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Correlation-Function Method for the Transport CoefBcients of Dense Gases.
I. First Density Correction to the Shear Viscosity~
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The 6rst density correction to the shear viscosity of the classical gas is calculated using the autocorrelation
function expression. The technique employed is that due to Zwanzig suitably generalized to include dynami-
cal Quxes containing particle coordinates. If we restrict ourselves to repulsive forces, our result is in complete
agreement with that of Choh and Uhlenbeck obtained with the use of Bogolyubov's theory.

I. INTRODUCTION

HE statistical-mechanical treatment of irreversible
processes can be carried out either in terms of

time-dependent distribution functions which are the
solutions of transport equations, or in terms of frequency
and wave vector-dependent correlation functions which
involve averages over the equilibrium distribution func-
tions. These two approaches must yield the same results.
In order to obtain expressions for the phenomenological
transport coefficients (diffusion constant, viscosity
coeflicient, thermal conductivity, etc.), however, a, num-
ber of physical correspondences and approximations
must be introduced. Since these steps differ depending
on which approach is used, there has been some question
as to whether the expressions for the transport coefh-
cients obtained from the transport equation are iden-
tical to the expressions obtained from the correlation
functions.

The first step in the transport equation approach is to
develop an equation for the time-dependent singlet
distribution, the generalized Boltzmann equation, which
involves an expansion in powers of the density. ' ' This
step involves assumptions concerning the initial corre-
lations in the system. The next step is to introduce a
Chapman-Knskog expansion' for the distribution func-
tion and to associate the coeS.cients in this expansion
with the transport coefficients. In this step, it is assumed
that the system is close to equilibrium. Thus, one arrives
at density expansions for the transport coefficients.

In the correlation function approach these steps are
inverted. The transport coefficients are associated with
low-frequency and long-wavelength limits of the corre-
lation functions. ' These expressions are valid for any

density but involve the dynamics of the S-body system
in an intractable fashion. Io order to arrive at tractable
expressions, density expansions are introduced and
again one arrives at density expansions for the transport
coefFicients.

So far it has been established that, in the lowest order
in the density, the transport coefFicients obtained from
the Boltzmann equation and from the correlation func-
tion expressions are the same'4; not much has been
done to generalize these results to higher order in the
density. ' It is the aim of this paper to develop a
method which enables one to obtain density expansions
of the correlation function expressions for the transport
coef5cients. We present an explicit expression for the
6rst density correction to the shear viscosity and
demonstrate that it is identical to that obtained by
Choh and Uhlenbeck' from the transport equation.

We calculate the first density correction to the shear
viscosity of a classical gas from the correlation function
expression, employing and generalizing the technique
discovered recently by Zwanzig. ' Introduction of a
convergence factor e "(e)0) into the correlation func-
tion expression leads to an expression for the viscosity
in terms of the resolvent operator of the X-particle
system. A binary collision expansion of the resolvent
operator gives a density series for the correlation func-
tion expression, which involves singularities at &=zero.
However, inversion of this expansion gives a unique
well defined density expansion for the viscosity; the
lowest order term of this expansion agrees with the
result of Chapman and Enskog. ~ For systems with
repulsive intermolecular forces of 6nite range, the first
density correction to the viscosity is compared with the
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result of Choh and Uhlenbeck' obtained from Bogolyu-
bov's generalized Boltzmann equation, ' and complete
agreement is obtained. '

In the next section the correlation function expression
for the shear viscosity is re-expressed in terms of the
resolvent operator and the Fourier transform of the
configurational distribution functions of the equilibrium
ensemble. Some useful formulas related to the binary
collision expansion of the resolvent operator are estab-
lished. In Secs. III, IV, and V detailed calculations of
the viscosity coefFicient are presented. Zwanzig's method
is generalized to include dynamical cruxes which contain
coordinates. The result for the first density correction
to the shear viscosity is given in Sec. VI and comparison
with the theory of Choh and Uhlenbeck is carried out
in Sec. VII.

is the two-body potential of interaction which is as-
sumed to be spherically symmetric. We have assumed
that the potential of the E-body system can be written
as a sum of pair potentials.

In order to describe the temporal development of the
system, we introduce the self-adjoint Liouville operator
Lby

L=Lp+L', (2.8)

L'=i Q 8,;, (2.10)

where Lp describes the free motion of the particles and
is given by

Lp= —i(1/m)p~ (8/Br") (2.9)

and L' contains the effect of interaction and is given by

II. CORRELATION FUNCTION EXPRESSION
FOR VISCOSITY

Bu(r;;) (8 8)
ar, ; &ap; ap;)

(2.11)

In this section, as a preliminary to the calculation,
following Zwanzig, we shall rewrite the correlation
function expression for the viscosity in terms of the
resolvent operator and the I'ourier transform of the
equilibrium configurational distribution function.

