling
matrix will be deduced.

The field vector F is subject to Eq. (10). The matrix
P in Eq. (10) is supposed to be known. Replacement of
F in Eq. (10) by T U and subsequent rearrangement of
terms yields

aU i~
~ ~ ~

Bs c
U. (22)

BT
U. (23)

"L. Spitzer, Pkysscs of Fsslly loessed Gases (Interpcience Pub-
lishers, Inc. , New York, 1962), 2nd ed. , pp. 61—67.' J. Bazer and O. Fleischman, Phys. Fluids 2, 366 (1959)."R.Lust, Fortschr. Physik 7, 503 (1959).

'6 J. F. Denisse and J. L. Delcroix, Theone des Ogdes dans les
Plasmas (Dunod et Cie. , Paris, 1961), pp. 117—132.' T. H. Stix, The Theory of Plasma Waves (McGraw-Hill Book
Company, Inc. , New York, 1962), pp. 32-34, 41, 42.' W. P. Allis, S. J. Buchsbaum, and A. Bers, Waves il Aniso-
tropic Plasmas (MIT Press, Cambridge, Massachusetts, 1963),pp.
47, 58, 78-85.

Multiplication of this equation by T ' from the left
leads to the wave equation
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Equation (23) has the form of Eq. (3). In Eq. (3) the
term on the right-hand side was supposed to disappear
in a homogeneous medium. The right-hand term of Eq.
(23) apparently does so too. Equation (3) thus is seen
to be valid with

and

N=T-'P T

M= —T—'
(24)

(25)

cosa sinn
PpP. = —(Ni+wi) +(Np+zvp)

sinn cosn (26)

PpV

The longitudinal component of the Aux density was

simply the sum of all wave functions. Thus it becomes
evident from Eqs. (26) that the plasma flux of modified

Alfven waves (corresponding to subscript 1) is normal to

Bs

The matrix N was defined by Eq. (5) as a diagonal
matrix whose elements are &Ni and &up. Equation (24)
is necessarily fulfilled if the two refractive indices
(Eqs. (18) and (19)]and the matrix T LEq. (21)jwere

given correctly. The equation pertains to the problem
of 6nding the wave solutions in a homogeneous medium,
an eigenvalue problem with &e; as eigenvalues.

The matrix M is the coupling matrix, which appears
now expressed in terms of the matrix T a,nd its deriva-
tive. Of interest should be mainly the nondiagonal ele-

ments of M. It was noted in Sec. 1 that only these
elements relate to coupling between waves.

Not all oscillatory quantities of physical significance

appear as components of the field vector F. The trans-
verse components of the plasma Aux density, for ex-

ample, have to be derived from Eq. (7). With insertion
of the wave functions they are found to be, regardless
of homogeneity or inhon1ogeneity of the medium,

Bp, while that of acoustic waves is parallel to Bp. Dis-
tinction of the two modes of propagation consequently
means also separation of the two plasma Quxes, normal
and parallel to Bp.

It should be noticed that Eqs. (26) are approximate
only. Equation (7) requires a v-component normal to Bp
also in acoustic waves because of presence of an E.
This v-component, however, is found to be small of the
order p, '/X' compared to the other v-component.

S. GENERATION OF ACOUSTIC WAVES BY
MODIFIED ALFVEN WAVES

It is assumed in this section that the primary wave
passing through the one-dimensionally varying medium
is a modified Alfven wave (ui). The coefficients of Ni
in the coupling term of Eq. (3) will be investigated. The
corresponding part of the coupling term leads to genera-
tion of acoustic waves (Np, wp), to reflection of modified
Alfven waves (wi), and to amplitude variation of the
primary wave (ui).

Neglect of all wave functions but u1 in the coupling
term represents a first approximation, which might be
used without correction in case of weak coupling or
might be taken as a first step of an iterative procedure.
In each further step the set of wave functions obtained
in the preceding step would have to be inserted in the
coupling term in order to derive corrected wave func-
tions. A similar iterative procedure was suggested by

steinberg.

