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Noble-Gas-Induced Rubidium Spin Disorientation*
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Cross sections for noble-gas-induced Rb spin disorientation are calculated, taking into account second-
order cross terms in the spin-orbit and K.L couplings, as initially proposed by Bernheim. Contrary to Bern-
heim, it is argued that spin-orbit effects are negligible in 6rst order. Using simple wave functions, it is shown
that the spin-orbit coupling provided by the electric Geld of the Rb ionic core, when the valence electronic
orbital is deformed in short-range encounters, is sufBcient to yield the observed relaxation rates. For He, the
calculated disorientation cross section shows agreement to within a factor of 6 with the experimentally deter-
mine& cross section for depolarization of optically oriented Rb vapor. Moreover, if, for all Rb—rare-gas pairs,
we assume the same proportionality between the short- and calculated long-range energies at the kinetic
radius, agreement to within a factor of 6 for Ne, A, Kr and Xe is also obtained.

I. INTRODUCTION

HE depolarization of optically-pumped. alkali
vapors in various buffer gases is a phenomenon

well known to experimentalists. For example, the dis-
orientation of polarized Rb atoms in collisions with
noble-gas atoms has been the subject of detailed investi-
gations. '' More recently, similar effects in rare-gas
Na and rare-gas Cs mixtures' ' have been studied
extensively.

The phenomenon of spin exchange in binary collisions
where each atom has an unpaired electron is well under-
stood in general. ' For some time, however, the mecha-
nism by which paramagnetic spherical atoms alter their
spin direction in collisions with neutral, spinless,
spherical atoms has remained somewhat as a mystery.
The first explanation for this type of relaxation was

proposed by Bernheim, ' who suggested that spin-orbit
couplings in the rare-gas nuclear Coulomb field during
collisions cause electronic spin precession (spin-orbit
relaxation). He then employed semiquantitative argu-
ments to explain the orders of magnitude and rare-gas-
dependence of the measured Rb disorientation cross
sections. To date, no quantitative calculation of the
cross sections has been published, however.

The present paper has two purposes. The Grst is to
critically review Bernheim's treatment of the problem
(Sec. II). Whereas, he obtained first- and second-order
contributions to the spin-Qip amplitude, both of which

appeared to have the same order of magnitude, the
present paper makes the point that first-order effects,
while present, are much less important than Bernheim
supposed. The second-order contributions obtained here
have the same form as those obtained by Bernheim, but
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only half the magnitude. Secondly, using the results of
Sec. II, we shall make quantitative estimates of the Rb
spin disorientation cross sections (Secs. III, IV). Agree-
ment with experiment to within a factor of 6 is achieved
in all cases. One cannot reasonably expect better agree-
ment,

'

in view of the number and importance of the
approximations made in the calculation, and the un-
certainties in known" parameters, such as the gas
kinetic radii. The fact that such agreement is achieved
lends weight to the belief that the mechanism by which
optically pumped Rb vapor is disoriented by inert buffer
gases is presently well understood.

II. THEORY OF SPIN ORBIT RELAXATIGN

In analyzing spin-orbit disorientation, Bernheim
proposed two ways in which the relaxation might occur.
The 6rst of these amounts simply to a statement of the
fact that as the foreign gas atom passes the alkali,
the motion of the nuclear charge sets up a fluctuating
magnetic field in which the alkali spin precesses. The
interaction Hamiltonian governing this process is

K = (2tip/Ac) (Zrte/rirt )ri~ & Ytig ' Si

where e, A, and c have their usual meaning, po is the
Bohr magneton, r1~ is the radius vector extending from
the foreign gas (8) to the valence electron (1), Yti~ is
the collision velocity of the noble-gas atom relative to
the alkali (A), and Si is the spin operator for the alkali
valence electrons (Sr——5/2). According to Bernheim,
this is the only operator which, in first order, causes
appreciable spin reorientation.

