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(OIsIk)'= (k'/2mE), k=1,
=0,

(A10)

Because the oscillator strength associated with the
resonant transition is nearly unity for the alkalis,
Eq. (A9) is virtually equivalent to

(A12)

holds in regions where IO) is appreciable. Accordingly,
for s= R, the ratio of I 1,) to I 0).is

~2mE»s ~ Ry ~ E y'I'
~(E)=&I

k as k~, i&E )

Consequently, the relation

s IO)= ((k'/2mE))'I'l1 ) (A11)

Combining Eqs. (A12) and (A5), we Anally obtain for h.

R AE, ., (E)
A(R) = —— (A13)

~o (E&Ir)"'
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The properties of a one-dimensional system of degenerate electrons coupled to long-wavelength phonons
are investigated. The equivalent model Hamiltonian of Tomonaga, which describes the electrons by density
waves, is diagonalized to normal modes. These are calculated for the Einstein model and constant coupling,
and used to get the ground-state energy. A physical interpretation of the model is given. The breakdown of
the system for strong coupling is discussed. The many-body perturbation theory is used to assess the validity
of the Tomonaga model. The electron-phonon ground-state energy diagrams may be grouped in two sets as
Tomonaga and non- Tomonaga. The latter cancel among themselves exactly to a high order. The extent of the
cancellation in three dimensions is treated in fourth order and found to be signi6cant, but not exact.

1. INTRODUCTION

'HE properties of an electron-phonon system are
investigated for the case when the electrons are

degenerate and the shortest wavelength coupled phonon
has wave vector k, much smaller than the Fermi
Inomentum kf. For these phonons the wavelength is
large compared to the average electron spacing, and
the electron density Ructuations which couple to the
phonons are well-dered collective "sound" waves.
Most of the work is on a one-dimensional model; Sec.
10 discusses the possibility of extending the results to
three dimensions.

The method of Tomonaga' is used in Sec. 2 to derive

an equivalent Hamiltonian for the system where the
electron kinetic energy for momentum p is eyI pI. The
electron kinetic energy operator is expressed in terms
of boson operators which create and annihilate electron
density waves. The validity of the description of the
electron-phonon system by the Tornonaga Hamiltonian
is discussed using Tomonaga's results, and an extension
is given which is proved by perturbation methods in
Sec. 7. The physical interpretation of the boson kinetic
operator in Sec. 3 splits the operator into two parts.
The erst gives the Fermi-Thomas energy of degenerate
electrons with long-wavelength density oscillations; the

*Work supported in part by a DuPont Research grant.
t Leeds and Northrup Foundation Predoctoral Fellow.
' S. Tomonaga, Progr. Theoret. Phys. (Kyoto) 5, 544 (1950).

second is the energy of the collective motion in these
oscillations. We may consider the description to be a
dynamical Fermi-Thomas method which accounts for
the correlations in the long-wavelength motions of the
electron gas.

The Tomonaga Hamiltonian is diagonalized by a
canonical transformation in Sec. 4 into a set of inde-
pendent harmonic oscillators, three for each wave
vector when the electron spin is included as a variable.
One of the independent modes is a spin density wave
whose frequency is unaffected by the phonons, because
it leads to no change in the electron density in space.
The dispersion curves of the oscillators are calculated
in a speci6c model: Einstein-model phonons of fre-
quency or, and the electron-phonon vertex matrix
elements gs taken as constant=g for

I kI (k, and zero
for IkI)k, . When Qs=nfIkI is not close to co, the two
other displaced normal modes contain a phonon and a
density wave with no spin wave, one of the modes being
mainly a phonon and the other mainly a density wave.
For ef I

k
I

close to co, neither mode is mainly phonon or
density ft.uctuation. The mode which is a phonon
(density wave) for Q&((~ becomes a density wave
(phonon) for Q&))co.

The ground-state energy ET of the system is plotted
against the coupling strength g and the cutoff mo-
mentum k,. It is shown that in the general case, E~ is
analytic in the coupling constant, so that perturbation
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theory is valid for coupling strength smaller than the
critical coupling, beyond which the Tomonaga Hamil-
tonian has no lowest eigenvalue.

The behavior of the system beyond critical coupling
is considered in Sec. 5. For coupling slightly less than
critical, the number of phonons and density waves
present in the system increases rapidly, and the
Tomonaga Hamiltonian no longer gives a good de-
scription of the electron-phonon system. With the use
of a variational wave function it is shown that above
critical coupling the binding energy goes as the square
of the number of electrons. The wave function also
suggests the collapse of the electrons into a region of
length comparable to 2qr/k, .

The perturbation-theory rules for the ground-state
energy diagrams of the system are given in Sec. 6, in
both the electron and the density wave pictures. An
argument is given in Sec. 7 that the two perturbation
series must agree to order 2kf/k, in the coupling
strength. The Tomonaga or "bubble" diagrams have
the form of electron-hole pair bubbles linked to phonons
at the ends. The electron-phonon perturbation series
contains the Tomonaga diagrams as a subset. If the
two series agree, the extra diagrams must cancel in
each order. They are first present in fourth order, where
the cancellation is demonstrated explicitly. In Sec. 8
the perturbation rules for the electron distribution in
momentum space are given. It is shown that the non-
Tomonaga diagrams do not cancel for this property,
because the Tomonaga diagrams only aBect the dis-
tribution in the momentum interval k/ —k, to kt+k,
while it is evident that higher orders of perturbation
lead to particles well above kf and holes well below.

The Green's function method is used to calculate the
Tomonaga energy in Sec. 9. It is pointed out that the
phonon self-energy calculated from the lowest order
diagram is actually correct to order 2k'/k, . This is not
true of the electron self-energy.

The last section discusses the possibility of extending
the results to three dimensions by analyzing the fourth-
order ground-state energy diagrams. The non-
Tomonaga diagrams no longer cancel exactly. It is
shown from phase space considerations that the
"bubble" diagrams dominate in the high-density
region, ' where kf»k„so that in fourth order the phase
space alone reduces a non-Tomonaga diagram as com-
pared to Tomonaga by a factor (k,/k~)', however when
the non-Tomonaga diagrams are added, the total is
down by a factor (k,/kq)s.

2. REVIEW OF THE TOMONAGA MODEL

Tomonaga showed that a one-dimensional assembly
of degenerate free electrons can be described by a
quantized field of density waves obeying Bose sta-
tistics. ' This section reviews the results of Tomonaga

' N. Hugeuholts, Physica 23, 533 (1957).

and discusses the validity of his model. The density
wave description is a convenient starting point for
treating the properties of phonons coupled to density
waves of the same wave vector k.' We assume that only
phonons of long wavelength are coupled, so that

~

k
~
(k„where k, is the cutoff wave vector. The length

X,=2qr/k, is taken large compared to the length which
contains one electron on the average, so the electron
density varies smoothly within the density waves.
This means k,(&kf, where ky is the Fermi momentum
of the free electrons.

The system is on a line of length I. with periodic
boundary conditions. The second quantized electron
field operator for spin 0- at the point x may be written
in terms of plane-wave amplitudes

(x) —P I 1(seikzc-

k=2v.e/L, tk=O, &1, ~ ~ ~ . (2.1)

The density operator p, (x) =f,*(x)f,(x) has the plane
wave amplitude

L "e 'k*p. (x)dx

pk =L P cq k/q c~k/s. —
+q&0

(2.3)

For k&0, pl„. behaves exactly as a creation operator
and pI,+ as an annihilation operator, while for k(0
they are reversed. The "quanta" of these operators are
density waves made up of particle-hole pairs excited
from the Fermi sea, which all propagate in phase with
velocity &v~ because of the choice of e&. The com-
mutation rules of these operators within S are best
expressed in terms of the properly normalized boson
creation and annihilation operators.