'
The elements of the coupling matrix that appear as

coefficients of N1 are
4 ~Tl, i

3f;i= —Q (T ').;t,.
k=1

with i= 1, 2, 3, 4. For the matrix inverse to T one finds,
disregarding terms of higher order in 44/X,

p—(sinu)' p(sinn)' I4'Bp sinn-
'A2

p,Bp sino, '

p2—(sinn)' —y(sinu)'
1 A2

—1—
2

Xi cosni

—p Bp sinn —QBo sinn

p
p, 'Bp sinn Bp sinn

~

cosn ~——
(2g)

—X
(
cosn

~
p, 'Bp sinn

p2

Bp sinu~~cosn~—
X

The desired elements of the coupling ma, trix Eq. (27) become,
approximations as will be outlined,118@18

3Iii= ————+ —(i4'Bp sinn), Mpi ——

2 p, Bs IJ, Bp sinn Bs

after introduction of T and T ' and with use of

1 Bp
7

2p Bs

1 1 ——(p'Bp sine),
2 p Bp sino.'Bs

M41= —(p'Bp sinu) .
2 p Bp sino, Bs

(29)



A 1610 H. POEVERLEIN

Bo 8 fpo' 'sinn)

po sinn Bs( Bo' ' (31)

The wave equation, Eq. (3), with Eq. (31) shows that
the amplitude of u& in a slowly varying medium varies as

Ai ~ po"4 sinn/Bo'". (32)

An amplitude variation of acoustic waves (eventually
those generated by coupling) would become apparent
only from a consideration of u2 and m2 in the coupling
term.

6. COUPLING IN A STEEP GRADIENT

In a steep gradient of the propagation conditions,

coupling is strong and a fairly simple treatment of
coupling is possible. The gradient is considered steep
when the variation is remarkable over a distance much
shorter than a wavelength (strictly speaking, than the
shorter of the two occurring wavelengths). The steep
gradient may be the transition between two homo-

geneous (or almost homogeneous) media. The field

The assumptions made in the derivation of Eqs. (29)
are that p,,/'X is small and that the relative orders of mag-
nitudes of terms are not disturbed by taking derivatives.
This requires a sufficiently normal behavior of all func-
tions involved and a su%ciently slow variation of P,
which itself depends on temperature. The necessary
condition for X is: (1/X)(H, /Bs) must not become large

(of the order X/p, ) in comparison with M3i and M4i. In
the upper atmosphere this is believed to be fulfilled.

The elements of the coupling matrix shown in Eqs.
(29) are composed of two terms, which express the rela-

tive rate of variation of two quantities, p, and p Bosinn.
The first quantity p, is identical to the refractive index

Ni Its .variation determines according to Eqs. (29) the
interchange between u~ and m~ or "reflection" of the
wave u&. Variation of the other quantity, which is trans-
formed by means of Eq. (16) as

p Bo sinn= (po/eoB0) sinn, (3o)

leads to interchange between u& on one side and u2 and

m~ on the other. This is coupling with the result of
generation of acoustic waves traveling in the two

opposite directions, u2 and m2.

There is no generation of acoustic waves when the
expression of Eq. (30) stays constant, even though some

of the individual parameters may vary. This is true, no

matter horv rapid the variation of individual parameters
is. A gradient of X, which was neglected in Eqs. (29),
may however show up in case of disappearing Eq. (30).

All waves originating from reflection or coupling be-

come negligible in a very slowly varying rnediur, but
the diagonal matrix element 3f~j is of significance also

in this case, as was explained in Sec. 1. Combining the
two terms in M&~, with subsequent insertion of p, from

Eq. (16), leads to the following expression for M».

shows clearly in this case the nature of various super-
imposed waves outside the steep gradient. The ampli-
tudes of the individual waves vary in passing through
the steep gradient. This is in the present notion the
effect of coupling.