One immediately senses an error in this viewpoint,
however. Even at large separations (overlap and wave
function deformations being negligible) Bernheim's
result states that a neutral atom creates a magnetic 6eld
as it passes an external field point. To the contrary,
electromagnetic theory states that spherical neutral
charge distributions produce neither electric nor mag-
netic fields at external points. It is quite obvious,
therefore, that the rare-gas electronic "drift current"
must also be taken into account, and when this is
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properly done, Eq. (1) is replaced by

K = (2ttp/Ac)Ettt x Vng'Si, (1a)

where now E~~ is the electric field associated with the
noble-gas atom at the position of the alkali valence
electron. Once again, K' yields nonzero diagonal matrix
elements. However, they are now too small to be
consequential, being finite only when the colliding
atoms overlap. ~ For the remainder of the paper, there-
fore, we shall neglect all first-order spin-orbit effects.

Bernheim's second-order interaction is derived as
follows: Consider only the strongest spin-orbit coupling,
that between the alkali valence electronic spin and its
orbital motion in the combined fields of the alkali
positive ion and the noble-gas atom. During the
collision, while the electronic wave functions are de-
formed and during which overlap takes place, the spin-
orbit coupling introduces a further deformation into
the ground-state eigenfunction, which is characterized
by a net internal atomic orbital angular momentum L.
Since the total angular momentum of the collision J is
conserved, the angular momentum of rigid rotation
(J—S—L) suffers a change during the collision (S
denotes the sum of the electronic spin. operators).
In writing the Schrodinger equation for atomic radial
motion in binary collisions (Born-Oppenheimer approxi-
mation), the "centrifugal potential" is (J—S—L)'/2I,
where I is the moment of inertia operator for the
collision pair. The spin-orbit-induced incremental L
therefore leads to a corresponding perturbation in
energy equal to KL/I, with K—=J—S.

The electronic Hamiltonian relevant to our problem
is, therefore,

3'.=Xp—K L/I+ (tip/kmc)E, x y, S» (2)

where Ko represents the Coulomb and kinetic energies
for all electrons in the colliding atoms (fixed nuclei),
Ei is the electric Geld of all charges (except the valence

'An estimate of the cross section derived on the basis of Eq.
(1a) has been carried out for Rb—He collisions. In the calculation,
exchange is of no importance, since the rare-gas orbitals follow
their nucleus, and all matrix elements on 3." involving these
orbitals consequently vanish. By- choosing hydrogenlike orbitals
for He (see footnote 13) and approximating the Rb valence orbital
by a constant term plus one linear in the displacement from the
He nucleus along the interatomic axis, the effective coupling
X ff = r (R)K S/I is obtained, with 7 (R) =8m (1/137)' (16/27)'
Xap'RNq(R)(dui(R)/dR). The notation here is the same as in
Eq. (3), et seg. Numerically, for He—Rb collisions, y(bp) =2.3
)&10 ', leading to a cross section 0.=10~' cm'. Similar arguments
can be used to show that for Xe—Rb collisions, 0- =10 "cm' results.
Comparison with the cross sections listed in Table II therefore
reveals that 6rst-order effects are negligible.

SThe above derivation follows J. H. van Vleck, Rev. Mod.
Phys. 23, 213 (1951).The operator K/I is simply 6), the instan-
taneous angular velocity with which the interatomic axis rotates
during collisions, the —u. I interaction governing an eGect
whereby the diatomic rotation generates an internal electronic
angular momentum. The p-type doubling phenomenon in 'Z-state
molecules is closely related to spin-orbit relaxation, inasmuch as
the Hamiltonians governing both phenomena are identical (R. G.
Brewer, private communication). The energies associated with
p-type doubling bear simple relationships to phase shifts appearing
in the calculation of spin-orbit relaxation cross sections.

electron) at the position of the valence electron. , and yi
is the momentum operator for that electron. If, as in
some instances, antisymmetrized many-electron eigen-
functions are to be used, the appropriate generalization
of the spin-orbit operator is

(ttp/Amc)Q E; xy,'S, , (2a)

where the indices i successively indicate all electrons
included in the biatomic wavefunction.

