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screened potential were calculated and compared with
the result of exact phase-shift calculations, R,„.Table
III lists these results in detail and permits the recogni-
tion of the following:

(1) The Moliere approximation renders R by Eqs.
(15) and (16) with an error of the order $ fEq. (5) and
Table Ij.

(2) The classical approximation renders R,t„. by
Eqs. (22) and (23) with an error which is comparable to
that of R for scattering angles larger than 10'.

(3) The large-angle approximation renders RL.s by
Eqs. (25) and (26) with errors generally larger than
of Re&ass

(4) The 6rst-order Born approximation gives values,
Rg, , the errors of which exceed those of all the other
approximations. Even for the light element Z= 29 and
for small angles the errors are larger than 10%

ACKNOWLEDGMENTS

We are indebted to J. W. Motz for numerous discus-
sions and for pointing out to us the need for rather
simple and yet suKciently accurate calculations of the
elastic electron-scattering cross section.

We would also like to acknowledge the valuable
assistance of R. L. Scott in preparing the program and
performing the computations.

P H YSI CAL REVI EW VOLUME 136, NUM B ER 6A 14 DECEMBER 1964

Analytical Relativistic Self-Consistent Field Theory*

MIRosLAv SYNEK

Departntent of Physics, DePartl University, Chicago, Illinois

(Received 25 March 1964)

The analytical self-consistent field (SCF) theory, based on the relativistic Breit equation generalized for
many particles, was developed for closed-shell systems. The relativistic SCF equations, both of the absolute
and of the expansion method type, were derived in the four-component spinor representation. The Breit
operator was considered in the first-order perturbation theory. The formulas for the relativistic atomic inte-
grals were derived in terms of simple functions.

INTRODUCTION

' 'N this work the relativistic Breit equation is eon-
' ~ sidered generalized for many-particle systems. Then
the relativistic self-consistent field (SCF) theory for
closed-shell systems is developed, partially using an
analogy with the expansion method" of the nonrela-

tivistic theory. The applications' of the expansion
method encourage such an attempt at a relativistic
extension.

While this work was outlined, ' an approach related
to the numerical SCF method appeared in the litera-
ture. ' Recently, another approach was made. '

*The work was originated at the University of Chicago,
Chicago, Illinois.' H. A. Bethe and E. E. Salpeter, in Encyclopedia of Physics,
edited by S. Fliigge (Springer-Verlag, Berlin, 1957), Vol. XXXV;
Sec. 38.' C. C. J. Roothaan, Rev. Mod. Phys. 23, 69 (1951).

s C. C. J. Roothaan, Rev. Mod. Phys. 32, 179 (1960).
4 For further references see, e.g., M. Synek, Phys. Rev. 131,

1572 (1963);133, A961 (1964); C. C. J. Roothaan and M. Synek,
ibiti 133, A1263 (19.64).

A brief notice (by M. Synek) appeared in a circular, Division
of Physical Sciences, The University of Chicago, 1961, p. 25
(unpublished). A version of the presented work was deposited as a
Research Report No. SYi, Department of Physics, DePaul
University, Chicago, Illinois, 1963 (unpublished). See also M.
Synek, Bull. Am. Phys. Soc. 9, 563 (1964).

I. P. Grant, Proc. Roy. Soc. (London) A262, 555 (1961).
~ G. L. Malli and C. C. J. Roothaan, Bull. Am. Phys. Soc. 9,

101 (1964).

GENERAL CONSIDERATIONS

The validity of the Breit equation for two electrons
has been proved both theoretically' and by practical
applications. ' lt is quite plausible to assume that even
in a many-electron system mutual interactions between
electrons can be approximated by interactions within
all possible pairs of electrons where in every pair only
the two-electron Breit interaction is considered. Similar
although simpler consideration was performed already
by Swirles' in an atomic case, by going from the Dirac
equation to the approximate many-electron relativistic
equation (while omitting the Breit operator). In the
molecular case the influence of nuclei can be approxi-
mated as an external field. "

Hence we introduce the generalized Breit equation for
a system of X electrons (and M nuclei) as follows:

N (~" r"")(~".r"")
C 'C U, (1)

yP" 2

' G. Araki, Proc. Phys. Math. Soc. Japan 19, 128 (1937).
' B. Swirles, Proc. Roy. Soc. (London) A152, 625 (1935).
"K.S. Viswanathan, Proc. Indian Acad. Sci., Sec. A 50, No. 1

(1959).Diatomic molecules are considered.
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where

H"= —eip(r")+P"mc'+n" $cp&+eA(r")j.