The gradient may be arbitrarily steep. It becomes in
the limiting case of infinite steepness a discontinuous
transition or boundary between media. The gradual vari-
ation of the waves in passing through the arbitrarily
steep gradient is described by the above formulations.
The formulations are, how ever, not needed when the be-
havior of the waves within the gradient is not of interest
and when the gradient is sufficiently steep. A boundary
may then be assumed in its place. The variation of the
waves in crossing the boundary is easily derivable from
the known continuity conditions for 6eld and plasma
quantities. This method will be used in Sec. 7. First the
wave equation, Eq. (3), will be simplified for steep
gradient and it will be shown how the simplified form
leads over to the condition of continuity at a boundary.

The term (ko/c) N U in Eq. (3), referring to the
oscillatory variation of U within a wavelength, may be
ignored in a steep gradient as negligible compared to
the coupling term, which contains the spatial deriva-
tives of the parameters characterizing the medium.
Equation (3), with this neglect and with insertion of
M from Eq. (25), becomes

8U/Bs= —T-'(BT/as) U.

Multiplication by T from the left and merging the two
terms yield

(34)

It should be noticed that T U according to Eq. (20)
is the field vector. Eq. (34) thus is seen to postulate con-
stancy of the field vector F in the steep gradient. The
components of the 6eld vector, which are to stay con-
stant, are (with omission of constant factors) pov„u'p,
E„,and 8, They are known to be the quantities ofwhich
continuity is required at a boundary. The present postu-
late of constancy apparently becomes the continuity
condition in the limiting case. This justifies neglecting a
narrow transitional region between homogeneous media
and replacing it by a boundary as long as the interior
of the transitional region is not to be investigated.

'V. TWO ADJACENT MEDIA

In order to arrive at a better idea of the coupling
phenomenon, one might want to study a relatively
simple case more thoroughly. Two homogeneous media
separated by a narrow transitional region turned out to
be a fairly simple case. It was seen in the last section
that the transitional region can be disregarded and that
the postulate of continuity of F is applicable to the vir-
tual boundary between the media.

Because the boundary is now a substitute for the
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transitional region, a discontinuity or divergence of the
static magnetic field at the boundary is permissible.
The ignored transitional region has to provide for the
continuity of magnetic force lines. In general this re-
quires in the transitional region a variation of Bp also
in a transverse direction.

The behavior of magnetohydrodynamic waves at a
boundary was investigated by various authors. ""
(More references may be found in those cited. ) Fejer22
was concerned with moving plasmas; Simon' and
Vhlliams" dealt with coupling between modifmd Alfven
waves and acoustic waves. The present section overs a
more quantitative study under specializing assumptions
(as, for example, that of normal incidence of waves)
and allows for a discontinuity of the static magnetic
field, which is meaningful in consideration of a narrow
transitional region between media. The only restrictive
assumption imposed on the magnetic field is the one in-
troduced earlier, that is, Bp stays in the x,s plane (with
the s direction being normal to the boundary).

Superscripts at the various symbols may denote the
two media. It is assumed that in medium 1 a modified
Alfven wave, corresponding to a wave function I&('),
is propagated and impinges on the boundary (or transi-
tional region). Modified Alfven waves and acoustic
waves are found to depart from the boundary toward the
two sides. Rejected waves of both types appear in
medium 1. In medium 2 the waves continue traveling
in the direction ot incidence. The continuity condition
for F at the boundary determines the amplitudes of all
waves departing from the boundary.

Equations (20) and (21) with parameters X and p, of
different orders of magnitude [as indicated by in-
equality (17)) suggest neglecting the contributions of
modified Alfven waves to (22p/c (the second component
of F) and of acoustic waves to E„and B, (essentially the
third and fourth components of F), provided that none
of these two modes is strongly predominant. This
simplifies greatly the computation of wave functions
from the continuity condition.