/kk, ——(2qr/~ k ))'/'pk, +, k~~O

a „*=(2n./~k))' p k
+ k~O, (2.4)

L&k..&k,"3=O, L/kk, ,&k,.')=4,k3.... (2.5)

3 Several papers have been written on the application of the
Yomonaga model to an electron-phonon system. G. Wentzel,
Phys. Rev. 83, 168 (1951);J. Bardeen, Rev. Mod. Phys. 23, 261
(1951);K. Huang, Proc. Phys. Soc. (London) A64, 867 (1951);
Y. Kitano and H. Nakano, Progr. Theoret. Phys. (Kyoto) 9, 370
(1953).

pq Cq k/2, q Cq+k/s, e ~ —(2.2)

It is convenient to take the free-electron energy as
ev= vf

~ p~, where vt is the Fermi velocity. Let S be the
space of many-electron wave functions such that the
single electron levels deep in the Fermi sea between
momenta —-', k, and +sk. are fully occupied. The
operators pk, ~k~ (k, (spin index omitted) have a
simple time behavior when acting within the space S.

pk(t) =pk+ exp( ivtkt)+pk —exp(ivtkt),
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where
E = T'+Ho',

Hp'= 2 g e(k)
lkl&kg

The kinetic-energy operator of the electrons,

E=Q egjCo, ~ Co,r.
y, o'

may be written in terms of the boson operators:

(2.6)

(2.7)

(2.8)

Qh, .= (2&i) '"(~~,.+~ i,.*),

Ps,.= —z(14/2)"'(oh, .—~ i,.*),
(3.1)

T= ,' Q—(P~,Pi,+0~'QI, ,*Qi,,—Qq). (3.2)
lkl&kc, tr

be separated into a "kinetic" and a "potential" energy
term by introducing coordinate and momentum
operators

is the energy of the filled Fermi sea, and

1kl &kg j2, o

(2 9)

Tomonaga proved that (2.7) is an equality within a
subspace S' of states characterized by having no holes
below absolute momentum 4kf and no electrons above
(5/4)kf. All the operators in (2.9) have boson com-
mutation rules within 5', which is a subspace of S.
The density wave operators in Eq. (2.9) with label

~
k~ )k, are not coupled to phonons and do not play a

role in the dynamics of the system. We may de6ne a
kinetic operator in which these are omitted.

flick, r &k, r ~

lkl&kc
(2.10)

We shall consider the validity of the model within
the context of perturbation theory. Let f be an eigen-
state of the coupled system which is obtained by
perturbation theory from Pp, an eigenstate of free
density waves and phonons. In the perturbation ex-
pansion of f the low-order terms will have no holes
present in the small-momentum region, so they are in
the space S. It is shown in Sec. 7 that for the parts of
f in S, the operator T acts exactly as E Hp'. Choose-
p to be the ground state and imp the Fermi sea. The part
of ip coming from perturbation order up to but not
beyond erk~/k, is in S', while the corresPonding order
for S is kf/k„. . From the viewpoint of perturbation
theory the model is valid to a higher order than indi-
cated by the criterion of Tomonaga. The critical factor
is that the main part of P be in S, so that there are few
holes at small momenta. If this is not the case, the
model ground state is not close to the ground state of
the electron-phonon system. In the case of weak
coupling the excited electrons and holes will be mostly
in a small region of momentum space about &k~, where
the second derivative of the usual electron kinetic
energy p'/2m may be neglected. The excitation energy
of an electron or hole measured from the Fermi energy
is then @~I p—p~~, and the free-electron energy spec-
trum po=vq~p~ leads to the same ground-state wave
function.

3. PHYSICAL INTERPRETATION OF THE
TOMONAGA HAMILTONIAN

The excitation kinetic-energy operator T is a sum of
independent harmonic oscillators, each of which may

The "potential" energy represents the energy needed
to compress a degenerate Fermi gas when a density
wave propagates. The "kinetic" energy comes from
the collective motion of the large number of electrons
within each wavelength of the density wave.

From the definitions (2.3) and (2.4) the potential
energy is

i = z Z fl~'Q~, .*Qh..=— Z z~PrP~, -P h, ' (3 -3)
k o'

. L lkl&kc, a

In the electron-phonon system only the long wave-
lengths play a role, and we may imagine the restriction
on k in (3.3) to be removed in order to write V in
coordinate space.

L

(p '(x) P')dx—
0

(3.4)

4 F. Seitz, Modern Theory of SolGs (McGraw-Hill Book Com-
pany, Inc., New York, 1940), pp. 384.

The term containing p„ the average density of electrons
of either spin, comes from the absence of k=0 in (3.3).

It has been pointed out by Huang' that the Thomas-
Fermi method4 is relevant for a physical interpretation.
This statistical method ascribes a possible electron
state to each "cell" of phase space of size hphx=k.
The statistical energy belonging to a length Dx of the
system is obtained by adding the kinetic energies of
electrons in the occupied cells. The cells are occupied
up to the local Fermi level, which depends on the local
density. The statistical energy found this way is the
first term of (3.4), which shows that it is the extra
energy due to density Quctuations.

When a long-wavelength X density wave propagates
through the system, a region Ax&A still contains many
electrons so that the electron gas has a well-defined
average velocity. In the rest frame of the particles in
this region, the cells are occupied to the local Fermi
level, but in the laboratory frame the occupied cells are
seen to be displaced in momentum and centered about
the average momentum. Let p, (x, +) and p, (x, —) be
operators which measure the density of those electrons
at a point x which are moving to the right and left,
respectively. The statistical energy of the region Ax,
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taking the average motion into account, is

2 ~~fl:P'(x, +)+P'(x, —)]

W= —2'~ef P Lp. (x, +)—p. (*, —)]'dx. (3.5)

We show this is the first term of (3.2).
The expectation value of p(x, +) in a one-electron

state q2(x) is
~

q2+(x) ~2, where

and

q(x)= q2 (k)etkadk

q+(x) =
q (k)e'"dk

On subtracting the potential energy V we obtain the
kinetic energy 8' of collective motion.

Again the restriction
~

k
~
(k, may be removed in (3.9),

and

~ =22r"f Z II 2(X)dX= W
0

The operator T gives a better description of the
dynamics of the degenerate electron gas than the simple
statistical method which keeps only the term V, since
the correlations between electrons moving in density
waves are taken into account in S'. The zero-point
oscillator energies in (3.2) were not obtained by these
quasiclassical arguments.

The interpretation suggests that the degenerate
electron gas in three dim. ensions cannot be described
by a quadratic form constructed from density wave
operators. For example, with the electron kinetic energy
p2/2m the expression for V is

is the part of q which represents a particle moving to
the right. In the second-quantized form,

(202r22/2) ' P (62r2p, (x))'/'d'x.

p(x, +.) =— Q c @c„et(n mik—
L, m)o, n)0

(3.6)

J l)0,—l&k/2&l
Cl—/c/2 CL+k/2&

For I&—', k„ the creation operator acting on a state in
S gives zero. Since the only density wavelengths of
importance in the problem are longer than X„ the sum
for k& k, in (3.6) is unimportant, and the restriction on
k can be dropped.

4. GROUND-STATE ENERGY

In this section we calculate the ground-state energy
for an electron-phonon system. The interaction to 6rst
order in the lattice displacement couples the longi-
tudinal lattice normal-mode coordinate qj, =q ~* of
wave vector k to the density wave p A„, with matrix
element gg

——g g
——gI,*.

Hr=p gkp —k, aqk

= Z gk(lkl/2 )"'(~,.*q.+~, q *), (41)

P(x, +)= Q ct k/2 cl+k/2e' *—
l&0, ) k) &kc

(3 ~) where s&k is the frequency of the bare phonon. The
noninteracting phonon part of the Hamiltonian is

and similarly Hs= 2 g (pk'pk+~k'qk*qk), (4.2)

P(xp )=. Q ct k/2 ct+k/2e' *~—I l&0 [k)&kc

The "kinetic" energy from (3.2) is

W'= —,
' Q Pk ."Pk .

I &I &&c,tr

22rt/f Z (Pk, a Pk, a ) (pk, a pk, a ) ~

I &I &&c,tr

De6ne
Hr =Ho'+T+Hs+Hr =Q Hk, (4.3)

(3.8)
where pk* is canonically conjugate to the phonon co-
ordinate qA...

fqk, pk *]=27'tk,k .

The total Hamiltonian in the Tomonaga approximation
(2.8), (2.10) is

(3.9)

I Ilail&&c t)0

=p.(x, +)—p. (x, —).