We consider a classical fIuid at temperature T con-
sisting of E identical molecules of mass m contained in
the volume V. The well-known correlation function
expression' for the shear viscosity in the low-frequency
and long-wavelength limit is written as

In (2.9) we have used the 3X-dimensional vector nota-
tion. The quantity I(h) can be expressed in terms of the
Liouville operator in the form I(h) =e'n'I.

For later convenience we rewrite (2.2) by making use
of the time reversal invariance of the autocorrelation
function as

~(s) = Che "(II(—h))
VET p

where

lim lim r) (e),
e ~ 0+ N, V -+ co

((N/V) =constant)

rh (c)=— Che
—"(II(h)) .

VET p

(2.1)

(2 2)
where

che "(Ie "~I)
o

= (VKT) '(IG(e)I),

G(e) = (e+iL)-'

(2.12)

(2.13)

E is the Boltzmann constant and the angular bracket
means an average over the equilibrium ensemble. Here
I denotes the dynamical ftux for the shear viscosity
de6ned as

is the resolvent operator. Explicitly, (2.12) is given by

n(e)=(lrKT) ' «"Cp"IG( )Ie( p)rII p (Pt) (2 14)

with
I=Itr+Ig,

N

Itr= P x(p;),
i~1

x(p)=—P P"i~,
I~= Z f(r't),

f(r) = r*t(8u(r)/r)r&j, —

(2.3)

(2.4)

(2 5)

(2.6)

(2.7)

where &p(p) is the normalized Maxwell distribution

~(p) = (2strtKT) —st' exp( —p'/2nzItT) and p(r") is the
normalized con6gurational distribution function defined

by

p (r~) = expr —U(r~)/KT j
Cr~ exp L

—U (rN)/KT j, (2.15)

where p, is the x component of the momentum of the
ith molecule, r;; is the relative position vector between
the ith and jth particles, given by r;;= r;—r;, and u(r)

The same conclusion has been obtained by Cohen apparently
by a different method. See Ref. 5(c). Since details of his work are
not yet available, we shall not discuss his theory in this paper.

where U(r~) is the total potential energy. We have
placed the equilibrium distribution function to the right
of the resolvent operator since it is more convenient

' The resolvent operator de6ned in (2,13) is different from that
of Zwanzig (Ref. 6) since we are considering (II(—t)). This
facilitates comparison with the results obtained from the gener-
alized Boltzmann equation.
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when comparison is made with the generalized Boltz-
mann equation treatment. This is permissible since

the same pair. We now define the resolvent operator for
a system in which interaction exists only between the
particles of pair o. by

LLP(r~) II o (p )j=o

The Fourier transform of p(r~), P(k~), is defined by

where
Gs(n) = (e+iLs(n))

Ls(n) =Lo+i8 .

(2.23)

(2.24)

p(lr")= fdrNe'™"(r")

Inversion of (2.16) gives

(2.16) Gs(a) =Go GoT—Gp.

Substitution of (2.25) in (2.22) and (2.22') gives

(2.25)

The binary collision expansion of Gs(o.) then yields

(riP) — Q e ro& r&P(kN—)
P'N i~

(2.16a)

T = —8 Gs(u)Gp '

T = —Go 'Gp(a)8,

(2.26)

(2.26')

Substitution of (2.16a) into (2.14) yields

pf (e) = (VKT) 'V "P—P*-(k")
RN

N
dpNdr~IG(e)Ie'""'" g rp(p;), (2.17)

where we have used the fact that p(r~) is real. When
(2.3) is substituted into (2.12), i)(e) splits into four
terms,

n(e) )&ir(e')+r)it&(e)+r)&&(o)+r)&&(e) | (2 Ig)

where

r)r, si(e) = (VKT) '(IIG(e)Isr), L, M=K or U. (2.19)

In the following sections, we shall consider these four
terms separately.

We now present some properties of the resolvent
operator which will be used frequently. The binary
collision expansion formula for the resolvent oper-
ator is' ""

respectively.
Before leaving this section, it is useful for what

follows to mention some properties of the binary colli-
sion operator T . Zwanzig' has already noted the
following properties: (1) T is proportional to 1/V a,s
V ~~; (2) T (Ol 0) is simply related to the Boltzmann
collision operator. "

In order to investigate another relevant property of
T, we first note from (2.24) that

Gp '=Gs '(n)+8 . (2.27)

= —8is 1+ dke "e " '&"&8 (228)

For a repulsive intermolecular force of a finite range,
the integrand in (2.28) is seen to vanish for times
greater than the duration of collisions, and the integral
converges. Thus 7~2 is finite as e —+ 0 for this case.