The longitudinal (s) component of the plasma
Aux density of modified Alfven waves in medium 1
Ni(')+2e&(') is assumed to be given. It is left open how
this Aux density is subdivided into the two parts cor-
responding to incident and rejected waves. The ratio
between the two parts can be determined afterwards.
The electric field strength in medium 1 is derived from
Eqs. (20) and (21) as being

1
E ("= —— (ui")+2())("). (35)

6p + (1)2+ (1) sin& (1)

The 6rst question arising is: UrIder what coeditioe do

"V. C. A. Ferraro, Astrophys. J. 119, 393 (1954).
'0 R. Simon, Astrophys. J 128, 392 (1958).
"W. E. Williams, Astrophys. J. 131, 438 (1960).
22 J. A. Fejer, Phys. Fluids 6, 508 (1963).

eo acoustic mares origirIate at the bourrdaryP Continuity
of pp8, without the presence of acoustic waves requires
that at the boundary

I (i)+2() (i)—2ti(2) (36)

Continuity of E„leads [according to Eqs. (20) and (21)7
to

2ti 0)+2()i())

() g„() ' () () g() (')
(37)

Equation (39) shows that (po/B()) sinn must remain
constant in transition from one medium to the other
when no acoustic waves are to occur. For a continu-
ously varying medium the same condition was obtained
[in connection with Eqs. (29) and (30)). In the case of
nonvarying (2, Eq. (39) simply requires proportionality
between pp and Bp.

It may be noted without proof that Eq. (39) is in
agreement with the idea of motion of magnetic force
lines together with the plasma, an idea, commonly
adopted under conditions of (nearly) perfect conduc-
tion. It has to be kept in mind that (he plasma Aux of
modi6ed Alfven waves is normal to the force lines, thus
carrying force lines with it, while the Aux of acoustic
waves wouM be parallel to the force lines.

I)2 the general case, in which Eq. (39) is not fulfilled,
acoustic waves are expected to arise. This case will be
discussed now. For reason of simplification, the sound
velocity a and the angle n are taken to be constant.
Equation (38), following from the continuity of E„, re-
mains valid and determines ui") for given ui(')+w, (".
The continuity condition for ppv„which now has to in-
clude modified Alfven waves and acoustic waves, reads

2(i(i)+2()) ())+2()2(i)=Ni(2)+222(2)

From continuity of a'p it follows that

g)2(~) —g ~
(&) (41)

Equation (40) with elimination. of 2()2") becomes

(1)+2e (1) 2g (2)+2N (2) (42)

The wave function N2(" can be computed from this
equation. The ratio of z»(') to I&('), which is not in-
vestigated now, is determined by the continuity condi-
tion. for 8,.

The preceding deductions [Eqs. (38) and (40)—(42)j

This equation becomes by means of insertion of p, from
Eq. (16)

(B (i)/t)&(i) sin(2(i))(N (i)+2() (i))

= (Bo(')/p()") sinn('))2ti(2) . (38)

The condition for the two media following from Eqs.
(36) and (38) is

(p ( )/B (i)) sin(2(i)=(po( )/B()( ) sinn . (39)



A 1612 H. POEVERLEIN

can be summarized as follows: The primary plasma Aux
in the 6rst medium (corresponding to u, (')1wr(')) is con-
nected with an electric field E„.This electric fi.eld ex-
tends into the second medium and causes there a plasma
flux corresponding to Nr('). If pp/Bp varies in transition
to the second medium, the two plasma Quxes would
violate the continuity condition for ppe, .Acoustic waves
depa, rting from the boundary are necessary to re-
establish continuity of the longitudinal Qux density.

With pp( )/Bp( ))pp( )/Bp( ) the 6ux density Ns( ) is
negative for positive Nr(')+wr(') and the flux density
w&(') is positive. This is to say, the modified Alfven
waves in the first medium, by means of their electric
6eld, set too much plasma in motion in the second
medium; N~(') is too large for continuity of the plasma
Aux densities of modi6ed Alfven waves. The acoustic
waves which arise, exhibiting a negative N2"' and a
positive m 2"', serve to keep the Aux densities in balance.