~ Cl—k/2, a Cl+k/2, a)
k&0

(X)=I—t/2 Q (pk + p
—)etka

(It:[&+c
where the individual HI, corrnnute.

The Hamiltonian (4.3) can be diagonalized exactly.
We make the canonical transformation (3.1) introducing
the operators Qk, , and Pk, , which obey the canonical
commutations relations

Lgk,.,Pk, .*]=24,k &... .

(3.10) Under this transformation the kinetic operator becomes
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where X(0)= 1/22rvt is the density of electron states of
one spin at the Fermi level.

The transformation matrix R has for its three rows
the components of the three orthonormal vectors

e =(2) '"(1,—1, 0},
e = L2 («P—A')'+n'Q'«P/2 1-' '

X(«12—/i, 2 «12—/12 —nQ«1/V2}, (4.12)

e = L2(«P —X ) +o. Q «P/2j-'/'

X{ '—&2 '-—&2, —~Q~/~2},

I

rlKt

FJG. t

l.5 R.O

(3.2) and the interaction operator becomes

Fro. t. The excitation spectra /4/co, Xv/co, Q«/ru of the inter-
acting system as a function of vr ~k)/«1 for various values of the
coupling constant 0.'. The excitation spectra of the noninteracting
system t4/«& and a»/«1 are also included to illustrate the splitting
of the modes when the interaction is turned on.

where we have suppressed the momentum index.
It is interesting to note that one of the normal modes

of the Hamiltonian oscillates with the unperturbed
frequency of the density fluctuations Qk. The trans-
formation vector e~ shows that this mode is a spin wave,
that is a linear combination of spin-up and spin-down
density fluctuations having equal amplitudes and
opposite phases. With the Hamiltonian in the form
(4.7) we may immediately write an expression for the
ground-state energy

&1= P (~ & ~Q//4~)'"gs(qs*Qs, .+q2Q2, .') (4.4) I/o'= &o'+2 Zs (4+4—Qs) (4.13)

An orthogonal transformation on the vectors

kt
(4.5)

As pointed out by Wentzel and Bardeen, ' the root
Xk becomes imaginary for ak'&4.

The lowering of the ground-state energy by the
interaction

Er=l/2' —Hp —-,'Qs «12

= 2 Ps (&2+4—Qs —«12) (4 14)

diagonalizes the Harniltonian H~. In terms of the new

vectors, whose components are canonical,

IIk RkIIk p

@'k Rkc'k
y ( )

the Hamiltonian is

&r=&2' Zs Qs+2 Zs —(Ds'lie'+4'2'~s'4's'), (4 7)

where the matrix 3Ek' is diagonal:

4.6

with

Ok~ 0 0
M2= '0 A' 0

0 0
(4.8)

and

P 2 1(~ 2+Q 2+)(~ 2 Q„2)2+~„2~„2rl„2jl/2} (4 9)

2 1(~„2+Q 2 L( „2 Q„2)2+rr„2«1„2Q„2jl/2} (4 1 )

nss = 16gs21V(0)/«/22, (4 11)

The excitation energies of the system, Ak and ) k, are
plotted in Fig. 1, for the model in which we have optical
phonons, ark=co and constant coupling O.k =OP.

The quantity nk' appearing in the eigenvalues is a
dimensionless coupling term

is plotted in Figs. 2, 3, and 4 for the constant-coupling,
optical-phonon model. As mentioned earlier the mo-
mentum transfer to the phonons in the interaction is
taken to have a cutoff k, . This limits, the maximum
Qk to e~k, =@co. The quantity x introduced above should
certainly be chosen greater than 1, since it is just at
this value that the unperturbed modes Qk and co crossed.
In Fig. 2 we plot the energy lowering E& as a function
of x for o,k'= 1, an intermediate-coupling case.

In Figs. 3 and 4 E~ is plotted as a function of coupling
constant for x=2 and 4. For values of x&4, the extra
contribution to the energy lowering is coming almost
entirely from the depression of the lower mode energy
from «1 to X —+ «0(1—os/4)'/' -for Q/„& 4«1. The physically
important e6ect of the electron-phonon interaction is
the splitting of the modes, which is largest at 0k=~.

The electron-phonon interaction also changes the
specific heat of the system. As pointed out by Wentzel, '
the low-temperature specific heat of the free electrons
is identical with that of the free density waves, as
expected from Sec. 2. Only the low-lying modes, which
have longest wavelength, contribute to the low-tem-
perature specific heat, and the result is

Cv = (4/3) 2rsÃ(0) knsT

where kg is Boltzmann's constant.
When the interaction is turned on, one of the two
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low-lying modes with energy QI, is lowered to energy
) I„which for very long wavelengths is

&s
I s-o ~&s(1 ~'/4)'"

We can state the results for the speci6c heat of the
interacting system in terms of the renormalized density
of states of the lowered mode

cV'(0) =1V(0) (1—o.'/4) '",
Cr =-s'~'k~'TI A'(0)+E'(0)).

As the coupling constant goes to its critical value,
n'=4, the small slope of the mode P~ leads to a di-
vergent specific heat.

An important point to be noted is that the expression
(4.14) for the ground-state energy is analytic in the
coupling constant for nq'(4. The only terms that
depend upon coupling constant in (4.14) are

/1+ii Lr(~2+Q2+L(~2 Q2)2+~2~2@2]l/2)]l/2

+P (~2+Q2 L(~2 Q2)2++2~2@2jl/2 )71/2 (4 15)

For 0.2&4

~2+@2)L (~2 mls) 2+~2~2Q2 jl/2 —$

and we may expand the outer square root in each term

M
N1-

LU

I

1.8—

1.6—

1.4—

1.2—

1.0—

O.S—

0.6—

0.4—

0.3—

0.2

A+X=(-
i (1+—

~ +(1—)
(g) 1/2

k2&

ib' 5 b4
~ ~ ~

4 u' 64 u4
(4.16)

Since only even powers of b appear in the expansion
(4.16), no terms with square roots arise. Thus there is
a power-series expansion of the ground-state energy in
terms of the coupling coDstant. At Q.I,'=4, the de-
rivative of the ground-state energy with respect to
coupling constant goes to minus infinity. If we were to
continue evaluating the ground-state energy in terms
of its power-series expansion for o.~' greater than 4 we
would obtain in6nite results. The fact that the ground-
state energy is analytic in the coupling constant means
that within the region of analyticity we could evaluate
the ground-state energy of the Tomonaga Hamiltonian
by perturbation theory and sum the series to obtain
(4.14). We will go into the detailed analysis of the
perturbation theory treatment in Sec. 7. However at
this stage we may note that contrary to Tomonaga's
conjecture, ' whenever the Tomonaga Hamiltonian is
positive definite the results for the ground-state energy
do not go beyond the realm of perturbation theory.

This result precludes the comparison of the
Tomonaga model with the Bardeen-Cooper-SchrieGer
(B.C.S.) model of superconductivity. ' We cannot com-

' Reference 1, pp. 545—547.
6 J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev.

108, 1175 (1957).

Iiro. 2. The energy lowering by the interaction Er/-,'$(alan is
plotted as a function of the cutoG x = shak. /cu, with n' chosen equal
to one.

pare the two, since the B.C.S. pairing correlations are
in addition to any correlations found strictly within
perturbation theory. The B.C.S. pairing correlations
lead to a lowering of the ground-state energy of the
form /sE ~ —E(0)~s expL —2o/s/X(0)g'). For small
enough coupling constant this will be dominated by
the lowering due to the collective excitation. A mani-
festation of the B.C.S. instability within perturbation
theory is the existence of an imaginary pole of the T
matrix for ladder diagrams. ~ The Tomonaga Hamil-
tonian does not include these diagrams.

S. THE BREAKDOWN OF THE SYSTEM

When the coupling constant 0,' approaches the critical
value 4 from below, the lower mode Xl, approaches zero
for all k. If now 0,' increases beyond 4, XI,' becomes
negative, and the spectrum of the Tomonaga Hamil-
tonian is not bounded from below. ' In this section we
investigate the breakdown and determine whether the
electron-phonon system itself is unstable.