(2)

which will be called the generalized Swirles' equation
(scalar and vector potentials of an "external" field in-
cluding the potentials of all nuclei are now included).
Equation (2) can also be written as

BCpUp= EpUp, (2')

where the quantities 3Cp, Ep, and Up are the zeroth-ap-
proximation Hamiltonian, "electronic" energy, and wave
function (with 4N spinor components), respectively.

The goal of this treatment is to find a relativistic
analogy to the SCF expansion method for the solution
of Eq. (2) and, using an obtained approximation to the
wave function Up, to find the correction due to the
generalized Breit operator 8 by the first-order" pertur-
bation theory.

Let us introduce the irth relativistic (atomic or
molecular) orbital spinor for the ttth electron as follows:

Here the notation introduced earlier' is applied as widely
as possible. E is the "electronic" energy of a system. The
wave function U depends on the positions r', r', -, r~
of the E electrons and has 4~ spinor components. The
operator H" is the Dirac Hamiltonian (considered here
for M nuclei). Dirac matrices n" and P& operate on the
spinor components of U (for the ttth electron) in the
usual way. The momentum operator p& is, of course,
given by sf—t grad". q&(r&) and A(r&) are the scalar and
vector potentials of an "external" electromagnetic field
(including the potentials of all nuclei). r&" is the distance
between the pth and vth electrons. The operator on the
right-hand side of the generalized 3reit equation (1) will
be called the generalized Breit operator and denoted by
B. If we neglect the operator 8 we obtain the zeroth
approximation expressed by the equation

is represented by one antisymmetrized product. In the
relativistic SCF we expect that the wave function will
consist of 4~ components where each component will
be a certain antisymmetrized product:

Up=C —=

4i

$4ii

fiP1 AP2 4NPN

(~ () i/s v'1pi r2ps '' 'T'NpÃ . (4)
N. . .y

M=1 2 ' 4) )

Components of C are built by letting p&, p2, , p& be
equal to 1, 2, 3, 4 for every p, independently. Obviously,
the spinor C could also be built by using ilii"„„~ instead
of It'„,„"(cf. Swirles'); then the components of 4 would
only be arranged in a diGerent order. It is easy to see
that the spinor C can also be written as

i S N

yNyN. . .y N

(5)

where the determinant is defined in the usual way except
that the product of two spinors is here always defined
as if it were a direct product of two vectors; e.g.,

fu"
As
4i,s"

.4i 4".

4"t"Itu"
4'ci"It'i s"

It.i"Pi s"

Ii.i"Pw"
4'cs Al

4"4"II'w"

The form (5) of the spinor C can also be considered as a
plausible analogy to the nonrelativistic antisymmetrized
product.

Clearly, the spinor 4„& can now be treated in many
respects in the same way as the nonrelativistic molecular
spin orbital2 and a number of analogous statements
could be proved.

Now we assume that

«&

«2
«

«3

«4
Itt

the p,th component of this spinor is

(3)
0'„+4),dm = 8,), ,

where de is the one-electron volume element and

+a = (4'r9P~24'~sf'a4) y

P,p„"=P.p,(x",y,s ); p—„=1,2, 3, 4.
Now let us consider a closed-shell ground state. %e

know that in the nonrelativistic SCF the wave function

"The reason for using the first-order perturbation theory is
based on the discussion given in Ref. I, following Eq. (38.7).
(This discussion does not Gnd it correct to use a higher order
perturbation for treating the Breit operator. ) Otherwise it would
not be dificult to associate Breit operators with Coulombic
electron-repulsion terms and to treat both on the same footing
by an SCF treatment; in case of the analytical atomic SCF treat-
ment the same integrals would be used as calculated at the end
of this article.

p„, being the complex conjugate of It'., ; p=1, 2, 3, 4
(barred quantities will always be understood as complex
conjugates); the integrand in (7) is simply evaluated as
if it were a scalar product of two vectors. Equation (7)
implies

C*Cde= 1;

Ep= Up*XoUpdv = C'*+oC d&=—Eoo.
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It is easy to see that

N N

Eo(=P H+ P (J„g E'g)
«, ) =1

where

g —JI .— Q II%I dp

MI ROSLAV SYNEK

the expansion method in the form

Fc„=..Sc.; (22)

F„,= X„~EX,dv, 5„= X„*X,dv; (23)

where F and S are matrices, their elements being given
as follows:

~KX JXK JKX

1
C„~ %),"—%„~%),"A~",

&pv
(13) the vector c„ is given by

E..).,= &xa =&.),=&l.=&' 'F." 'F~" %"'F—s"d&""j (14)
&pv

C~K

.C „.
(24)

clearly

JKK EKK ~

(the pseudo-eigenvalue e„ is of course a scalar) .Equations
(15) (22) form the basis for the SCF procedure applied to the

expansion vectors c„.
THE ABSOLUTE (HARTREE-FOCK) RELATIVISTIC SCF
EQUATIONS FOR A CLOSED-SHELL GROUND STATE

Applying the variational treatment to the Eq. (11)
it is easy to derive the absolute SCF equations

THE EXPRESSION FOR THE ENERGY Epp

We define the supermatrices 3 and Q by giving their
elements:

where

84K= e«%«j ~=1, 2, , N j

Ii =H+G, G= Q(J, E„);.—
(16)

(17)

d„q „=e' X„I"*X,v*—X,&X,vd~&v

gpv
(23)

(II is the Dirac Hamiltonian which could generally be
considered for M nuclei); J„and K„are, of course, the
Coulomb and exchange operators forming bases for the
integrals J„q and E„)„.4'„ is again a four-component
orbital spinor of one electron; c„ is an eigenvalue of the
operator P (and it is of course a scalar).

X„,,„,= e-' X„&*X„"*—X,&X,"dp~";
&pv

(26)

3 and Q are symmetrical to the exchange pq +-+ rs and
Hermitian to the simultaneous exchange p+-+ q, r &—+ s.
We construct the supermatrix @ by

(27)

THE EXPANSION METHOD RELATIVISTIC SCF
EQUATIONS FOR A CLOSED-SHELL

GROUND STATE

Let us employ the expansion

From a set of vectors c„satisfying, of course,

cL Scl=~ax)

we construct the density matrix

(28)

where

@„=P X,C„„~=1, 2, , iV;
@=1

(18)
N

D= P c.c„*.

With these definitions it is easy to show that

(29)

xy]

X —== x
u xy3

x@4

is a four-component basis spinor satisfying

F=H+D, (30)

where F, H, and D are to be understood as rearranged
(F and H by rows, 0 by columns) into the form of
supervectors. (H is given by H„,=J'X„*HX,dv. ) Then,
considering supervectors (all by rows),

where

X„*X„dv= 1, (20) L»= 2 Z(H.+")= 2(H+F)'D.
«=1

(31)

Xy = (XylXy2Xy3Xy4) ) (21) DEFINITIONS OF SOME INTEGRALS BASED
ON SPINOR COMPONENTS

m is the total number of basis spinors, ns~E; C„„'sare
thecoefficientsof expansion. Byapplying the variational Denoting by X»& the pth component (p=-1, 2, 3, 4)
procedure we can easily derive the SCF equations of of the pth basis spinor (p=1, 2, , nz) for the ilth
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electron we introduce the following notations:

Xup"Xq "d&")

%l pq pz= Xqvp"rp(rP)Xqzzdii" v

+z, qvq, po
= Xpp"Pz"Xqz"dpi" v

(32)

To define in Eqs. (36) and (37) the summation operators
over spinor components let us consider some spinor
quantity, say, X)„.Then we define

42' &pp—= Z &pp
p=l

+pp= +11++22 +33 +44i
p

(38)
similarly for y and s,

Sz „q pz= XqvpPAz(t")Xqz"dpi",

+pz= +23+ +41 j +pz= +14++32j

similarly for y and s; +pz= +13 +24+ +31 +42 ~

—X X X "X "d$ "'
&pv

hdqrs,

po rqp
=

ZPvyPv

Xyp"Xq~ Xrr"Xs~"d5 ")
ygv 3

zy, hdqrs, porrp=

(39)~qvq, vz = e E E +pqvzpp«j,
p 0'similarly for any other pair selected from x, y, s, pro-

vided that x&" means the x component of r&", etc. ; (40)Xyq, rs ~ ~ ~ ~&ysrq, p po e ~

p 0'

S+ 3vqvz pzvp: (Q+ 0 r ) XivpXqz Xvv Xzp d'V
v (35)