If the two adjacent media differ a great deal, the
modified Alfven waves do not have to be intense to pro-
duce acoustic waves with a considerable density oscil-
lation. It may be assumed, for example, that

pp (2)))pp
(&) (43)

g, (~) —g, (i) (44)

The longitudinal component of the plasma velocity ini-
tially assumed in the erst medium may be e,p. This
velocity is ascribed to the combination of the two wave
functions I&") and re~('). There is, consequently,

~ (r)+w (&) = p (&)r)

and, according to Eq. (38),

tgj ( ) pp( )p p ~

(45)

(46)

. Equation (42) with neglect of Nr(')+wr(') leads to

~2( ) — N~( )

oi'

N2(2) —
p (2)g)

(48)

The acoustic wave in the second medium thus is seen to
be connected with a longitudinal plasma velocity corn-
ponent that amounts to —v„/2. The corresponding
density variation is derived from Eq. (21) as

On the other hand, Eq. (38) with inequality (43) yields

ggr(r)+wr(&)((N (&)

velocity a is small, as inequality (1/) postulates, a small
Aux velocity v,p will be sufBcient to cause a large rela-
tive density variation. From Eq. (41) it is seen that in
medium 1 the longitudinal plasma velocity component
of the acoustic wave is even greater than in medium 2.

A numerical example may illustrate the present re-
sult. It is assumed that the Alfven velocity in the 6rst
medium is 500 km/sec, corresponding approximately
to atmospheric conditions in altitudes above Ii2 maxi-
mum, ' and that the ionacoustic velocity is 1 km/sec
in both media, furthermore that in the first medium a
modified Alfven wave is incident whose plasma velocity
is 200 m/sec normal to the force lines. (Values given for
oscillatory quantities may represent amplitudes. ) The
modi6ed Alfven wave is "weak"; the plasma velocity
in the wave is only 1/2500 of the wave velocity.
According to Eq. (21) the magnetic 6eld of the wave
amounts to Bp/2500 if the wave is a progressive wave.
The vertical component of the plasma velocity is
e.p= (200 m/sec) sinn. Incidence of the modi6ed Alfven
wave on the boundary at which pp is supposed to increase
considerably causes generation of acoustic waves, which
proceed into the two media. The vertical plasma velocity
component of the acoustic wave in the second medium
obtained from Eq. (49) ls —'8 p/2= —(100m/sec)sin(r.
This value indicates a fairly intense acoustic wave; the
ratio between plasma velocity (now taken parallel to
the force lines) and wave velocity is (1/10) tann~ and
Eq. (50) shows that this is also the ratio

) p/pp.
So far, the lateral extension of the wave fields has been

of no concern. A lateral confinement that is not too
narrow in terms of wavelengths is representative of a
beam of waves or a ray. The wave 6eld is concentrated
around the ray, whose direction may deviate from the
direction of wave normals (s direction). A theorem of
geometric optics states that the ray direction is normal
to the surface representing in polar coordinates the
refractive index versus direction of the wave nor-
mal'"4" The refractive index of modified Alfven
waves does not depend on the direction. Their ray direc-
tion consequently coincides with the direction of the
wave normal. The ray direction of acoustic vraves, on
the other hand, is under the present assumptions al-
ways parallel to the magnetic force lines. When modi-
G.ed Alfven waves and acoustic waves depart from the
same location on a boundary between media, their dif-
ferent ray directions will in general leaR to a separation
on the subsequent path of propagation.

c 1

a') icosni

1 'Vsp—p (2). (50)

8. CONCLUSION

Passage of modified Alfven waves through a region of
varying pp/Bp was seen to cause generation of acoustic
waves ("ion-acoustic" waves, which are propagated in
the plasma). This phenomenon appeared as a result of
coupling between waves and was derived (in Sec. 5)

The relative density variation )p(')/)pp(') according to
Eq. (50) is comparable to v, p/a. When the ionacoustic "H. Poeverlein, Phys. Rev. 128, 956 (1962).
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from the coupling theory developed in Sec. 2 to 4.
The case chosen as prototype (in Sec. 7), a narrow transi-
tional region between media, was treated without re-
course to the formulas of general coupling theory by
means of continuity considerations, which strictly
apply to a boundary between media. The coupling
theory is usable for quite general strati6cations —for
slow and rapid transitions and for nonmonotonic varia-
tions of the medium —but some limitations are imposed
by the specializations made from the beginning.