The average number of phonons of wave vector k is

ks= (f a*4)= (~/~~s)~r
= (rl/8 )-', (/t +X s 0) .—(5—.1)

VC. Bloch, Compt. Rend. Congr. Intern. Phys. Nucl. Paris
(1958), p. 243; V. J. Emery, Nucl. Phys. 12, 69 (1959);L. Van
Hove, Physica 25, 849 (1959); M. L. Mehta, Nucl. Phys. 12, 333
(1959).
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OJ

M

W
I 0

2.0

I.S

I.6

l.4

I.2

I.O

0.8

electrons that break down at low momenta, and mainly
the phonons at high momenta, but both participate in
every mode to some extent.

Since the system contains many bosons and phonons
we may consider the operators a~*, bl,* as c numbers of
magnitude lI,'~', hI,'', respectively. A classical calcu-
lation can be done to determine the critical coupling
strength.

Er=.'p QI 1/, g+p Mh/, —p n(sr MQ) "hJ,'~'lJ, '~' (5.4.)

0.6

0.4

0.2

Q 2

Fzo. 3. The energy lowering Er/-,'E(0)aP as a function of
coupling constant cP for cutoff x= 2. The straight line is the result
obtained from second-order perturbation theory.

The relative phase of the c numbers has been chosen
as negative so the interaction term has the largest
negative value. Since (5.4) is homogeneous, first order,
in the variables hj„ li„ the energy can be scaled arbi-
trarily by any positive constant. Thus we can only
hope to obtain the criterion for breakdown, where
(5.4) can 6rst begin to go negative. Fix l~ and vary h~
to minimize (5.4).

lg,./hI, ,'a'(co——/Q-g),

In taking the derivative, the coefficient 4n(Qa&/2)'" of
the term (a+a*)(b+h*) in Hz is to be fixed.

Er= Q QplI, (1 ,n'/ —)4. (5.5)

M tz1 1)
h =—

i

—+—~+La) (&u' —0')+-'n'cvQ']
4IA )i

(
1 1

X + I
—: (52)

4A(A' —X') 4) ()P—A') &

As o,' ~ 4 the largest part comes from the terms that go
as 1/X which came from the derivative of X

h —+ roQ'/4XA'.

The large number of phonons in each mode makes the
interaction in higher orders of the lattice displacement
important in any physical system. Similarly, the average
number /I, of bosons of wave vector 0 and either spin is

4=-,' P. (a, .*a~ .)=-,'(a/aQ~)Er

0 1 1
=——+— +-,'PQ (0'—aP)+-',n'a)'0]

8 A

(
1 1

x + ——,'. (5.3)
4A(A' —X') 4) () s—As)

As a' —+ 4, l ~ QaP/8kA'.
As the energy of the lower mode goes to zero, the

number of phonons and bosons present in the zero-
point motion of the mode blows up as 1/X~. The ratio
hq/2ls is just Qq/co, the inverse ratio of the free mode
energies. This follows from (4.12), for the ratio of
phonon to boson in the mode esq is nQaco/(&u' —Xk')

which goes to 201,/co as n~ 2. We see that in the
collective mode that becomes unstable it is mainly the

As expected, os=4 is critical, and lq/h~ ——co/20'.
For a system of finite length I- the modes of H&

break down if n'&4. We show now that the electron-
phonon system in this length has a lower bound on
the energy for arbitrarily strong coupling. This can
even be estimated by a simple classical argument.
Notice that as the system breaks down, h~ and li,
increase indefinitely. In a system of length I.containing

4
N

I Ol

hl
o
z

Fzo. 4. The energy lowering Er/~~$(0)cps as a function of
coupling constant a' for cutoB x=4. As in Fig. 3 we include the
result of second-order perturbation theory.
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S electrons the maximum eigenvalue of

( 2~ ~'~'
Zr (+—»r++k. r ) I ( Z &y+k/2, r &y—ky2, r

fkJLi

( 2~ i/& kr

~ikr;

&[k[L

minimum energy is obtained by choosing x to satisfy
(5.8) with pk' replaced by the expectation value

(g ~
pk~~~)=(pk). The upper bound is

()L —(-'~'g(v) —-'-v) ~ / j, (»)
where

(r; is the position of the jth electron) is N(2~/)k~L)'I',
and the maximum 4 is about 47rN2/~k~L. From (5.5)
the lowest energy is about

) ki &kc

/@[&ac

/kl &kc

(5.12)

(1—n'/4) Q Qp~N'/2
~

k
~

L,= (1—n'/4)

-', vgN'dk =N'(1 n'/4) —xor/2. (5.6)

The energy depends on E' instead of X and is not an
extensive quantity.

We may obtain a more precise lower bound by neg™
lecting the kinetic energy which is a positive de6nite
operator, in the electron-phonon Hamiltonian. The
eigenstates of the operator O=Hr+Bs are products
of two functions, one of the phonon, the other of the
electron coordinates.

f=a(~~)X(qk). (5.7)

The function q is an eigenstate of the commuting set of
operators pk L'I' p, e 'k"r' —w—ith eigenvalues pk'. Then

y satisfies

{~2 (pk*pk+~'qk'qk)+g Z p k'qk&x=E x, (5 g)

where E is the eigenvalue of 6. The lowest 8 is

( g'
2 Z

[kf(kc
(5.9)

Choose
~
pk'

~
to take the maximum value of NL 'I' for

all k, which can be done by placing all electrons at the
same point of space. The lower bound is

Ei/L= xoPN (0)L1—n'E, N/(o$. (5.10)

me~

t t 2)

To demonstrate the breakdown of the electron-
phonon system we seek an upper bound for E/L which
has a term of the form const)& X. For large o.' we expect
the constant to be negative. Choose a variational wave
function of the form (5.7). The idea is that for strong
coupling we can let (g(pk~p) be large for ~k)(k, by
placing all the electrons inside a region of width t com-
parable to X,=2m/k. . The kinetic energy of such a
configuration g(r;) of N electrons with spin confined
to a box of length t= yX, is

and (pk) is the kth Fourier component of a density
function which is N/t inside the length t and zero
outside. The discrete sum in, (5.12) may be replaced

by an integral provided t((L.

a(v) =
Pk,

k dk kt—slIl-
k2 2

sin 7Ip 1
+—Si(27') .

(~y)' aery

(5.13)

At the critical coupling the coeKcient of N in (5.11)
is zero and n,2= 2/yg(y). We shall choose y to minimize

n.2. Thus Yg(y) is a maximum, which occurs when
sinmy=0 or y=integer= v&0 and

-', yg(y) = (1/2n. ) Si(2~v). (5.14)

For example, one maximum occurs at v=8, where~ Si
is 1.55 and so n,' is 4.05. It is possible to reduce 0.,' by
choosing v larger and larger, for as v —+ ~, Si~x./2
and thus n, ' —+4. This indicates that at 0.'=4 the
system is still distributed over a large region, which
however cannot be taken comparable to L, since then
~(pk)~' varies so rapidly between the allowed values
of k in the sum (5.12) that the integral replacement of
the sum is no longer valid.

For n') 4 we minimize ikn'g(y) —~~y, giving

4 s 2m
—sin' —+—=Si(s), s= 2m'.
S 2 Q

(5.15)

If we let n'= 27r the solution for s in (5.15) lies between
m and 2m, so t is between X,/2 and X,. For larger n', t
decreases further. We conclude that as cP increases
beyond 4, the system of electrons rapidly collapses to
small dimensions of about X„ independent of X. As cP

continues to increase, t approaches zero as 1/n, and the
interaction term in (5.11) dominates the kinetic term
by a factor a, so the upper bound (5.11) approaches
the lower bound (5.10).

If the electron energy-momentum relation is p'/2m,
the type of trial wave function (5.7) would give a

Take the expectation value of 8 'in the state gx. The ' Natl. Bur. Std. , Appl. Math. Ser. 32.
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kinetic energy

2 Kzs e~)' " t'E)'
2~.=s 1i 3m1s&2)

boson commutation relations. In the density wave
picture

Hz= Q gk(I A I/4m(ok)'I'(ak, .*+a k,.)(b +b k*) (6.4)

going as 1P,which gives to E91//La term going asÃ'with
positive coeKcient. For large N this term dominates
the negative term linear in N. It is evident that the
faster increase of s~ with large p acts to prevent the
electrons from coming together into a small region of
space to take advantage of the large lattice displace-
ment which lowers the energy. As pointed out by
Bardeen, ' this system cannot be approximated by the
Tomonaga model when the coupling is strong.