If we substitute (2.27) into (2.26), we obtain for a= (1,2)

T„=—8„L1+G,(12)8„]

G=Go—P GoT Go+ Z' GoT GpTpGo ~ ~ ~, (2.20)—

Gp= (e+iLp) ', (2.21)

T is the binary collision operator of the pair n (Greek
indices rr, P, ~ denote particle pairs), defined as the
solution of the equation

T = 8+8 GoT — . (2.22)

where Go is the resolvent operator for noninteracting
particles defined by

III. CALCULATION OF g~~

The quantity r)&z(e) has been considered by Zwan-

zig,"but we shall treat it here in a somewhat diGerent
manner by using the particle exchange operator. Since
I& does not contain rN, Eq. (2.17) for rf«(e) becomes

r)xir (e) = (VKT) 'P P*(k")—

&& dp I G(olk )I II &(p,), (3.1)

0 (kN
l
k'&) = V—& dr&e—f & r Oe i&' r& (3 2)

8+T Go8.;— (2 22') where we define the Fourier transform of any operator 0
and the summations in (2.20) are over all possible pairs
with the restriction that consecutive T's do not refer to

'PA. J. F. Siegert and E. Teramoto, Phys. Rev. 110, 1232
(1958).

u We frequently write G instead of G(o) for the resolvent opera-
tor. The operator T also depends on e.

io For the notation, see Eq. (3.2). In this connection see also
Eq. (3.25)."R. Zwanzig (private communication).
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(3.15)
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(3.17)
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The operator
(;dentical, we c

1 (1'' 2)T,s(0I ")g ' '

(3.13)

the particle

2)Tss(o
Fq(kN) dp X p'v (p,)G(01 k )

Q
—(X—1)(&

kN) (kN)tP» . (3.3)T34(0

z(e)=(~T) ',
(1+(Q—1 12 .

1
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1(p )x(pi)~ + p' '
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~
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„0 kN)), (3 5)-~k-)g(k")+ G'(
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kN=0
dpidpsX(pi)
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Ei—= e '(2' —t2i)

~2= ~"1 ~22 ~ (3.37)

and thus (3.42) becomes
(3.36)

&+W«"'(pi)x(yi) v (pi)
= —~ x(P )P(p )—~ "W"'(p )x(P ) P(p ). (3 44)

With this result and (3.32), we have

gzz = lim—gzz (~)
&~0+

The equations determining W'& and 5'~~&0 are thus
well defined in the limit as e ~0+.

Using these results, we obtain the following density
expansion for q~~

&yix(yi)'W«(pi) ~(Pi) (3 3g)

where the function W«(pi) satisfies the equation

P '8+ 'LW«(pi)x(yi)v (pi)1=x(yi)~(pi). (3.39)

where

err z =n"'+pgzrr"',

dy.x(y.) W i(p.) v (P.)
ET

(3.45)

(3.46)

Substitution of the expansion

W«(pi) =Wi'& (pi)+ pWrrrr&'& (pi)+ (3.40)

into Eq. (3.39), use of (3.35) and collecting coefficients
of powers of p yields the equations

~+W'"(pi)x(yi) P(pi) =x(Pi) ~(pl), (3 41)

&+W«'"(pi)x(yi) ~(pi)
~1+X(Pi) &P(pi)

—(~"+~i+~~)+W"'(Pi)x(yi) ~ (Pi) (3 42)

where we have used (3.41) in obtaining the first term in

(3.42). Equation (3.41) determines Wo&(pi), and Eq.
(3.42) determines W«&'& (pi). We demonstrate in

Appendix I that

and

gxx'"= dyix(yi)'W«'"(pi) v (pi) (3 47)

IV. CALCULATION OF qzv

Using the Fourier transform of ip(r), (2.7),

ip(k) — p( )r~
k irgr (4.1)

Equation (3.46) is the Enskog-Chapman result. Equa-
tion (3.47) represents the first density correction to the
Enskog-Chapman result due to the kinetic parts of the
dynamical cruxes.

(&i+~2)W"'(Pi)x(yi)e (pi) =0 (3 43) g«(e) can be expressed from (2.17) and (2.19) as

gx ii(e) = (VET) 'V ~ Q I'*(k~) V
—' P g (q)

kN
2'2 (ix(y')G(&)& """&'""' Q y(p ). (4.2)

m=1

By making use of the identity of particles, we can express (4.2) as

S—1
n«(~)=c(&&) '2 ~*(k") -Z 4(q) dy"x(yi)t G(0~ki —q, k2+q, k~-')

kN U

+l(&—2)G(0lk, k —q, k+q, k -')) g y(p ), (4.3)

where we have used (3.2). The binary collision expansion of G, (2.20) and (3.5) yields a series for gx~(e) similar to
(3.9) for grrx(e), in the form