FIRST-ORDER APPROXIMATION IN TERMS OF
SPINOR COMPONENT INTEGRALS

33 [In electronic structure computations the rest energy
213c2 of an electron in Eq. (37) could be appropriately
subtracted. ] In addition to the Eqs. (36) and (37),
we have

similarly for any other pair selected from the three
operators

0+~, 0 ~, and 0„
According to the first-order" perturbation theory,

the total energy E is given by

where
8 8

&i ) Ooj"=
Bx" Byl'

where

E=Ep+AE,

AB= c*Bcdv )
ZEROTH APPROXIMATION IN TERMS OF SPINOR

COMPONENT INTEGRALS
N

&=2 2 &""

e' — (np rp")(n" rp")-
42P 42"+-

2rpv (rpv)2

The zeroth approximation is outlined by Eqs. (18),
(22), (29), (30), and (31). [The difference between A'3

and Zoo is caused mainly by the correlation energy which
is comparatively smaller than the relativistic effect for
medium and heavier elements. "We are neglecting the
Lorentz noninvariance of Eq. (2).j

The integrals occurring in this approximation can be It is easy to
expressed in terms of spinor component integrals.

(42)

(43)

(44)

~qvq=Z &qvq. ppi
p

Hpq= e P ttivq, pp+233C P Spq, pp
p p

+(2 +P )[e(a', ,„q „)+e(e.,„q,p.)]
po' po'

+3(E+ 2 )[e(+w, pq, pv)+e(~w, qvq pv) j

(36)

where

8 ),
—— 4 ~ 4)," B~"0 ~%),"de~"

v ppvQ pQ vd~jllv

(45)

(46)

(47)

~ A. Froman, Rev. Mod. Phys. 32) 317 (1960).

+Z [e(6 z, ivq, p )+e(+z,pq, pz)7 (37) After deriVing ezpliCit farmulaS fOr Bi,zi and 82,.1 and
after some rearrangement of intermediate expressions
in terms of integrals (34) into integrals (35), we finally
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obtain the expression

e x m
2

C Cg(C Cg —C Cg)
4 «)i=i pqr s=l

X[2(4 g-++ goo)~„...,.,„
Po', TP PO', T/P

Po', TP
+&Oo, hdqrs, porzp 2g ~ ~&+—,hdqrs, po Tzp

Po', T/P

+ 2+' ++o,.„,.„+P-" /Il o,,o...o.„)]; (4g)
ptT, Tp Po', T/P

the sums (summation operators) are to be understood
in the sense of the following example:

(49)
Po', TfP Po' TIP

BASIS SPINORS AND THE NUCLEAR POTENTIAL

The question arises what kind of basis spinors (19)
should be used for computations. If we used exact solu-
tions of the Dirac equation then the evaluation of corre-
sponding integrals over hypergeometric functions would
be rather tedious, particularly if we consider voluminous
expressions arising from linear combinations for many-
electron systems. It seems to be plausible to use Slater-
type orbitals for the components of basis spinors; then
the absolute relativistic SCF solution can be approached
by taking sufficiently large set of basis spinors. "Using
Slater-type orbitals would enable the use of experiences
obtained in computations of nonrelativistic integrals.

The unnormalized components of the basis spinors
(19) will be denoted by 24&, N2, No, and 244, we shall use
for them the following expressions":

i =l+2;

j=l—2,'

I =[(l+m+l)/(»+1)]'"g(r)I'~, --/(~, ~),
242 —[(l—m+——-', )/(2l+1)]'"g(r) V/, +»2(8', q),
zzo= [(l m+2)/(2l+3)] if(r) V,+, ,/2(+ q)

244 = —L(i+m+ 2)/(2l+3)]'"zf(r) I'~+~,-+»2(~~ o ) ~

I = [(l—m+l)/(2l+1)]'"g(r) I',-- (~ o )

=L(l+ +l)/(21+1)]'" ()I',-+ (~, ),
No= —[(l+m ——,')/(2l —1)]'"zf(r)&& 1, —1/2(d, q),
244= [(l m 2—)/(2—l 1)]'—'if(r) V~ ~, +&/2(P, y).

(50)

25i/2.'g= fe "'&"

el= [1+(«/vl)'] '", »=(1—~'Z')'" (521)

f= —[(1—sz)/(1+ s2)]'/2[(A/2+2)/X2]g, s2= {1+[«/(1+pe)]2) '/', 1V2= [2(1+»)]'/2. (52.2)

2P,~2. g =re &»r

f= —L(1—s )/(1+ sz)]'"P' /(& —2)]g (52.3)

s = [1+(«/'yz)2] —4/2 y2 —(4 422Z2) 1/2 (52 4)

In these expression j, ns, and l are the quantum num-
bers of the total angular momentum, of the s component
of the total angular momentum and of the orbital
angular momentum, respectively. F'&, (8,p) is a usual
spherical harmonic of the polar angles 0 and q. r is the
distance of an electron from the nucleus. f'„,. is an effec-
tive exponent depending on the principal quantum
number n and on j.Z is a nuclear charge. n is the fine
structure constant.