The various formulations seem to indicate two differ-
ent ways of dealing with an oscillatory 6eld (including
the oscillatory quantities of the plasma). There is the
obvious wav of direct use of the basic equations, to
which field and plasma variables are subject. The al-
ternative way, suggested by the coupling theory, re-
quires splitting of the oscillatory quantities into con-
tributions of individual waves, whose behavior is de-
scribed by the coupling theory. The practicability of this
splitting into individual waves is quite evident in a
homogeneous or almost homogeneous medium, because
there the characteristics of individual waves are easily
recognized.

In an arbitrary stratification, particularly in a steep
gradient of parameters, the field (and the plasma quanti-
ties) will not show periodicities or interferences cor-
responding to a superposition of wave fields. A physical
meaning of the individual waves derives however in such
conditions from the behavior of the plasma Aux in the
waves. Under the assumptions made, each of the three
waves is characterized by a particular direction of
plasma Aux. The Qux was found to be parallel to Bp in
acoustic waves, normal to Bo and in the x,s plane in
modified Alfven waves, and it is in the y direction in
Alfven waves.

Although the typical nature of waves does not become
apparent in a rapidly varying medium, the characteris-
tics of the individual waves will show up when the waves
leave the region of rapid variation (i.e., the "steep
gradient"); different ray directions of difierent waves,
for example, may be observable there (cf. the last
paragraph of Sec. 7). This too justifies usage of the
wave concept in general cases with the implication of
coupling in an inhomogeneous medium.

Only coupling of modi6ed Alfven waves into acoustic
waves was investigated in the more specific part of the
paper (Secs. 5 and 7). One might expect also reversed
coupling, coupling from acoustic waves into modi6ed
Alfven waves (described by the coupling coefficients

Mip, M2p, Mi4, and Mp4). Occurrence of two-way
coupling would complicate a case in which both waves
show comparable amplitudes. When modi6ed Alfven
waves and acoustic waves have comparable plasma
Quxes, it is easily seen, however, that the energy lux is
much greater in the modified Alfven wave. This may
prevent a noticeable degree of reversed coupling under a
wide variety of conditions. The energy flux in any one of
the waves is energy density times wave velocity; the
energy density is twice the kinetic energy density. The
energy cruxes with comparable plasma velocities thus
are roughly in the ratio of the wave velocities. Despite
its small energy flux the acoustic wave (possibly pro-
duced by coupling) may, however, appear intense with
respect to the amplitude of some oscillatory quantity.
Large density variation in the acoustic wave was found
in the preceding section.

The coupling theory of this paper might permit con-
clusions on processes in the upper atmosphere, although
some of the simplifications introduced may notappear
quite realistic in this application. A phenomenon to be
recalled is the 6rst phase of a geomagnetic storm. It is
commonly explained by an increase of the pressure of
the arriving solar plasma wind with subsequent mag-
netohydrodynamic processes in the terrestrial magneto-
sphere. ""These processes, though not periodic, have
largely the character of modified Alfven waves. The
present theory suggests that "acoustic" processes
originate as a secondary effect in altitudes in which the
plasma density decreases rapidly with height. Acoustic
processes or waves are modified by the gravitational
force, but should still entail considerable plasma density
variations. Varying vertical extension of the magneto-
sphere above an individual location on earth, caused by
varying position with respect to the sun during the
course of a day, might also lead to processes of the char-
acter of modified Alfven waves and secondarily to acou-
stic processes modified by gravity. Atmospheric phe-
nomena will be discussed under the present aspects in
a paper to be published shortly.
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