The first term is given by

'0&&(&)= VKU (&)+g'v(i&r)+r'AU (e)+ (4 4)

"i&&'(')=' 'P'(+T) ' Z &*(q —qN'(q) — ifyix(yi) y(pi) =0.
q 2

(4 5)

Equation (4.5) vanishes since the integration over yi vanishes. In the following, we sha]1 omit terms of relative

order E '.
In obtaining an expression for qxii (~), we note that T must involve particle 1, since otherwise the term involves
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hich vanishes. Thus,

—kI, 0)
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.d r
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v ( ')dp'. (411)~ rI2 /&T)0(r») I 0) II V

lng of the p
ne

0)P (PI)+J(P2)7v (PI ~dP2VTI2(0 o PI&(PI)~(PI)~(PI) = (4.12)

e

xj
Theres c n bew

ction (321 n
ZeThe term of or ' a

111anner ln the
becomes

ewrite (4.11) asthen we may rewri e

I)v(P2)dp dP .„)/&T)4(r )10)q(P qx(PI)&(PI)(Oi VT„G.exp( —~ r, 2 (4 13)
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Thus, adding together (4.5), (4.10), and (4.13), we find

P
gzrJ(~) =-

KT
dyidy2X(yi){e ' —e 'PZ(yi)) (0~ VTi2GO exp{—u(ri2)/ET)f(ri2) ~0) y(pi) y(p2). (4.14)

As in Sec. III, the operator in the curly bracket in (4.14) is singular at e —+ 0+, but its inverse has a well-defined
limit as e —& 0+; that is,

Therefore, we 6nally obtain,

{e—'—e 'PZ) —'=a+PL+ ~ PZ+ as &~0+.

p
nz~= — &yiX(yi)'+'«(pi) ~(pi)

KT

(4.15)

(4.16)

where the function Wzo(pi) satisfied the equation,

2+(yi) Wzp (pi)x (yi) y (pi) = — dp& (0
~

VTi2GQ exp{—u (r»)/ET)4'(ri2)
~
0)+y (pi) y (p&) . (4.17)

V. CALCULATION OF g vx AND g U v

The simplest way of obtaining gU~ is to utilize the fact that for classical systems q~~ is equal to g~U, which can
be proved by making use of the properties of the dynamical Aux and the Hamjltonjan under time-reversal. How-
ever, to obtain an expression for p«which is more convenient in comparing with the result of the generalized
Boltzmann equation, we shall calculate z&z directly from its definition (2.19).

More explicitly, we can express gpz(e) as

N 2—
'gUz( ) =P'(ET) 'p 2 &-*(&~)0(q) eely"G(q —ql k~)~ 1+ & ~X(y ) 0 v (p')

q kN 2
(5.1)

where we have used (4.1) and (3.2). As in the preceding sections, use of the binary collision expansion formula for
G, (2.20), yields a series expansion for gzz (e) in the form

(5.2)
The first term is given by

'QUz (~)=p'(ET)—' P' &*(q, —q)f(q) ~yidy2g(q, —q)x(yl) p(P1) p(P2) (5.3)

This is finite at &= 0+, and is omitted here since it is of order p'. The second term is

rlpz'(e) = —p'(ET) 'g' P P*(k~)$(q) dying(q, —q)(q, —
q~ {T»(1+-,'(N —2)6'»)

zN

+(N—2)(T +T )(1+2 '6' ))Il )g(&") (y) II (P')

The only terms in (5.4) which contribute to the first density correction are those with a factor e ' for which we
must have jk~=0. Therefore, only the term involving T» contributes and we obtain, noting that J'dyx(p) p(p) =0,

n«'(') = ' 'p'(ET) ' 2' P(q) g(q q) T»(q ql 0)x(yi) w(Pi) w(P2)~pi~y2+0(e'p')

A similar but more involved analysis gives for gpz'(e) (see Appendix III),

~~z'(~) = ~ 'p'(ET) ' 2'4 (q) g(q, —q) Ti2(q, —ql0)~(pi)x(pi) p(Pi) 9 (P2)+o(~ 'p') (5.6)

where we have used (3.23).
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Adding (5.3), (5.5), and (5.6) together, we find

rl&ir(o) = —P'(ET) ' 2' p(q) a(q, —q)Tis(q, —ql0){o o P~(pi) jX(pi) &P(pi) o (ps)dpidps ~ (5.7)

The operator in the curly bracket is the same as that in (4.14). We again take its inverse, consider the limit as
o —+ 0+ and make use of (3.41) to obtain in the limit o ~ 0+

~«= —P(ET) 'Z'4(q) g(q, —q)T»+(q, —qlo)w"'(Pi)x(Pi)o (Pi)o (Ps)dpidps. (5.8)