In Eqs. (52), each function f(r) is approximated by its
function g(r) multiplied by a proportionality constant
obtained from an exact Dirac solution by a reduction
to the zero distance from the nucleus. This approxima-
tion is justified by the fact that the greatest differences"

between the relativistic and nonrelativistic orbitals
occur for very small distances from the nucleus, and by a
computational convenience. Equations (52) are actually
suggesting only initial trial quantities for an SCF pro-
cedure. In an actual computation further improvement
would be obtained by a variational optimization of the
effective exponents f'„, as well as of the proportionality
constants f/g (later introduced as 8„„;„/„s,).

For a better description of the atomic situation it is

'3 The comparison of Schrodinger and Dirac orbitals is discussed
in Ref. 1, Sec. 148.

"Approximated on the base of the exact solution of the Dirac
equation as given in Ref. 1, Sec. 14; for "higher" spinors see
W. 3. Payne, Ph.D. thesis, Louisiana State University, 1955
(unpublished).
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recommendable to consider a finite size of the nucleus
with its specific nuclear potential. "Then it is possible
to justify the use of "nonfractional principal quantum
numbers" used in our approximation in terms of Slater
type orbitals. "The introduction of the specific nuclear
magnetization and charge distribution has its import-
ance in a more. accurate calculation of the hyperfine
structure. "

Considering the calculational convenience, the form
of final formulas and the Lorentz noninvariance of
Eq. (2), it seems to be a matter of discussion if a basis
spinor should be taken as a fixed combination of two
spinors of the same j for j= /i+ s and j= I&—s, or if this
should be taken care of by an SCF expansion (as it is
assumed in this work).

CONCLUDING REMARKS

The specific case of an atomic system is treated in
the appendices.

The treatment presented in this article is, of course,
not to be considered closed or completed. It rather
developes a background on the base of which further
new developments can be imagined.

In particular, a detailed description of the symmetry
restrictions, " of the open-shell theory and of other
features, as well as an extension to molecular and solid
state systems, are subjects for a future treatment.

APPENDIX I

Now we shall consider an atomic system (without an
external field). We shall present the formulas for the
atomic integrals occurring in the final expressions both
for the zeroth and for the first-order approximation.

Every basis spinor X„will be considered as being
determined by pi„, jp, m„, I„, f'p and Z, where the first
five quantities are assigned to the pth basis spinor and
represent the usual four quantum numbers and the
effective exponent.

From the formulas (50) and (51) we can see that the
pth component of a basis spinor X„can be written as
follows:

=-~p '"C'(2 plupIp'P)@ „r',l„'r,zp(&)

Xg;„,„,(+,q), (53)

iV„'P' up—/P]up/Pjd11=1. (55)

Using (53) and (54) we find that

(2en)!
»'p= 2'I C'(i p~ pIp,

.
p) I

' (~-.p.l,zp)'. (56)
(2t- )snp+1

In order to obtain the formulas for the atomic inte-
grals in a condensed form we introduce the notation

X„p N(Z, pp)r"p——'e &p"Vl„„„-„,(8—,q),
where

N(Z, Pp)=N„'"C'(j m„l„;p)8 „;„„,;

l y p and m» are "orbital and magnetic quantum num-
bers, "respectively, describing the spherical harmonic of
the pth component of the pth basis spinor. We require
that l»~0, —l»~m»~l». , if this is not fulfilled the
spherical harmonic I'g„, „, vanishes'~ and hence also
an integral in whose integrand it occurs; our formulas
for the integrals were derived assuming that the require-
ment mentioned is fulfilled.

For the one-electron integrals the following formulas
were derived (employing the Kronecker's ll;; notation):

where u p/pj is the pth component of an unnormalized
pth basis spinor of the form (50) or (51); N„ is the
normalization factor (to be determined) for the pth
basis spinor; R is given either by g(r) or j(r); p is given
by the appropriate spherical harmonic; C' is given by the
remaining factors in the spinor component considered.