0. PERTURBATION-THEORY RULES

The perturbation-theory rules for the ground-state
energy of an electron-phonon system may be derived
by the method of Goldstone. ' A method which combines
time-dependent and -independent perturbation theory"
could also be used. Bloch and De Dominicis have given
the rules for the Gibbs function of the system at non-
zero temperature

The Hamiltonian H is the sum of Hp and Hz of (4.1).
In the "electron picture" Hs K+Hs des——cribes free
electrons and phonons, and in the "density wave
picture" Hs T+Hs, the ——electron variables are re-
placed by density waves. If l's is the ground state of
Hs the Fermi sea with no phonons, then e Ksfs ap-
proaches the ground state P of H for large positive S
if (l)",l"s)~0. The ground-state energy difference of H
and Ho 1S

Es—lim (Hzs Ks)/(s Ks)— —(6.1)

V is the standard ordering operator with respect to the
integration parameter, which for convenience shall be
called "time."In the electron picture

Hz=L" p gk(2"k) "c,~k,.*c,./k+& k*), (6.3)
y, a, o'

where bk= (ek/2)'~'qk+i(2cak) '~'pk is the phonon an-
nihilation operator and ba* the creation operator, with

P J. Goldstone, Proc. Roy. Soc. (London) A239, 267 (1957).
"C.Bloch, Nncl. Phys. 7, 451 (1958).' C. Bloch and C. De Dominicis, Nucl. Phys. 7, 459 (1958).

where ( ) denotes expectation values in the state l's.
The expression (6.1) may be written in the interaction

representation where, for example, Hz(S) = eK'sHze K's.

S
bS=iire Br(S)r exp Hr(r)br)—S~~

0

S

'exp — r( )dS).&r(6.2)
0

The equations of motion show that annihilation oper-
ators have time dependence like

c~(S)=e .„sc ak(S) =e nksa

and creation operators like bk*(S)=e"ksbk*
The perturbation series is obtained by expanding the

exponential in (6.2) and using Wick's theorem to
evaluate the expectation value of the various terms.
The only terms which survive in (6.2) are those in
which all contractions are made.

In the electron picture the 6rst term in the numer-
ator of (6.2) is

S

Hg S Hg tdh
0

gagaz

p, k, '; pr, kr, pr (4"kMkr)r(S

X ~ ~ '~a ~-("-"+»S

y(g S &ekS+—b WscukS)

Xe &" "'"(b,—e' '—+b .*e"",-)) (bb)

For the phonon contraction the only nonvanishing term
is:baba*.= 1, and in the electron contraction we must
put (p+k, o)=(p',o'), (p,a)=(p'+k', o') and obtain
1if IPI)kz, Ip+kI(kz and 0 otherwise. As S~ ~
only the upper limit of the integral over t in (6.5) is
important and the result is

ga
(e,—s,+k+"k) '

I laI&aa, u, ~ 2coa
(6.6)

with the restrictions IPI)4 Ip+&I(4 in the sum.
The diagram representing this term is shown in Fig. 5.
The straight line going up is a particle outside the
Fermi sea, the straight line going down. is a hole in the
Fermi sea, and the wavy line is a phonon, which may
be directed either way. Momentum and spin are con-
served at each vertex which contributes a matrix
element gk/(2cvkL)'~'.

Terms of odd order in Hz from the expansion of (6.2)
lead to the contraction of an odd number of phonon
operators, which vanishes. In fourth order there are
linked as well as unlinked diagrams, with examples
shown in Fig. 6. This unlinked diagram gives a con-
tribution to hB going as I', and therefore must be
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FIG. 5. Second-order
ground-state energy dia-
gram in the electron pic-
ture.

~~
increasing

time

g" i&l
(~)+~a) '.

I~I&&.,~ 2ep 2x
(6.8)

The only nonzero boson contraction is:u~,.u))„*.'. The
diagram obtained this way is shown in Fig. 7, where
the dashed line indicates a propagating density wave.
The result for (6.7) after performing the time inte-
grations is

cancelled by the denominator. An outline of the proof
of the linked cluster theorem may be given following
Goldstone. All the diagrams in the numerator of (6.2)
may be grouped in sets with a common linked sub-
diagram whose vertex begins at time zero. In one such
set 6x the time labels on this linked subdiagram and
perform the integrals over the other time variables;
in the set there are present diagrams in which these
time variables take all possible orders with respect to
the fixed time labels. If all the members of the set are
now added, the result is the special linked subdiagram
times a numerical factor equal to the denominator of
(6.2). This demonstrates the possibility of expanding
hE in terms of linked diagrams.

It remains to perform the straightforward time inte-
grations, which lead to energy denominators as in
(6.6). We can now state the rules for the evaluation of
the contribution of a linked diagram. At each vertex,
spin and momentum are conserved, and the matrix
element is g),/(2(dkL))(', where k is the phonon mo-
mentum. Write the (positive) excitation energy of each
intermediate state in the denominator, multiply by
the matrix elements and sum over all the momenta
and spins, observing the rule that holes are within the
Fermi sea and particles are outside the sea. The sign
of the diagram is —(—1)~ where the first-sign comes
from expanding the "exp" in the numerator of (6.2)
into an odd number of Hy, and I' is the parity of the
Fermion contraction, which is given by the sum of the
numbers of closed electron loops and hole lines. '

In the density wave picture the development is quite
similar. The first term in the numerator of (6.2) is

The linked-cluster theorem holds. The contribution of
a linked diagram is determined by the same rules as
before, but the matrix element at a vertex is g~(I 0 I/
pro)), )))', and the sum is over all possible momenta less
than k„since the reference state ((t o contains no phonons
or density waves. The sign of each diagram is negative.

7. PERTURBATION-THEORY DIAGRAMS

The arguments of Tomonaga show that the model
Hamiltonian should describe the properties of the
electron-phonon system quite well. The extent to which
this is true may be determined by comparing the per-
turbation series of the two pictures of Sec. 6.

The Brillouin-Wigner perturbation formulas" for the
ground-state energy and wave function are

P=fp+BHpP,

~&=P (Hr(&Hi)')
L=O

(7 2)

&=&/% Ho), &=—1—IA&go I (7 3)

where 8 is the ground-state energy of H and hE is the
energy shift from the interaction. The electron and the
density wave pictures have different forms for the
electron kinetic operator, but they lead to the same
result when acting on the various terms of (7.1) which
are members of 5. For example, the second term in the
expansion of Ilt) is

(P/E H()) g~ g) (b )—*a)*)Igo). (7.4)

A particular term in the sum, b &*a).*I/0), is an
eigenstate of E—Ho' with eigenvalue t)rIkI =0),. Now

1 g),g),. t(
I

kk'
I

I. a, a .," 4 \ „„)
g +~OggS g ~

—GAS $ ~
—cof(;S $ W~aursS

df(&„, ,8&0)d+~ „,at,
&

())at()—
(b)

I'xG. 6. (a) Linked fourth-order diagram.
(b) Unlinked fourth-order diagram.

X(5'a "'+5 a "a"')) (Ia)) "E.p. wid td ta:N t . A . at 5 .Aa 4 wt . 55 4'/5
(1935).
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diagram for different p. The Tomonaga diagrams have
the structure of particle-hole bubbles linked to phonons
at both ends. The method of Sawada" can be used to
sum these diagrams, but the procedure cannot be
justi6ed from the Sawada Hamiltonian in which each
particle-hole pair of momenta p+k, p is treated as a
boson. It is only the coherent superposition of pairs
with different p that behaves as a boson density wave.

In the fourth order there are six diagrams in the
electron picture shown in Fig. 8, from which all the
fourth-order Tomonaga diagrams with the same con-
tributions are obtained if the bubbles are replaced by
dashed lines. There are twelve extra diagrams which
fall into two groups of six, and each group is the "time-
reversed" image of the other. One of the groups is
shown in Fig. 9. Time reversal reverses the arrows in a
diagram, so that electrons become holes, and vice versa.
The contribution of a diagram is unchanged under time
reversal, from the particle-hole symmetry about the
Fermi level.