%e now turn to g~~, which can be written as

7)&ip(o) =2—'p'(ET) —'VQ (r»)G P '&P(r;i)) . (5 9)

If we use (2.17), (3.2), and the Fourier transform of |t (r»), (4.1), this becomes

st»(o)=2 —'P'(VET) —'p P*(k ) p' p' p &p(q)p*(q') dp (q —qlGlk;+q', ki —q', k ')g &P(p;). (5.10)
gN

As before, corresponding to the binary collision ex- where
pansion of G, (2.20), we obtain a series for q»(o):

( ) 0( )+ i( )+ 2( )+.. . (5 11) ~(»)=ti+(pi)x(pi) & (Pi)+ dps(0 I
VT»Go

Because q, q'40, rt&T«o(o) has no singularity at o=0+.
The term having a factor o ' in rtpr&'(o) vanishes because
it involves go P(—q', q')iP*(q'). Thus the terms singu-
lar in e appear only at higher powers in p, and we cannot
expect qUU to contribute to the 6rst density correction
to viscosity. Therefore we shall neglect this term.

VI. FIRST DENSITY CORRECTION TO THE VISCOSITY

Collecting together the results of the preceding sec-
tions, (3.45), (3.46), (3.47), (4.16), (4.17), and (5.8), we

obtain the following results for the shear viscosity:

&&exp{—N(ris)/ET)P(ris) l 0)+

X q (p ) oo(p ) . (6.5)

In the following, we shall compare our results with
those of Choh and Vhlenbeck. For this purpose it is
convenient to express our results in terms of resolvent
operators.

First, as we show in Appendix IV by straightforward
algebra, t'(pi) can be transformed into

n=n&"+Pe&" (6.1)
t+"(»)=— dxsdxs8is{Gs(123)Go '

where g"& is the Chapman-Knskog result given by
(3.46) and pg&'& is the first density correction, which is
expressed as follows:

dp»(pi)'W"'(Pi) &(Pi)+& iEr
where ct stands for collision transfer and p, t is given by
(5.8), or

—Gs(12)Go Gs (13)Go —Gs (12)Go Gs (23)Go

+Gs(12)Go ')+(1+&p»+»s) o (Ps) o (ps), (6.6)

where dx;= dp;dr, and Gs(123) is the resolvent operator
for the system in which only particles 1, 2, and 3
interact with each other, namely,

get dpidps(0l &P(ris)GoVT»
l 0)p

&&W (p.).(').(P.).(p.) (6.3)

with

Gs(123)= $o+sLs(123)]

Ls(123)=Lo+s(eis+&ss+esi) ~

(6.7)

(6.8)

and the function W&'& (pi) =Whirr&'& (pi)+ Wx«(pi) satis-
fies the equation,

= —t~"(p,)W&'i (p,)x(pi) q (pi) —OlZ(pi), (6.4)

Next, we consider (6.3). Use of (2.25) and the fact
that

&P(r12)dr12
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transforms (6.3) into

«»|t (r»)~.o(r»)""=XT (6.9)
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form

) (r.r. 3 '—8..r') s(r ~

d finition ofr .From t ewheres r isa
we et

f the tracelessg component oZ*(») i ''f
symmetric tensor unc
defined by

(6.13)

g (r), (2.7), g

ip(r) = rr &u—'(r)/r, t

i I r with respect to r.' r is the derivative of I r wiwhere u'(r) is t e t u r
Thus, if we note that

z„. 4 ~1 2G2(12)Go 'll'"'(pi)dgylp2G2

ii, o.=2,", y, s (6.10)&&x-(ui) o (pi) o (p2)

1
(r*r &)2dD=—

10

$2 Q2Z ' dQ (6.14)" ~ rKg~ —3r r

with
2x (p) = (p "p 3 'h„,p——m (6.11)

ral is over he directions off r 6.9)where the integral is over e
becomes

10 QT

au(ri2)
~K 0' 12

10ET «~
;)x..(.,).(p.).(p. .(12)Go 'j Q W p;dy, dy2 G

Bf]2
(6.15)

g

x(pi)+x(li2)) ~o(r»)~(1 i) = — e»G2+t:{x pi

Hi2L lim oG2(pi*ri&+ p2*r2&mt(pi) =

&(exp{—u (ri2)/ET)

and into (6.19) results inrn to . . 3.24 for ti(pi) and into
to 2.26),(12) according toreplacing T»GO y-b —Hg2G2

et

+if(ri2) exp{—u(ri, )/r KT)j G2+{x(12i)+x(122))]o pi o( ) (p )if (6 21)

By ad ingu' the expression

&xA2(Pi*ri "+Po*ro")