For the moment, let us assume that we have solved
the Schrodinger equation for the eigenstates and
-energies of Kp, the ground state being denoted by

~ 0),
excited states by ~X). In this representation, the last
two terms on the right-hand side of Eqs. (2), (2a) have
no nonzero first-order matrix elements with the ground
state; however, the second-order energy is nonzero, and
can be written as an eGective KS coupling as follows:

ac.tt' ——P K y' S,/I, (3)

with y', a second-order tensor, having elements

(O~ I., ~)t)()t
~ (t,/It mc) (E, x y,), (O)

V;s'=2 Z'

with j, k= x, y, or s. Because of cylindrical symmetry in
the biatomic groundstate, p' is diagonal in any system
of coordinates in which one axis coincides with the
instantaneous interatomic axis. Specifically, if we let
the s axis coincide with the diatomic figure axis, the
relations

However, because the component along the figure axis
of the angular momentum of rigid rotation is always
zero, we write

se,it' ——Pp'(R) K S,/I,

where now

(0)L~)t) ()i~ (tip/time)(E; xy, ) jo)
y'(R) =Q'

+)0

(7)

which is less than Bernheim's result by a factor 2.
)Notice also that we have included the 1/I dependence
explicitly in Eq. (3), et seq. , thereby making y' dimen-
sionless. ) Formally, of course, Be,«' can be written

SC,tt'= y (2)K.S/I. (6a)

hold, R being the interatomic separation, so that Eq. (3)
may be written

x,tt' ——p 7'(R) (K.S,—E,S„)/I.
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Equations (6) and (7) will be used as the starting point
in the calculation of 7(R) to follow.

III. EVALUATION OF THE KS COUPLING STRENGTH

In determining the relative magnitudes of the various
contributions to y(R), we shall perform calculations at
typical interatomic separations —those corresponding
to the kinetic radii bo for the collision pairs. Sample cal-
culations will be carried out for Rb—He, Ne collisions.
It is apparent that eigenstate deformations and/or
overlap effects during collisions must be taken into
account, inasmuch as

p E, xp,'S, lo&=o

holds when the colliding atoms are isolated.

1. Eigerjstate Deformations

One possibility for spin-orbit relaxation arises from
the fact that Coulomb and exchange forces deform the
biatomic ground state, in which case y(R) maybe 6nite.
In the present calculation, overlap effects are neglected
so that simple product eigenfunctions may be employed
without antisymmetrization.

We shall consider two types of interatomic inter-
actions which lead to eigenstate deformations. The first
of these are the long-range Coulomb interactions,
responsible for dispersion forces and also for correlations
between the positions of electrons within different
atoms. The other type consists of short-range inter-

actions which yield erst-order (repulsive) interaction
energies and cause atomic deformations without
necessarily leading to correlations in the instantaneous
positions of electrons within different atoms.

Consider, G,rst, deformations caused by long-range
forces. The interatomic potential energy operator, in
dipole-dipole approximation, is'

n
V'= ——Q(2z, z&—y,yg

—z,xg),
R3 4=2

where the summation includes all noble-gas electrons.
The coordinates (x&yzz&) and (x;y,z;) are measured from
the nuclei of the alkali and noble gas, the z axis being
coincident with the intermolecular axis. According to
perturbation theory the ground-state eigenfunction,
corrected to include terms erst-order in V', is

IO)=up(1)up(2, 3 . u)

, ( ul v'loo&
up(1)u„(2, 3, u), (9)

«k

where ~ and k refer to excited noble-gas and alkali states,
the prime on the summation indicating that the ground
state (gk)= (00) is omitted from the sum. The only
alkali states of importance in Eq. (9) are the erst excited
(resonant) P states. For this reason, those states to
be strongly connected to Io) by the spin-orbit and
K L operators are, likewise, product alkali resonant
P-excited rare-gas states. That is,