Since the Tomonaga energy should be correct to
high order, the sum of the contributions of the extra
diagrams is zero, even for m. arbitrary phonon spectrum
coI, and coupling g~. The phonon structure determines
the matrix elements and the intermediate-state energy.
The excitation energy of the particles and holes is
proportional to the magnitude of the excitation mo-

mentum, which equals the magnitude of the net phonon
momentum. This means we can fix the phonon momenta
in the diagrams, and group the diagrams of the same

phonon structure in time when all the particle and hole
lines are removed. Since Fig. 9(a) is the only diagram

/
l

I
I
l

k, o. FIG. V. Second-order ground-state
energy diagram in the density wave
picture.

consider

k&q

(c)(b)(a)

In the last step the commutation rule (2.4) was used,
and the property a~!Ps&=0. The second-order cor-
rection to the wave function agrees in the two pictures,
and is a sum of terms of the form b q*as*!fs) with
various coefficients. The third-order term for !f& is
obtained by another application of 8Hz. The effect of
Hr is to give terms like (b ~*a~*)(b ~*a~*)!Ps&,
bs b s*!|Io),anda~*a s*!Ps&,and applicationof K Hs'—
and T gives the same result, by the argument used in
(7.5). The argument breaks down only when the boson
commutation rule is not true, which occurs when T
acts on a state not in S. Hr acting once on !tps& gives a
state containing holes of minimum absolute momentum

kf—k,. Each successive H~ lowers the minimum by k„
so after kr/k, steps of Hr the holes are in the critical
region near k=0, and this part of !lt& is not in S. In
the series (7.2) for the energy shift we can let 8 act
either to the left or right. The Tomonaga model !P) is
therefore correct to order kr/k, and the energy E to
order 2k'/k, . For the one-quantum excited state of the
normal modes of Sec. 4 these limits are (kr —k,)/k, and
2 (kr —k,)/k„respectively.

The second-order diagrams for the energy shift AE
are shown in Figs. 5 and 7 in the electron and density
wave pictures. That these diagrams are equal can be
seen from the results of Sec. 6, where the contribution
of the electron-picture diagram was (6.6)

From the particle and hole restrictions on (6.6), p must
lie for k(0 between kf and kr+!k! and for k)0
between —kr and —(kr+!k!).The sum over p gives
the factor (L/2s-)! k!, and the remaining sum over k, 0.

is the result (6.8) for the contribution of the density
wave diagram which may be called a Tomonaga
diagram. The density wave propagator (dashed line)
therefore sums up the electron-hole bubbles of the erst

FzG. 8. The six Tomonaga diagrams which occur in fourth-
order perturbation drawn in the electron picture.

's K. Sawada, Phys. Rev. 106, 372 (1957).
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k+q

(b) (c)

k&q-q
k-q'

k+q

k~q~
Ik-q'

(e)

FIG. 9. The six non-Tomonaga diagrams which occur
in fourth order.

with no phonons present in the second intermediate
state, it forms a group with one member, and so must
be zero. The requirement that holes be in the sea and
particles outside places the following restrictions on its
momenta if we choose k positive:

(1) k(kf, (u) k+q+q'(kf 1

(111) 0+q) kf 1 (1V) k+q )kf .

Adding (i), (ii), and the negative of (iii), we obtain
k+q'(kf contradicting (iv). The sum over momenta of
diagram 9(a) is vacuous.

The diagrams of Figs. 9(b) and (c) form the second
group. The sign rule gives minus and plus, respectively.
It remains to check that the restrictions on momenta
are identical. For (b),

(i) k+q&kf, (ii) k&kf,
(111) k+q )kf, (rv) k+q+q )kf.

For (c),

(i) k+q&kf, (ii) k(kf, (iii) k+q)kf
The condition (iv) of (b) can be obtained by adding
(i) and (iii) and subtracting (ii).

In the last group of Figs. 9(d), (e), (f) the signs are
+, —,+.The momentum conditions are:
For (d),

Now (v)+(i) —(iii) gives (ii). Given (i), (ii), and (iii),
then one and only one of (iv) and (v) is true, so dia-
grams (d) and (f) cancel (e).

The same kind of cancellation must occur in higher
orders, although it becomes quite dificult to check
directly. We can characterize the diagrams which are
not included in Tomonaga, and which do not cancel,
but give corrections to the Tomonaga energy Ez. The
diagrams in a specific phonon structure group in an
order less than r=2kf/k, add to zero, and contain no
hole lines which scatter from one side of k=0 to the
other. Now consider a group of high enough order so
that this scattering is present, for example, one such
that the hole moves from k&0 to k&0 and back. If we
imagine increasing k~ su%ciently, the structure of these
diagrams does not change, but the hole stays entirely
on the side k&0; the group then has order less than the
new r and so gives zero. Setting k~ equal to its original
value, we see that the reason the group does not cancel
is due to the kink in the energy-momentum relationship
e& as k passes through zero. The energy of the inter-
mediate state when the hole is near k=0 is at least the
Fermi energy E~. The effect of the kink in el, in a
speci6c diagram is negligible until the change caused
by it is comparable to Ey, so the hole has moved over
near to —ky, this argument is also valid for several such
holes. If the order of perturbation theory is above 2r
we obtain diagrams of a new structure. For example, a
hole which started near k~ moves all the way over to
—k in many stages and is annihilated there by a particle.
But these diagrams have many intermediate-state
energies above Ey, and thus represent a very small
correction to Ez.

8. THE ELECTRON DISTRIBUTION

The perturbation expansion of the electron distri-
bution in the momentum space may be obtained from
the formula

+z, = &s, &s,

=lim (e ~ nd ~e ~ )/(e '~ )s—+oo

2S
=- lim V" exp

S-+oo

S

Xexp —11r(1)d1)
0

(i) k&kf, (ii) k —q'&kf,

(iii) k+q) kf, (iv) k+q q'&kf. — g exp

2S

Br(1)d1) (8—.1)

For (e),

(i) k&kf, (ii) k q'&kf, (iii) k+q—)kf.
For (f),

(i) k(kf, (iii) k+q&kf, (v) k+q q'&kf. —

In the expansion there must be an even number of III
in each term, so the sign is determined by the parity
of the contraction. The contraction:cd„*(S)cd, ,(5):
gives exactly (ed„) which is 1 or 0 as l is inside or
outside the sea.
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FIG. 10. Second-order diagram for
the occupation number of a particle
state.

ga
03 6) Gl—k

L & 2' g

lI—k, l&k,
32 1+ni ~,/pp 1+x

=0, kf l », . (8.2)

If ll—kfl)k, there is no phonon inomentum large
enough to put the hole in the sea.

The linked-cluster theorem for this expansion is
valid, and the diagrams differ from those for the ground-
state energy only by the presence of an x in some
intermediate state on a particle (hole) line if ill)kf
(&k~), which requires this line to have momentum i
and spin 0. The excitation energy of the intermediate
state with the x appears squared in the denominator.

In second order we have the Tomonaga diagram of
Fig. 5. In fourth order the x can be put on the Tomonaga
diagrams of Fig. 8 as well as on the extra diagrams of
Fig. 9. Is it reasonable to expect that the Tomonaga
diagrams provide as good a description of the electron
distribution as of the ground-state energy? This cannot
be true, because the Tomonaga diagrams give no con-
t»b«ion to (~tl«l~t) if ill&kf+k. or III&kf
since the highest momentum particle in such a diagram
is at kf+k, and the lowest momentum hole at kf —k, .
It has been pointed out in Sec. 7 that the second-order
term in the expansion of P already has holes down to
momentum kf —2k, . There are two reasons why the
extra diagrams of Fig. 9 with the x on some line no
longer canceL Diagrams like Fig. 9(c) have two particles
or holes in one intermediate state, and the x can be
placed on either. In addition, the x 6xes the momentum
of a line, which can restrict the phase space of two
canceling diagrams (without the x) in diferent ways.