(„) -.ri "+P2 r2") =X(ui)+X 122

X (pi)q (p2)~fx2

2Lo(pi ri 2

d 2 a an ing the terms, we rand (2.21) and by rearranging
(6.21) to

G G '(pi*ri"+po*r2")oz(p, ) = 0„6.17)&«xp —u r»)/&T) o (Pi) o (p2),

n thato vanish to (6.16), and notingwhich is easily seen to vanish to
' "+po*r2")~o(r»)7++&G2 pi rl 2 2

&&&(Pi)o(P2)dx2 (.6.23)

the viscosity issit correction to
om 6.2), (6.4), (6.6 ,

h h fi td iy(

after some rearrangement,(6.16) becomes after s
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of (2.23) in the formSubstitution o

i"+p2 r2 ) x(y

obtained fr (

SON WITH RESULTS OFVII. COMPARISON W OF
CHOH AND U

to the viscosi y
d b Chh d Uh

t correction to
lenbeck.b calculate y—u(ri2)/ET)

' Their results for the firs e s

+exp —u
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6 19 . . ()
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written

G2zL2 —1=—eG2 (6.20)
-0)—" =ET (7.1)~1 X(1 )''"(P )~(P )+~. ,
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asaki and I.s. Letters 9, 139 (1964); K. Kawasa
PM . ll 124 (1964).Ph s. LettersOppenheim, P y .
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Comparing this result with the other difference be-
tween our theory aod that of Choh and Uhlenbeck,

89K(pi) given by (7.15), we 6nd that

amt(pi)+At'(yi)W&'&(p, )x(p,)32(pi) =0. (7.26)

From (6.4) we conclude that W"'(pi) =W"'(pi).
Therefore, our result for the 6rst density correction to
the viscosity completely agrees with that of Choh and
Uhlenbeck for repulsive forces, namely,

(3.28) into (3.37) results in

dy2dy3VT» (o I o) (o I LVT23G3R3(r»)&12

+VT„G,R, (r„)3lO)&(p,) &(p,). (I1)

On the other hand, using (3.8), (3.23), (3.27), and
(3.36), we obtain

dpidp3VTi2(0 I 0)
&0)—&0)

VIII. CONCLUDING REMARKS

(7.27)

X(0I I VT236 22+ VT23jGol0) 3 (P2) 3 (P3). (I2)

The correlation function expression for shear viscosity
for dense gases has been treated by making use of binary
collision expansion techniques and the first density
correction to the viscosity has been obtained. Results
are contained in (6.1), (6.2), (6.4), (6.6), (6.15), and
(6.23). These results may be valid for attractive
intermolecular forces in the absence of bound states as
well as for repulsive forces.

For repulsive interactions with a finite range, (6.23)
reduces to (7.13), (7.14), and (7.15). In this particular
case, our result has been compared with that obtained
from the generalized Boltzmann equation by Choh and
Uhlenbeck (7.1), (7.2), and (7.3).Differences have been
found in the form of the triple collision operator and in
the term arising from spatial inhomogeneity in the
Boltzmann binary collision operator. These diGerences
are given by (7.22) and (7.15), respectively. However,
these differences exactly cancel in the equation de-
termining Wo&(pi). Thus for repulsive interactions of
finite range, the correlation function expression for the
6rst density correction to the shear viscosity is identical
to that of Choh and Uhlenbeck which is based on
Bogolyubov's kinetic equation.

In the analysis of the present paper, we have re-
stricted ourselves to the case of repulsive intermolecular
forces of finite range. However, the correlation function
method itself does not su6er from such a restriction.
Thus, we intend to extend our analysis to systems with
attractive intermolecular forces.
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APPENDIX I
Here, we shall show that the Ri and R2 terms in (3.42)

cancel each other. Substitution of (3.23), (3.24), and

Addition of (I1) and (I2) yields

Ri+R2 ——— dy2dy3VT»(0 I o) (o I I:VT»Go

Xexp{—u(ri3)/ET)6'i2+ VT23GO

Xexp{—u(r23)/ET) j I0) 32(p2) 3 (p3) ~ (I3)

and

(OI VT23G3 exp{—u(r"3)/ET} IO) &(p2) &(p3) ~ (IS)

Since these expressions have the same structure, we
consider only the first one of them in detail. (I4) can be
expressed as

dri38i3G2(13) exp{—u(ri3)/ET) 32(pi) 32(p3), (I6)

where we have used (2.26). Because L2(13) applied to
(Pi'+P3')/22N+u(ri3) vanishes, (I6) reduces to

—e ' dri20i3 exp{—u(ri3)/ET) p(Pi) 32(P3) . (I7)

Using the definition of 8, (2.11), (I7) is further reduced
to

&F3(ri3) t 8
I3 (pi) 3 (p3) . (»)

Bri3 EBP], BP3I

Equation (IS) vanishes. Thus (I4) and, by a similar
argument, (IS) vanishes and

(Ri+R2) W&'&(pi)x(yi) 3 (pi) =0

for finite e as well as in the limit as e ~0+.