(OOI V'I.»(.1ILI g'1'& (.'1'I ( pyric) (E,'/r)L~I. '1"&(g'1"
I
V'I 00&

v= 2
(E„+E)P

(10)

where &, ].', agd i" stand for alkali resonant P states, ~ and I~.
" for noble-gas excited states having energy E„,E is

the alkali resonance energy and E,& is electric 6eld produced by the alkali positive ion acting on the valence electron.
enoting the alkali resonant P states by (1,,1„,1,) and the relevant noble-gas states by (g„g„,g,), the summation

in Fq. (10) can readily be reduced to

(ool v'I "1.&(1.I ( p&/2«c)(E i/r) I
1.&(g*1 I

v'Ioo&
v=2

Kz (E.+E)' (10a)

2 AEp;,n(R)) E„(res'P)~
'(E)=——

9 E+Ip ) 8+I, ~
(13)

and the London dispersion energy for alkali —rare-gas
systems is'

Substituting into Eq. (13) the appropriate values of
the dipole-dipole dispersion energy, Cp/bp' (s—ee Table
I), along with E„(5'P)(=0.03 eV), E, and Ig

(ool v'lg1&'
aE„.,(E)=—Q E+Q

Inasmuch as the 6ne structure splitting of the alkali replaced by the noble-gas ionization energy I2,
resonant 'P states is

E„(res 'P) = (3ppk/2mc)(1,
I (E,r/r) I

1,& (11)

(ool v'lg, 1,&p

(12)
E„+g

we obtain, assuming that all E, of importance can be

(7(bp))long range= g.g X1~
is obtained for the Rb—He system.

'H. Margenau, Rpv. Mod. Phys. 11, 1(1939).
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AE, ., (bo)
A(bo) = — (bo/~o),

(E~g) &/s
(16)

where LIE,., (R) represents the short-range interaction
energy, EII is the ionization potential of hydrogen, and
ao the first Bohr radius. The short-range interaction
energy has been calculated (approximately) for the
Rb-He collision (see Table I). Thus, the numerical
value of y(bo), found through straightforward applica-
tion of Eqs. (15) and (16), is:

('Y(b0))short range = 1 1X10

to be compared with Eq. (14).

(17)

We now consider eigenstate deformations arising from
short-range interactions. Here, alkali excited states
other than the resonant P states are important. As a
matter of fact, were all alkali excited (bound) states
equal in energy, the short-range Coulomb and exchange
interactions would lead to alkali deformations local to
the rare-gas atom, but vanishingly small elsewhere.
Hence, spin-orbit coupling in the field of the Rb nucleus
would be virtually nonexistent, for in the vicinity of
the Rb nucleus, the valence electronic state would be
almost entirely S like in character. A more realistic ap-
proach consists of saying that the resonant P states
have energy E, while all other excited bound states have
energy E, , taken to be the mean value of the alkali
ionization potential and E (for Rb, E=1.58 eV;
E, =3.38 eV). Then, if we denote the resonant
P-wave amplitude in the collision-deformed alkali
ground state by A, the matrix elements (O~L~X) of
Eq. (7) are proportional to A., whereas the elements
(X

~
(pp/ksrtc) (E; x p,) ~

0)are proportional to A(1—E/E, ),
the "uncompensated" P-wave amplitude near the Rb
nucleus. The coupling, y(R), found through straight-
forward application of Eq. (7) is

(7(R))short range

= —,'A(R)'(1 —E/E, )E„(res 'P)/E, (15)

therefore.
To find the proportion of resonant P state mixed into

the greund-state eigenfunction of the alkali through
short-range interactions, a variational calculation is
employed. The alkali ground state is thought to consist
of A parts resonant P, state to 1 part undeformed
ground state (that is,

~ 0) ~ No+Alt ). The parameter A

is adjustable, to be chosen so as to minimize the total
energy of the biatomic system. In the Appendix, it is
shown that, for R=bo, the total energy is minimized
when A. is given by

a Slater determinant, as follows:

~(1) ~(1) " ~.(1)
p

1~'~'
~t(2) ~.(2) " ~-(2) .I!) ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~() ~() " e-()
(18)