More explicitly, for S we can write

tRnpjplprpZp(r) = &npjplpzpgnprp(&)—(n . rn p-ie rpr ~ (54—)
where

Cn„,. t zp= 1 for p=1, 2

(independently of other indices);

6„„;„~,zp/1 for p= 3, 4

and its initial trial value is given on the base of formulas
(52) or their analogs for "higher" spinors. '4

The normalization factor E„ is determined by the
requirement (20), or

(I„+pi,)!
s„, ,.= 6„,.s „,, ,&(z,pp)N(z, q~)

(P +f )np+np+1
(59)

(I„+n,—1)!
'I4 , pal„, l b „, „ZeN (Z,PP)N(z,qo)''

(f +f. )np+np
(60)

'P H. H. Stroke, R. J. Blin-Stoyle, and V. Jaccarino, Phys. Rev. 123, 1326 (1961).
'6 Mentioned in Appendix III.
"A related discussion is in Ref. 1, Sec. j.4n.
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(qt +rt, —1)!
(Ps yq as= sent) naa an ~(Zapp)Ã(Zaqo)

O +./- )nn+nq

rto+rtq (l,.+m,.+1)(l,. m—,.+1)) '"
X /)t„t~, t qtq —lq 1

/o+{ q (2l,.+3)(2l,.+1)
rt,+I, (l„+mq.)(/q. —m, .)) '"-

+/)isa, lqa —1l qqq+/qa /q (61)
(2l,.+1)(2t,.—1) )

(tq„+rt q
—1)!

tP, „,„at',O'„,„,,.= qh/„„—, „,.~,N(Z, pp) It t(Z, qo)
(p +/. )nr+nq

s,+s, (q, a= +n.2)q,.a +n1))'"
X ~5 „t,, t,~ !1rtq —/q. —1 {q—

(2/, .+3)(2l,.+1)
no+rtq) (/q. Wmq. )(/q. Wmq. —1)) '"~~t..1,.-1 rtq+tq. fq— (62)
/-„+/-, i (2/, .+ 1)(2l,.—1) i

(for a point nucleus; a related expression would be obtained for a finite size nucleus);

In order to present the formulas for the two-electron integrals, let us introduce some auxiliary quantities. "
sr/(Z ~ pqrs ~ porp} —1/1+( ])tna+tqs+tr +4r](—1)anrr ansr

(2l„+1)(2/, „+1)
X IT) (Z,Pp)1I(Z, qo)g(Z, rr)1V(Z, sq ); (63)

(2/„„+1)(2l„,+1)
V,(x)=x ' '1!; (q!=0, if—i &0); (64)

which can also be written as"

C tt(t) =(tr!P!) 't +' ttg I e '"
0

dv e~e—',

a tr+P+ 1)
C-t)(t) = (1+/) !/)

)o ) j (66)

as can be seen by an induction; C(ji,js,j;mt, ms) is a Clebsch-Gordan coefficient as defined by Rose";

Ii(pqrs; po r apl l)
= {(2l+3) '[4/(t+2)+3—jV „+., 1 10,+f,)Vn„+n,+tg o+{q)C,+;t 1, ,+,+tM .+—/'. )l(/ 1+iq)3

(2l+ 1)Vnr+na l+1O r+{—s) Vn&+nq+l 2({ra+{ q)Cnr+n—a t+1,n&+nq+l 2$(—l r+{s)/(/ n-+i q)jj
XC(/ —2, l... l„,; m„, m...m—,.)C(l—2, l... /»', 00)C(l,l,„,l„;m„m, „,m—,„)C(/,l,„,/„, ; 00); (6/)

Ie(pqrs; par ap! /)

=2{Vn&+nq 1 1({ra+{q) Vnr—+n—a+l({r+1 s)Cn&+nq l tnr+na+l—D—/ ra+, l q)/(fr+{ s)j
+Vnr+na t 1(fr+{a) V—n&—pnq+t(/'n+1 q)Cnr+na t tn&+nqpt—p(—/'r,+Ps)/0 )a+{q)]j

XC(/, /q. ./„a, m~a m... mq. )C(/, /q. „/„a, 0—0)C(l,l.„,l„;m„,—m, „,m, „)C(/, /, „,/„, ; 00); (68)
I 1(pqrS; parap! l)

= { (2/+ 1)Vn&+nq 1 1(/ ra+( q) Vnr+na+t(fr+/ s) Cn&arnq l 1 nr+na+l(({ ra+{ q)l(/ r+/ —a)—j
+(2/+ 3) $4/(/+ 2)+3jVn&+nq 1 s(fp+/' q) Vnr+na~t+q—(f—r+/ a) Cn&pnq t s, nrpnagtpq[(/ ra+/-q)—/({r+/ s)))