Thus, (Ri+R2)W~'&(pi)x(pi) q (pi) involves expres-
sions of the form,

(Ol VT»G3 exp{—u(ri3)/ETj I0) 32(p,) c (p,) (I4)
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APPENDIX IL DERIVATION OF (4.11)

Here we shall derive the expression given in (4.11) for gx~ (p). Use of the binary collision expansion formuja
(2.20) for G in (4.3) yields

11«'()=p V(&T) 'Z 2 P*(k )N(q) x(iii){(0IZ'T-GpT~Gplki —q, kp+q, k" ')
kN

+—(A —2)(0~+ T GpTpGp~ki, k q, kp+q, k )) g y(p')dp;. (II1)

We shall restrict the summations over n and P to such pairs which are composed only of particles 1, 2, or 3, because
those terms involving more than three particles contribute to higher powers in p (at least p ). Furthermore, the
pair u must involve particle 1. Thus, (II1) becomes

grrU'(p) = p 'p (ET) P P*(ki,kp&kp)g 0(q) x(pi) (1V—2)
kIk2k3

X{(0~LTlpGp(T18+T2$)Gp+T18Gp(T12+T28)Gp]
~

kl q) k2+q& kp)

+2 '(0~$T,Go(T +T )Go+T Go(T +T )Go]~k k —q, k+q)j g ~(p~)4' (II2)

For our purpose it is only necessary to extract terms having a factor of at least p
' from (II2) tsee (4.14) and

(4.15)].The terms having a factor p ' must have either ki= q, k&—-—q and kp ——0 or ki =0, kp= q and kp= —q.
Iloth of these involve a factor p, P*(q, —q)p(q) and vanish by symmetry. For the same reason, the only non-

vanishing terms having a factor of e ' are those for which the 60 between the T operators yields a power of e '.
Thus we obtain

r1zv'(p)=p 'p'(&T) 'p p'f(q)(1V —2) X(y,){P*(k,—q, q —k)T»(0~0)T»(0~k —q, 0, q —k)
k q

Xg(k —q 0 q —k)+P*(q —k, —q+k)Tip(0~0)Tpp(0~0, —k+q, +k—q)g(0, —k+q, +k—q)

+P*(k, —k) Tip(0
~
0)Tip(0

~

k —q, q —k)g(k —q, q —k, 0)+P*(q, —k, —q+k) Tip(0
~
0)

XT»(0~ —k+q, +k—q)g(0, —k+q, +k q)+2—'P*( —
k, q, —+k—q)T»(0~0)

XT»(0~ —k, +k)g( —k, 0, +k)+2—'P*(k, —k)T»(0~0)T»(0~k —q, q—k)g(0, k—q, q —k)

+2—'P*(k q —k, —q)T»(0~0)T»(0~k, —k)g(k, —k, 0)

+2 iP*(k, k)T»(—0~0)T»(0~k —q, q —k)g(0, k—q, q—k)) g qr(p )dp (II3)

If we use (3.19) and (4.7), and note that the terms for which g= p
' vanish, we see that only the third, sixth, and

eighth terms give finite contributions, other terms being of the order of 1/iV. Thus if we interchange the particle
indices 2 and 3 in the sixth term and use the symmetry properties of the functions f(q) and f"&(k), (II3) reduces to
(4.11) of the text.

APPENDIX III. DERIVATION OF (5.6)

rlux'(p) can be written explicitly from (5.1) as

n~x'(p)=u'(&T) '2'2 P*(k")lt(q) dI "a(q, —q)(q, —qlZ'T-GpT~lk")g(k")
kN

X[1+2 '(cV—2)5'ip]x(pi) g p (p;)dp;. (III1)

We again restrict the summations over particle pairs to those pairs involving only particles 1, 2, and 3. To obtain
the terms with a factor p ', it is necessary that k~=0 and Gp between T and Tp must be equal to p '. This situation
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articles, (IIntityo p I1) becomes1

« —«)T12(«t «I

6

— (ZT)-'~'~(«) '('

e the ProPerty

x'(o)=' p
q

e equivale@13,particles . and arthe termIf e note that in t e

„king ynto accou

( )dp, (III2)

he 1 2 Pair beca

](1+2 (Pis)X(p ) U

1m& s
~

its ~ to be t

0)pl Tis 0Io)+T-('I')gU

P2 3= as &~0VT»(0 I 0) &(p,) &(ps ps)dp, dps ——0 as

III2 reduces, for o~0 to(3.23) and (3.25)], (III2 reduces, for oI see also 3.23 an

o (p')dp'T (010)(1+(P )x(p)«, —«) T»(« —«I 0)VTis' '(&T) 'Z'4(«) g(« —«'(o)=o V (III3)

h is identical to 5.6) of the text.