1n the Tomonaga model the ele"tron-phonon coupling
has no e8ect on the paramagnetic susceptibility g. The

The lowest order contraction of c~,.*c~,.with the II~
can be represented by the diagram of Fig. 10 in the case
ill)kr. The x on the particle line of momentum l,
spin 0. denotes the effect of rs~, (5) in first removing the
particle in state l and then returning it. When the x
appears on a hole line there is an extra —1 in the parity.
The time integration leads to the square of the inter-
mediate-state energy appearing in the denominator.
The contribution of the diagram is

term added to the Hamiltonian is EH=IJB(Er X—g),
where Xt (Ng) is the number operator for spin-up
(down) electrons, p the electron magnetic moment, and
8 the magnetic field. This term commutes with the
(zero-field) electron-phonon Hamiltonian. In the
Tomonaga model we let itp be the ground state of
E+H,+'hP and apply the perturbation expansion.
(7.1) in the density wave picture. The essential property
of the l//p namely a„l itp)= 0 is still true, and the ex-
pansion for AE of (7.2) is unchanged. Therefore the
ground-state energy shift due to the magnetic field is
all present in the uncoupled system. The change in
susceptibility due to electron-phonon coupling in a
system with electron spectrum p'/2m comes about from
the curvature of the kinetic energy around the Fermi
level. In the weak-coupling limit the fractional change
in x due to the phonons and the curvature is of the
order of n'(pp/Ef)'.

(e)= (a,),=,+
g
'

Cpyq, g Cjs, a
g' s, q, ~ (2(g)'~'

x p,+~,"))

= (a,), ,+i

where

II(k)D(k),
(2')'

(9.1)

(&o).-o=2 2 "+lZ '
k(kf Ip

(9 2)

To sum only bubble diagrams, the vertex function is
chosen to be 1. The phonon self-energy is

II(k) = 2ig' (—2s-)—'d'pGp(p+k)Gp(p),

= —2ig' (2rr)
—'d'pt pp+kp —«(p+k) (9.3)

+ & (p+k)7 't p. (p)+'3 (p)7-—
=4g'cV(0)Q'(k)/Lk '—0'(k)+i87, 8=0+,

' A. A. Abrikosov, L. P. Gorkov, I. E. Dzyaloshinski, Methods
of Quantum Fi eld Theory in Statistical I'hysics (Prentice Hall, Inc. ,
Englewood Cliffs, New Jersey, 1963), pp. 93.

15 W. Pauli, Ijandbmch der E'hysik, edited by S. Flugge (Julius
Springer, Berfin, 1933),2. AniL XXIV/1, pp. 161;R. P. Feynnran,
Phys. Rev. 56, 340 (1939).

9. GREEN'8 FUNCTION APPROACH TO THE
TOMONAGA MODEL

We have seen that the evaluation of the ground-state
energy in the Tomonaga model corresponds to a sum-
mation of the bubble diagrams for the electron-phonon
system. The Green. 's function approach to the electron-
phonon problem' may be used to sum bubble diagrams.
We use the Pauli-Feynman" technique to write the
ground-state energy in terms of Green's functions
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where we have made the linear energy approximation

.(p—k)—.(p) =an(k) = av,
~
k ~, (9.4)

and as before E(0)= 1/2~sf.
The phonon Green's function D is given by

D (k) = (Dp-'(k) —II(k))—'

= (ko' —Ils) [(ko'—~') (ko' —&s)

—4g'1V (0)0'+ Z5$ '. (9.5)

The poles of D correspond to the perturbed excitations
(4.9) and (4.10) found in the Tomonaga model

D(k) = (kp' —Qs') [(kp' —As' ) (kp' —) y,')+ibj—'.
The addition to the ground-state energy arising from
the interaction is

(4.6), and (4.12). Each of the two excited states we

can go to is correctly given to one order lower in the
coupling constant than is the ground-state v ave
function, as shown in Sec. 7.

Since D is correct and

D(k)=[Dp '(k) —II(k)] ',
we then must have

II(k) = II(k)+O((g'X(0)/(o')' '" ) (9.10)

Our expression for II, 9.3, involves only g'. Thus there
must be an exact cancellation of all diagrams of order
higher than second and up to order 2kf/k, . Conse-
quently we may write

0 g

d'k
II(k)D(k)

(2or)'

dp, II(p)D(p) = dp, ll(p)D(p)+O(g'" I" ) . (9.11)

An equivalent way of writing (9.11) is

'dg' " dko 4g"X(0)0'

g' „2or (kps A') —(kp' )ts)+—if'
dp ~(p)G(p) = p.~(p)G.(p)+O(g'"") (9»)

+dg 2

d(A+)i) =41V(0)Q' +
A(A' —)i') )i()i'—A') 2

With this one may transform (9.6).

(9.7)

d(A'+Z') =-; P (A+),—~—n). (9.8)
~+a

The expression for the ground-state energy is then
identical with (9.14)

(e)=2 P e,+-,'P (A+) —n). (9.9)
[k( &kf

It is not very surprising that one could use Green's
functions to obtain this result. The fact which is sur-
prising is that we have a model in which we can obtain
many quantities simply to any desired order of per-
turbation theory. One such quantity is the phonon
Green's function, D. D may be calculated once its
spectral function is known. The spectral function in
turn depends only upon the matrix element of the
phonon creation operator taken between the ground
state and any excited states of the system. By our
previous analysis we know that the ground-state wave
function is given correctly to a high order of per-
turbation theory when only bubble diagrams are
included. Each phonon operator can be written in
terms of two normal-mode operators using (4.5),

dg"1V(0)Q' + . (9.6)
A(A' —)') ) P,'—As)

Now consider the dependence of A and X on g", using
(9.9), (9.10), and (9.11)

since the left-hand sides of (9.11) and (9.12) are two
ways of calculating the expectation of the interaction
term

c„„,.c„.(be+a , o )
i.i&s...(2p~,)"'

The right-hand sides of (9.11) and (9.12) are identical

by definition. The quantities Z, II, and D are obtained
from the Dyson equations for Z, II, and D by replacing
the vertex function I' by 1 and the electron Green's
function G by the noninteracting one 60. Although the
expressions for D and II in terms of bubble diagrams
only are correct, the expression for Z is not. Z is an
incorrect expression for Z starting at fourth order; only
the combination J'dp&(p)Gp(p) is correct to order
2k'/k, . For fixed cutoff we see that the order of per-
turbation theory to which the various quantities are
exact can be made arbitrarily high by increasing the
density of the system.

10. POSSIBILITY OF EXTENSION TO
THREE DIMENSIONS

In this section we attempt to carry the diagrammatic
analysis we have used in the one-dimensional model on
to three dimensions. A number of workers in the past
have calculated the ground-state energy of a three-
dimensional system with electron-electron interactions
by summing only bubble diagrams. "

"M. Gell-Mann and K. A. Brueckner, Phys. Rev. 106, 364
(1957); K. Sawada, Ref. 13; K. Sawada, K. A. Brueckner, N.
Fukuda, and R. Srout, Phys. Rev. 108, 507 (1957); R. Brout,
ibid. 108, 515 (1957); J. Hubbard, Proc. Roy. Soc. (London)
A240, 539 (1957); A243, 336 (1958); P. Nozieres and D. Pines,
Phys. Rev. 109, 1009 (1958),
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We have seen in Sec. 7 that the existence of the
Tomonaga operators required the sum of the contri-
butions of sets of diagrams to vanish. The structure of
the diagrams does not depend on the dimensionality of
space. In second order there is only one diagram, which
is of the bubble type. In fourth order there are 12
diagrams Dot of the bubble type.

We will state the results before going into the details
of the integrations. There is not exact cancellation of the
non-Tomonaga diagrams. This is independent of the
ratio k,/kr.

The other results are model-dependent; we choose a
constant optical-phonon spectrum energy co, constant
matrix element gg, =g, aDd a cutoff on momentum
transfer, k,=xcu/vr, x is a number having the same
meaning as in Sec. 3, and is taken equal to 2. In metals
the ratio of the maximum phonon energy to the Fermi
energy is a small number, approximately 10 '. The
electron kinetic energy is chosen to be e(k)=k'/2m.
The ratio of the sum of Tomonaga diagrams to the sum
of non-Tomonaga diagrams is of the order (Er/a&)'.
Thus, although there are no boson operators which
diagonalize the Hamiltonian exactly in fourth order,
there is the possibility of operators which may be used
to calculate fourth order to one part in 10'.