(y(R))overlap sA P So~Jr „Eso(K)/E,

where the summation is over all P-state subshells of
the rare-gas atom. The quantities So„, and Sj,„. are
overlap integrals involving the undeformed alkali
ground- and resonant P;state orbitals, and E.,(g) is the
calculated" spin-orbit splitting factor for the zth rare-

For simplicity, we shall neglect writing the spin-orbitals
of the Rb core electrons, letting p& represent the Rb
valence electronic orbital while ps g„are those of the
rare gas, which we consider to remain undeformed
during collisions. Consider, for the moment, that part
of ~0) involving the undeformed S-wave contribution
to pr. Then L, operating individually on each term in
the expansion of the resulting determinant, yields zero.
Hence, as before, it is necessary to take into account
the deformations in Pt caused by the interatomic
interactions. '

The contributions to y(R) arising from spin-orbit
interactions in the Geld of the alkali ion have already
been calculated above; only minor changes are now
introduced by taking into account atomic overlap. How-
ever, in accounting for overlap, we m.ust also consider
spin-orbit interactions in the field of the noble-gas atoms
The calculation is straightforward; only a brief outline
of the procedure is given here. We assume, as before,
that gt is well represented by No+AN4. We then
compute the deformations in tt t caused by the K.L
perturbation. (The latter are finite, of course, since
LNt, &0.) At this point Pt, modified so as to include the
K L-induced deformation, is orthogonalized to the
rare-gas orbitals through the Schmidt orthogonalization
procedure. The spin-orbit energy is then simply the
expectation value of the spin-orbit operator summed
over all (orthogonalized) orbitals. Since the rare-gas
orbitals are paired and therefore yield no net contribu-
tion, the spin-orbit energy reduces to the expectation
value on gt (after having been modified to account for
the K L perturbation and orthogonalized to the rare-gas
orbitals). Upon identification of this energy with the
expectation value of 3'.,gf', the following expression for
7(R) in collisions between the alkali and He, Ne or A
atoms is obtained:

2. Overlap Effects

We now examine the inBuence of overlap in spin-orbit
relaxation. To correctly account for these effects, we
must first write the electronic ground state (of Rs) as

"This conclusion is independent of whether or not we orthogo-
nalize @r to the rare-gas orbitals (through the Schmidt orthogo-
nalization procedure) before operating with L, as can easily be
seen if one works with the complete determinantal wave function
at all times.

"D.Y. Smith, Phys. Rev. 133, A1087 (1964).
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gas subshell. Thus, in Rb—He collisions,

(7(bp))overlap=0 y (20)

since He has no I-'-state orbitals. For Ne, however,
Eq. (19) yields a nonzero result. Through arguments
similar to those employed in the Appendix, it can be
shown that

1
Sr...= (E/EH)'t'Sp„„

ClGO

(21)

where e is the logarithmic derivative, with respect to r,
of the Rb 55 orbital at interatomic separation R
(aup=0. 38 for all E values of interest). " Substituting
Eq. (21) and A as given by Eq. (16) Lusing the ap-
propriate value of AE, ., (bo) from Table If into Eq. (19),

(v(&o))overlap 1 7X 10 (22)

IV. CROSS SECTIONS FOR SPIN-ORBIT RELAXATION

In obtaining estimates for the spin-orbit relaxation
cross sections, the classical path approximation will be
used. Although the corresponding quantum mechanical
calculation is straightforward, this step is not justi6ed
at the present time. For classical paths, assuming all
collisions to occur with mean relative impact velocity V
the cross section for relaxation is simply

o.=- (47r/3) bdbp+(b)', (24)

~ The Rb valence electronic wave function used is that given
by Callaway and Morgan (J. Callaway and D. F. Morgan, Jr. ,
Phys. Rev. 112, 334 (1938)j and Brown's LF. W. Brown, Phys.
Rev. 44, 214 (1933)] analytic wave functions for Ne have been
used.

is obtained" for Rb—Ne, which compares with the short-
range contribution for this case,

(7(&p)).h-t -.R.=3 3&&10 ' (23)