XC(l+2, l... /„a, m„a m...m,.)C(l+2, —/q. , /oa, 00)C(l t,„,l„„.m„,—m, „,m, „)C(ll,„,l„„.00). (69)

tq The functions V;(a) and C t)(t) were also used for the nonrelativistic treatment. See, e.g., C. C. J. Roothaan, L. M. Sachs, and
A. W. Weiss, Rev. Mod. Phys. 32, 186 (1960).

"C.C. J. Roothaan (private communication).
~ M. E. Rose, Angular Momen4um (John Wiley R Sons, Inc., Near York, j.957).
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For the two-electron integrals the following formulas were derived":
l=mln(lpp+lga, l$ /+lsd)

+gll'P IplTTQ p ptl4yp, slyr, stpa+slgy +(~y p'Il~~y Pp+ P)'
i=max()

leap

—lqz), ) lp&—
lpga) )

Ip(Pqrs; parp~l); (70)

+a/, pp«, poly ~mpp+m«mq, a+myq+map +(~j ppp j par p)
i=min(l»+l«+2a, 4,+l&+)

&& p p&» aI (ap; rs; r&p~l)Ia(pqrs; po'&y~l), (71)
k~1,0,1 i=max(l leap

—lyre(+2& p I lrr 4@i)

where np can beconM any of the combinations ++, ——,00, +—,+0, —0, and the summation over»& (71)»
e6ned to be equal to zero if the upper limit becomes smaller than the lower limit The explicit expressions for

the coe&cients a&(np; rs; rp~ l) which will now be written. (for brevity) as a&(o'p), and the exp«ssions f» m tJ

are as follows:

18++ 2 )

mpp=O;

m+ =0;

.,(++)=[(»+1)(»+3)]-[ II (l- -+ "+')]'"'
i=1,2, 3,4

,(y+) = (2l+.1)—&[(2l—1)—~+(2l+3)—'][g (l+ „,—m„—i)(l—m„+m.,+1+i)] ' ("2 1)
i=0,1.,(++)=L(»+1)(2l—1)]-'[ II (l+m--m" —i)l'"

i=0,1,2,3

a ~(——)= [(2l+1)(2l+3)] '[ H (l+m, ,„—m, „+i
i=1,2,3,4

gp( ——)= —(2l+1) &[(2i—1) ~+(2i+3) '][/ (l m„,+m—,„i)(l+m—„, m, „+1—+i)]'" (72.2)
i=0,1

g, (——)= [(2l+1)(2l—1)]—'[ g (l m„,+m—,„i)]'"—
i=0,1,2,3

a ~(00)=[(2l+1)(2l+3)] '[ g (l+m„,—m, „+i)(l—m„+m.„+i)]'";
i=1,2

ap(00) = (2l+1) '[(2l—1) '(l+m„—m. „)(l—m„+m, q,) (72.3)

+(2l+3) '(l+m„,—m.„+1)(l—m„+m.„+1)];
a, (00)= [(2l+1)(2l—1)] '[ P (l—m„,+m, „—i)(l+m„,—m, „—i)]'"

i=0, 1

g (+—) = —[(2l+1)(2l+3)]—&[ Q (i+m„,—m, „+i)(l—m„,+m, +i)]'~'= —a, (00);
i=1,2

ap(+ —) = (2l+1) '[(2l—1) ' P (l m„,+—m, „i)+(2—l+3) g (l+m„„—m, „+i)]; (72.4)
i=p, 1 i=1,2

ss+p 1 j

aq(+ —) = —[(2l+1)(2l—1)] '[ g (l—m„,+m.„—i)(l+m„,—m, —i)]'~'= —a, (00);
i=0, 1

a q(+0) = [(2l+1)(2l+3)] '(l+m„,—m, „+1)'"[g (l—m„+m, „+i)]''
i=1,2, 3

ap(+0) =(2l+1) '(l+m mg )' '(l mp, +m +.1)—' —'
)&[(2l—1) '(l m«+m«) —(2l+3) '(l—+m« —m«+1)]j (72.5)

g (+0)= —[(2l+1)(2l—1)] '(l —m„,+m, „)'"[g (l+m, „—m.„—i)]'";
i=0,1,2

m p= —1j a &(
—0) = —[(2l+1)(2l+3)] (l—m„,+m, „+1)'"[g (1+m„m.„+i)5—'";