A . DERIVATION OF (6.6)

whic is i

APPENDIX IV.

Consider the operator
1

Cs(1)—=— d rod rod (123), (IV1)

contribution to C, (1) wern 3.15) gives no contri u
l ft f htthose terms in whi, t e ex o

writenoting athat particles 2 an

C (1)= ' T GoTp — }dr, drsTnGp{ P (IV2)

—~ ~ — 1—GoTis —GpTss]} .0
' ' ~12 0 18Q'T.GpTp — . — 1— o is1—Go g T +Gp P „p —~ ~ — 1

allslo11 fol mu

G 12 o = — GoT + Q p p
—~ ~ ~ .Gs 123)Go '=1—Q Go

drsdrs{ Tlsl

d32 andov composed 0 pf articles 1, , dover ayers comations are ov
ields

in the following, summa
'

ov coHere and in t e o, ma
Use of the binary co i

(IV3)

(IV4)

= 12 and those for whsee
'

to those for which a=12 anthe terms into those

~uGOTP ' '
0 12T+Go Q . o

—. —GonGs(123)Go '——1 Gpg
0.+120,+12

T —~
o n — T Go&Z'TGp p

—.1—GpTis]L1 —Gp P T p

'
h o./12. Namely,Here we divide

(IV5)

tain from (IV5)If we use (2.22), we obtain rom

G g g'T.GpTp— (IV6)o'= — 1—GoZ T.+ o

r nbe

123)Gp ' ———Tip

rl bracket can e

012~3 0
'=—

3 .The secondd term ind the same cur ybr ket f(IV
that

m in the curly raal to the fir mh h is ident&ca
easl y rl t ansformed y

Cs(1)=— ' —Gs (12)Gp 'Gs 23 Gpi—Gs(12)Go iGs(13)Go ' Gs o
i 23 Godrsdrs8is{GsGp ' —Gs p (IV7)

'llllt as o ~ 0+.(6.6) in the hmitiatel obtain . ih' h we imrnedka eyfrom w lc
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APPENDIX V. DERIVATION OF ('7.12)

2J-o(pi*ri "+p2 r2")=x(pi)+x(P2),

D—=G2(12)Go '(pi ri"+pl*r2")»»o(pl) oo(p2)

(V1)

(V2)

D— (12){e(pl ri +p2 r2 )+X(pi)+X(P2)}%(pl) O2(p2) (V3)

where we have used (2.21) and (7.8).
The expression D occurs in (6.23) and is multiplied on the left by 01,. Therefore, contributions to the integral in

(6.23) arise only when the particles are interacting at time 0. Thus we may confine our considerations to those
con6gurations in which the particles are interacting at time 0.

For a repulsive interaction with a finite range, for any initial momenta and for an initial con6guration in which
the particles are interacting, there exists a finite time 7O such that for ]&~ 70 there is no interaction. Thus, if we divide
the range of integration in (V3) into 0&~ t ~& To and oo) t) To, we obtain

«e-'S p (12){.(p, *rlo+p, *r, )+X(»)+X(P2)}~(p,) O (p2)

+ «e "S „' (12)Le{pl*rlo+p2 r22 (t—To)LX—(pl)+x(P2)]}+x(pl)+x(P2)|y(pl)ol(p2) (V4)

since for t~& vo the particles follow free motion.
+le now change the range of the second integral to 0&~t( 00 and subtract the difference from the Qrst integral.

Then, throwing away the terms which vanish at e= 0+ for a finite To, we find

D— «e—"(S «"—S-.o"'){X(pl)+X(P2)}q (pi) q (p2)

+ «e S— {o(pl rl +p2 f2 )+ (oro+1 ot)t X(pl)+X(P2) j}Oo(pl) p(p2) ~ (V5)

After integrating the second term over t, we take the limit e —+ 0+, and obtain

D= «(S-»"'—S-.."'){x(pl)+x(P2)}o (pl) o (p2)

1'S— {pl (rl +To»»2 pl )+p2 (f2 +Torl p2 )}oo(pl) oo(p2) . (V6)

The second term in (V6) can also be expressed as

(Pl rl +P2 r2 ) O2(Pl) Oo(P2) ~

Since, for t&~ To, there is no interaction, we can replace S „&2&S„&oi in (V7) by S(12) defined by (7.4).
Furthermore, the range of the first integral can be extended to and we can replace S „("by S „('), since for

]&~ 70 S g( ) =S o( )=S (') when operating on functions of momenta only. Thus& 6nallyp we find that

«(S-"'—S--"'){x(p)+x(p)}o(p)v(p)+~(12)(p ' "+p * ")~(p)o (p). (VS)