From Eqs. (14), (17), (20), (22), and (23), we con-
clude (a) that deformations caused by long-range
Coulomb interactions lead to negligible spin-orbit
couplings and (b) for Rb inert-gas collisions in general
the most important spin-orbit coupling appears to take
place in the alkali-ionic field, making overlap effects
secondary in importance. Similarly, for rare-gas-Cs
collisions, the same conclusions are probably true. For
the lighter alkalis (Li and possibly Na), however, the
situation presumably would be reversed, in that spin-
orbit splittings are very much less for those atoms than
for Rb or the P-states of the heavier noble gases.
Finally, it should be noted that spin-orbit depolarization
cross sections in I i—He and Na —He collisions are proba-
bly very small indeed, in view of the fact that p orbitals
are absent in He, and the electric fields involved are
themselves very small. The observations of Anderson
and Ramsay' tend to support this conclusion.

a factor 2/3 appearing in the above expression as a result
of spherical averaging. In Eq. (24), p+(b) is a phase
shift governed by X,«', associated with collisions
characterized by impact parameter b, in which KQ,
=+ (5K/2). It is given by

0+(&)= (&/2)
collision

«(v(t)/1(t)) (25)

with the integral over time taken for classical orbits.
For order of magnitude estimates, we approximate the
integral in Eq. (25) by

ollision

bo&b=0
dt y(t)/I(t), (26)

y(bp)/m-Vbp, bp ~&b

"For He, hydrogen-like orbitals with eGective nuclear charge
Z=27/16 are used. See. L. Pauling and E. B.Wilson, Irrtroducttorr
to QNuntum 3fechanics (McGraw-Hill Book Company, Inc. , New
York, 1935), pp. 184-185.

m being the reduced mass of the collision pair. This
approximation is reasonable, since short-range inter-
actions fall oQ rapidly with intermolecular separation,
the integral being relatively negligible for collisions
which are not hard (b)bo). Moreover, the classical
equations of radial motion are somewhat identical for
all b(bo at room temperature (centrifugal terms being
unimportant) and at b=bo we know y(bp)/mVbp to be
a good approximation to the integral. Substituting
Eqs. (26) and (25) into Eq. (24), taking account of the
fact E=mVb,

~ = (~(bp)'/12)~~' (27)

is obtained, 0&; being the gas kinetic cross section, equal
to ~bp'. Because of the disappearance of V from Eq. (27),
the cross sections are, in this approximation, inde-
pendent of the collision velocity. Hence, the result
Eq. (27) can be derived without the assumption of mean
thermal velocities.

The short-range interaction energy at the kinetic
radius has been calculated explicitly for the Rb—He
collision, "with the approximation fr=const over the
volume occupied by the He atom Lcf. Eq. (A1), Ap-
pendix). The calculation of hE, ., (bp) for the heavier
rare gases is dificult, and will not be attempted at the
present time. Instead, to estimate AE, ., (bp) for these
cases, we shall apply the following rule of thumb: For
each rare gas —Rb binary pair, the short- and long (R '
and R ' terms, say) -range energies bear a constant
ratio to one another at the kinetic radius. Hence, by
knowing this ratio for He —Rb, hE, , (bp) can be esti-
mated for other binary pairs, provided that the long-
range force constants are known. Certainly, this pro-
cedure for arriving at DE, ., (bp) cannot claim any real
accuracy. It should provide a somewhat realistic
variation in AE, ., (bp) with rare-gas species, however.
By knowing hE, ., (bp), we now calculate A(bo), y(bo)
and finally o from Eqs. (16), (15), and (27).
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Tmr. E I. Parameters used in the calculation of the Rb
spin-orbit relaxation cross sections.

Gas bo(A)' Cq(erg cm')b C8(erg cms)b hE (bo)(eV)'

He
Ne
A
Kr
Xe

3.55
3.66
3.98
4.06
4.30

30.9X10 6

59.4
242
349
557

5.8X10 74

13.0
57.0
80.1

137

0.062
0.105
0.245
0.301
0.333

a Based on an assumed Lennard-Jones radius of 4.53 A for Rb (see text),
and tabulated Lennard-Jones radii (Ref. 14) for rare gases.

b Reference 15.
0 See text.