Let us first consider the contribution of the Tomonaga
diagram in Fig. 8(e). Figure 8(f) has the same number
of particles, holes, and phonons in. each intermediate
state and can be treated in the same way.

4g' d'kd'k'd'q k q
+(o

4(v' (2z-)' m

(1+l') q
X +2o) . (10.1)

The factor of 4 in the Dumerator comes from the sum
over spins. We neglect terms q'/2 &mk /2zms&k. /k~
which occur in the energy denominators, since they are
down by a factor k,/kr relative to &u. These terms arise
from differences of electron kinetic energies e(k+q)—e(k). We may now easily place upper and lower
bounds on the integral, since for all allowed values of
k q and k'. q,

q ) 2

)
-', ~-3(1+x)-3&

(k+k') q
X +2(o &—,'co—'. (10.2)

If we were to consider the contributions of diagrams
8(a) or 8(d), in which one of the intermediate states
has two phonons but no particle-hole pairs, we mould
obtain as a lower bound of the integrand —,'~ '(1+x) '
rather than the result given in (10.2). The contribution
of any Tomonaga diagram of fourth order with phonons

in the second intermediate state satis6es the inequality

2(u'(1+x)'

d'kd'k'd'q

(2z)'

2GO

d'kd'k'd'q
(10.3)

(2z.)'

Now we approximate the integral

Js = d'kd'k'd'q (10.4)

subject to the restrictions

k"+q'+2k'qz') kP) z'=k' q

k'+q'+2kqz)krz, z=k q

k~&k ~ k'~&k ~

To order k,/kr we may relax these conditions to

(10.5)

k&k„k'&k&. (10.6)

where X(0)=mkr/2z' is the three-dimensional density
of states at the Fermi surface.

Before considering the two Tomonaga diagrams with
no phonons in the second intermediate state we con-
sider one of the non-Tomonaga diagrams with phonons
in all intermediate states, Fig. 9(b). Actually a part
of this diagram is cancelled by the diagram in 9(c), as
we will see later. Even without this further suppression
we will find we have gone down by a factor (cv/Er)'.

2X2g' d'kd'qd'q'fk q
AE9g ——— +~

I

4u' (27r)' k m )

(k q' )
—'(k (q+q')

xl +~
f ~

y2~
f

. (1o.9)
4 m 4 m

The factor 2&(2 comes from the sum over spins and the
time-reversed diagram. We may put bounds on (10.9)
as we did on (10.1).

g4 d'kd'qd'q'

2co'(1+x) 3 (2~)'
4

6

2''
d'kd'qd'q'

(10.10)
(2z)'

The integrals are performed directly and the result for
J 1S

Js——(4/5)z'kr'k, '$1+0(k,/k f)]. (10.7)

The bounds are (10.3) are

)g2@T(0)~
2 ~4

(1O
27 5 ~' i 10&v,3
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')') kf'the restriction (k+q+q
hi her order in k. kf once

'
i nswhich is Of j,llg

' '& k~' are satisfied.(+ ' r' (+q
k 'k the restrictions onTo order

J9&—— d'kd'qd'q'

are
q

—k 's'& k,—k, k&k&.qs&kf —k, q s ill g

' k s—s') j—' (10 17).=(2m f ns d q(&i&~ qss (kf (s—s

'
te rais we obtainPerforming the in egr

J9t,(2(2~)'kf2k. '/27.
J8

to the limits ofare calculating o,
he olar angles are o

thin the order we are
btained by settingtegrations on the po ar

0(s(1 —1&s'&0.

to —z wein ' bl of integration to —'in the s' varia e o
h follo i i lhave from (10.17) the o ow' '

l

(10.13)

,10.8) we see that
resu t is

'
three di-

doe no h ppen inmensions; i
in1 le counting argum

l 'W lb(
this from a simp

t ration varia es

m transfers labeled by q s.o for the momentum trans
Tomonaga integra as

(10.19)s '—=--'(1—In2) =0.2.
S+S'
'

ial a,nd we obtainThe q integration is trivia a,n

(10.20)

he contributions of these
'

ge dia rams areThe bounds on the contri u
'

evaluated using

(10.21)-,'E~(
i
az8.

i (E~.
10.8) we nm a

' . fi d that all Tomonagag ~ (
g e 0

Ke next consi e
ne-dimension ac

t d ot
9 c. The energy en

contri u i'b t'ons from these two iag
For Fig. 9(b) we have

4 d'kd'qd q k q q

)
'(& (4+4')tkq' q

xi ++
km 2m

(q+q')'

2m I

d'kd'k'd'q = kf4

a a integrals wiea non-Tomonagin three dimension,
has the form

d'kd'qd'q'= k q'dq.

k 2 quite simply. In
T

f to (k,
the one-diInensiona c
the form

kc

ral is of the formA non- o-Tomonaga integra i

dkdqdq'= q dq.

h honons in all thesion all diagr ams wit p o
f ma nitude.f h d

}1

in er
rams we av

. )the same as those
'

dobtained in

& aE,.
i

(-'g440 4(27r) 'J8, (10.14)(gg CO

whereas for 9(cc we have

(u' (2m )' m 2m

k q' q" —' k (q+q')X("'+'+- '

—1

2 . (10.23)+ + 2M
2m 2m

where the integral

q (k—k') —'
J81= d kd k d q (10.15)

has the restrictions

k'& kf,
'&k —k', qz&kf —k,

k kf. In the integrant rn1S of order k, f. nneglectij1g er k f. n
.11 make the approximation

er and mayer ' be performed g'(10.12) The
'

te rais over



S. ENGELSBERG AN D B. B. VARGA

If we neglected the terms of order k,/kr smaller than
co in the denominators as we did previously, the de-
nominators would be identical and then the sum of the
two diagrams would give a contribution less than
E~(co/Er)6 in ma, gnitude. However, (10.22) contains
the term q q'/m in the third factor not included in
(10.23). We will expand (10.22) in terms of this factor,
keeping only the first-order term

(10.12) to «)0, «') 0,

J9p+, (32vr'kr'k, '/45.

The result for the upper bound is

8(cv )~

9 (Ega

(10.29)

(10.30)

g4

DFgb+, = ——
QP

d'kd'qd'q'(k q q'
+ +~I

(2~)' E m 2m

k q' q" )—'(k (q+q') q'+q"

(x + +~I
I

+ +2~I
m 2wz ) 5 m 2m

q q' (k (q+q') q'+q'2
xl —

I
+ +~

I
. (10.24)

nz & m 2m i

We may now drop all irrelevant terms

g4

AEg b+, =-—
GO

d'kd'qd'q'(k q q '(k q'
+~l I +~l

(2~)9 km i k ~

(k (q+q )
xl +2~

I

m 1 m
(10.25)

Jg b+, = d'kd'qd'q'q. q'. (10.27)

We may use spherical trigonometry to obtain the cosine
of the angle between g and q' in terms of s, s', and the
angle q between the projection of q and q' on a plane
perpendicular to k.

q q'=qq'(««'+(1 —«')'"(1—«")'"c»v). (10.2g)

For an upper bound we weaken the conditions in

The conditions on this integral are given in (10.12).
An upper bound on (10.25) is

EEOC+,(g'Jgp~, /4(o'(2«)'m, (10.26)

where

A result of the same order of magnitude is obtained
from the sum of diagrams 9(d), (e), and (f). The con-
tribution of Fig. 9(a) can be neglected since it can be
shown to have a contribution no greater than
= (~/Er)'Ew

This completes the demonstration of the various
assertions made at the beginning of this section. For
this particular model there is little doubt that the
Tomonaga diagrams give the most important contri-
bution to the ground-state energy. Since the phase
space suppresses long wavelengths the statement above
can only be true for a physical system if the matrix
element g~ emphasizes long-wavelength interactions.

ii. CONCLUSIONS

The Tomonaga method provides a technique for
obtaining a number of quantities to an arbitrarily high
order of perturbation theory in certain one-dimensional
electron-phonon models. In three dimensions the bubble
diagrams which occurred in the Tornonaga method do
not sum terms beyond second-order perturbation theory
exactly, but to a very high approximation in models
which favor long-wavelength interactions.
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