i=1,2, 3

ap( —0) =(2l+1) '(l —m„,+m, )'"(l+m„, m, +1)'—
X [(2l+3)—'(l—m +m, +1)—(2l—1)-'(l+m —m. ,)]; (72.6)

a~( —0)=[(2l+1)(2l—1)) '(l+m„, —m, „)' '[ g (l—m„,+m, „—i)]" '.
0,1,2

2' A description of the derivation is given in Appendix II.
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C(/i, /s, /; mi, ms, m) =0, (73)
unless

is valid, and unless

Furthermore,

6(/i/s/)

m=mi+ms.

C(/i, /s, /; 000)=0

(73)

(76)

unless /i+/s+/ is even. Hence the total expression for
the integral „q„, ,„,„must consist of:

(1) A summation over / only between the limits
satisfying 6(/i/s/) for each C(/i, /s, /; mi, was, m)

(2) Two Kronecker's symbols of the type 5,„,+„,
which can be contracted into one symbol.

(3) The expression of the type

t 1+( 1)li+ls+is+i4 j (77)

for each product C(/i, /s, /; 00) C(/„/4, /; 00). Since (76)
and (77) require that /t+/s and /s+/4 be simultaneously
either even or odd it is necessary to perform the sum-
mation over / in the steps of two. The formula (70) is
finally obtained with the help of the definitions (63)
and (68).

Now we consider the integral p, yq, p y This inte-
gral is of a similar type as S„,„,,„,„, except that 1/r&"

is substituted by Q &Qp&r&". We are looking for an ex-
pansion of rl"" in terms of spherical harmonics in order
to facilitate the application of the operators Q+& and
Qo". This expansion can easily be obtained" through
multiplying the expansion" for 1/r&" in terms of

"H. Eyring, J. Walter, and G. E. Kimball, Quantum Chemistry
(John Wiley 8z Sons, Inc. , New York, 1944), p. 371.

~ See Ref. 22, p. 103 and definitions (64) and (65) of this
article.

'4 Reference 20, formula (4.34).
~ For the definition of h(lil2l3) see Ref. 20, p. 36; for an explana-

tion of (74), (75), and (76) see Ref. 20, pp. 34, 36, and 42.
ii C. C. J. Roothaan (private communication)."Reference 22, Appendix V.

APPENDIX II

In order to outline the derivation of the formulas for
the two-electron atomic integrals let us start with

Syq p,„.This integral is calculated by using the ex-
pansion" of 1/r&" in terms of spherical harmonics and
hence splitting the integral into products of feasible
radial parts and angular parts. A radial part is then
calculated in a customary way. "An angular part can
be considered as a product of two integrals, each integral
taken over the product of three spherical harmonics; for
such integrals a formula given by Rose" can be used.
Then we realize that"

I egendre polynomials by

(ri'")'= (ri')'+(r")' 2—ri'r" costii'"

then we can come to the expansion

4x
b&(r" r")V& (0" i ")l' (0" p") (79)

i=a tw= i 2/+ 1—

where
(r() i

b, (r" r")= (r")'+(r")'
(y&) i+i

/ r~ /+1 r~)——+ —
I

. (8o)
(2/ —1 r~ 2/+3 r~I

Now the application of the operators Q+& and QD& on the
expansion (79) for r&" can easily be performed, using the
known formulas. "Hence every integral S p yq p y is
split into the four addends, each addend representing
an integral of a type similar to S„„,,„,„, however,
with a more complicated radial part caused by the
addends in (80). Using a similar technique as for the
derivation of the formula (70), one obtains, after a
straightforward calculation, formulas (71) and (72).

APPENDIX III

Regarding the solving of Eqs. (22) it is to be remarked
that the group theory could be utilized in a similar way
as in the nonrelativistic case. This can be associated
with a requirement that, e.g., in an atomic system with-
out an external field, the properly optimized spinors
transform under the (2j+1)-dimensional representa-
tions D"'({npy) ), j half-integer, of the rotation
group. ""Also, the "averaging out" over the subspecies
represented by the quantum number m, might be uti-
lized similarly as in the nonrelativistic SCF calculation. '-
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'0 Furthermore, as we know, the form of Eq (22) is sim. ilar to
the one for the nonrelativistic SCF expansion method (for closed
shells), which might enable a utilization of some computer routines
used in current programs.