TmLE II. Calculated and observed Rb—noble-gas
spin-orbit relaxation cross sections.

Parameters pertinent to the numerical calculation
of 0- for various noble gases are given in Table I. Here,
the listed values of bo represent mean values of the Rb
atomic diameter (taken to be 4.53 A, the interatomic
spacing in solid Rb) and the Lennard-Jones radii for the
rare gases. "C6 and Cs are coefficients for the E '- a.nd

-dependent long-range interaction energies, after the
work of Robinson, "while AE, , (be) is the short-range
interaction energy at the kinetic radius, obtained as
described in the preceding paragraph. In Table II, we
have listed the cross sections computed from Eq. (27).
Also included in this table a,re the observed cross
sections for the depolarization of optically pumped Rb
vapor.

From Table II, it is apparent that good agreement

APPENDIX: THE SHORT RANGE P-STATE
DEFORMATION PARAMETER

The problem is to find the fraction h. of resonant
P-state mixed into the undeformed alkali groundstate
eigenfunction through short-range interactions. The
variational procedure is employed here, A being chosen
so as to minimize the total diatomic energy. The rare
gases are considered to be "hard, " in that the energies
which separate their ground and excited states are so
large as to prohibit extensive deformations. We there-
fore neglect the rare-gas deformations against those of
the alkali.

For Rb-rare gas binary pairs separated by a distance
R, the first-order interaction energy may be written, for
practical purposes,

hE, ., (R)'= (1+c (R)A.)'E'(R) jA'E
—c(R)A(1+c(R)A)A (R)E. (A1)

Here E'(R) is the calculated short-range interaction
between an undeformed (A=O) Rb and rare-gas atom,
A(R) is the sum of the squared overlap integrals,
similarly associated with only the S-wave amplitude of
the alkali groundstate, and c(R) is the ratio of the
resonant P-state amplitude N1„ to the S-wave amp]itude
no at the rare-gas nucleus. We assume that the local
variation in No and N1, is negligible over the noble-gas
volume. For Rb-rare-gas pairs, A (R)E is sufficiently less
than E'(R) and E/c' that it is permissable to neglect the
last term in Eq. (A1) as follows:

AE, , (R) = (1+c(R)A)'E'(R)+A'E (A2).
Gas

He
Ne
A
Kr
Xe

e„l,(cm')

3.8X10 '4

3.8X10 "
1.9X10-»
4.8X10 "
1.0X10 "

u.b, (cm')

6.2X10-» ~

5.2X10 "b
X10-» b

5.9X10 "b
1 3X10—20 b

(A3)

At any given interatomic separation, all parameters
(except A) in Eq. (A2) are independent of A. To
minimize E(R), therefore, we simply set its derivative
with respect to A equal to zero, with the result

c(1+eh)E'(R)+BE=0.
a Reference 2.
b Reference 1.

with experiment has been achieved, considering the
crudeness of the estimates. Inasmuch as the cross
sections involve the squares of fourth-order perturba-
tional energies (two powers in A and one each in theI L and spin-orbit couplings), it is actually quite re-
markable that the present agreement with experiment
is as good as it is. Based on the current results, it is
probably safe to say that the mechanism for spin dis-
orientation in Rb—rare-gas collisions is presently
reasonably well understood.

A.(R)= —c(R)(AE, , (R)/E). (A5)

To find c(R), we employ the following arguments.
Consider the sum

Z«I p. I
&&(& I

z
I
o&= «I p=sl o&,

where now IO) and Ik& represent undeformed ground
and excited states of the isolated alkali. Because p, is
Hermitian and

I 0& real, we have

Upon multiplying Eq. (A3) by (1+eh), we obtain

chE, ., (R)+AE=0, (A4)
or simply
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(OI p..IO&= (ia/2).

p, = —(i/5) nzPC, sg,

we obtain, using Eqs. (A6) and (A7),

P E„(OI.I7&2= y2/2. ~).

(A7)

(AS)

(A9)
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(OIsIk)'= (k'/2mE), k=1,
=0,

(A10)

Because the oscillator strength associated with the
resonant transition is nearly unity for the alkalis,
Eq. (A9) is virtually equivalent to

(A12)

holds in regions where IO) is appreciable. Accordingly,
for s= R, the ratio of I 1,) to I 0).is

~2mE»s ~ Ry ~ E y'I'
~(E)=&I

k as k~, i&E )

Consequently, the relation

s IO)= ((k'/2mE))'I'l1 ) (A11)

Combining Eqs. (A12) and (A5), we Anally obtain for h.

R AE, ., (E)
A(R) = —— (A13)

~o (E&Ir)"'
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The properties of a one-dimensional system of degenerate electrons coupled to long-wavelength phonons
are investigated. The equivalent model Hamiltonian of Tomonaga, which describes the electrons by density
waves, is diagonalized to normal modes. These are calculated for the Einstein model and constant coupling,
and used to get the ground-state energy. A physical interpretation of the model is given. The breakdown of
the system for strong coupling is discussed. The many-body perturbation theory is used to assess the validity
of the Tomonaga model. The electron-phonon ground-state energy diagrams may be grouped in two sets as
Tomonaga and non- Tomonaga. The latter cancel among themselves exactly to a high order. The extent of the
cancellation in three dimensions is treated in fourth order and found to be signi6cant, but not exact.

1. INTRODUCTION

'HE properties of an electron-phonon system are
investigated for the case when the electrons are

degenerate and the shortest wavelength coupled phonon
has wave vector k, much smaller than the Fermi
Inomentum kf. For these phonons the wavelength is
large compared to the average electron spacing, and
the electron density Ructuations which couple to the
phonons are well-dered collective "sound" waves.
Most of the work is on a one-dimensional model; Sec.
10 discusses the possibility of extending the results to
three dimensions.

The method of Tomonaga' is used in Sec. 2 to derive

an equivalent Hamiltonian for the system where the
electron kinetic energy for momentum p is eyI pI. The
electron kinetic energy operator is expressed in terms
of boson operators which create and annihilate electron
density waves. The validity of the description of the
electron-phonon system by the Tornonaga Hamiltonian
is discussed using Tomonaga's results, and an extension
is given which is proved by perturbation methods in
Sec. 7. The physical interpretation of the boson kinetic
operator in Sec. 3 splits the operator into two parts.
The erst gives the Fermi-Thomas energy of degenerate
electrons with long-wavelength density oscillations; the

*Work supported in part by a DuPont Research grant.
t Leeds and Northrup Foundation Predoctoral Fellow.
' S. Tomonaga, Progr. Theoret. Phys. (Kyoto) 5, 544 (1950).

second is the energy of the collective motion in these
oscillations. We may consider the description to be a
dynamical Fermi-Thomas method which accounts for
the correlations in the long-wavelength motions of the
electron gas.

The Tomonaga Hamiltonian is diagonalized by a
canonical transformation in Sec. 4 into a set of inde-
pendent harmonic oscillators, three for each wave
vector when the electron spin is included as a variable.
One of the independent modes is a spin density wave
whose frequency is unaffected by the phonons, because
it leads to no change in the electron density in space.
The dispersion curves of the oscillators are calculated
in a speci6c model: Einstein-model phonons of fre-
quency or, and the electron-phonon vertex matrix
elements gs taken as constant=g for

I kI (k, and zero
for IkI)k, . When Qs=nfIkI is not close to co, the two
other displaced normal modes contain a phonon and a
density wave with no spin wave, one of the modes being
mainly a phonon and the other mainly a density wave.
For ef I

k
I

close to co, neither mode is mainly phonon or
density ft.uctuation. The mode which is a phonon
(density wave) for Q&((~ becomes a density wave
(phonon) for Q&))co.

The ground-state energy ET of the system is plotted
against the coupling strength g and the cutoff mo-
mentum k,. It is shown that in the general case, E~ is
analytic in the coupling constant, so that perturbation


