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We have made some additional calculations on the effects of paramagnetic impurities in superconductors,
using the Abrikosov-Gor kov theory as our starting point and taking full advantage of the information con-
tained in the Green's function of the system. The density of states in energy has been computed for diferent
values of the inverse collision time for exchange scattering P. The (half) excitation energy gap QII (as dis-
tinguished from the order parameter d) is defined to be the energy at which the density of states vanishes.
The temperature-dependent order parameter has been computed for diferent values of F, and from this, the
behavior of Qg (T) is determined. A comparison with tunneling experiments shows a disagreement of about
30% The thermodynamic properties of the system follow from the density of states; the critical 6eld and
the discontinuity in the specific heat at the critical temperature are calculated in considerable detail. Ex-
pressions for the penetration depth and complex conductivity are obtained, and numerical results are pre-
sented for the case T=O'. The real part of the conductivity at T=0' is shown to be zero for frequencies less
than 2 Qg and proportional to the square of the density of states for vanishingly small frequencies in the gap-
less region of impurity concentrations.

I. INTRODUCTION

' 'N an interesting article' Abrikosov and Gor'kov in-
' ~ vestigated the effects of paramagnetic impurities on
superconductors. They found first of all that the transi-
tion temperature decreases sharply with increasing im-

purity concentration and goes to zero at a critical con-
centration e.'. Furthermore, there exists a region of
concentrations where the gap in the excitation energy
spectrum is zero even though the substance is still a
superconductor in the sense of having pair correlations
and a nonzero transition temperature. This last result is
striking because the BCS theory' contains only the
single parameter 6 which is at the same time the energy

gap and a measure of the pair correlation. Measure-
ments of the energy gap and of the transition tempera-
ture T, as a function of the concentration of paramag-
netic impurities' show that the gap decreases much more
rapidly than does the critical temperature, thereby
giving support to the results found by Abrikosov and
Gor'kov (AG).

In contrast to the case of nonmagnetic impurities,
paramagnetic impurities give rise to a real lifetime effect.
Because of the spin-exchange scattering, the lifetime of a
pair state is no longer infinite and this results in a rapid
decrease in the ordering and therefore in the transition
temperature. This can be understood when one realizes
that the impurity-spin —electron-spin interaction Hamil-
tonian is not invariant under a I;iTne-reversal transforma-
tion. (The ordinary impurity interaction is invariant
under time reversal and allows us to form pairs from
time-reversed states with an essentially infinite lifetime. )
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This fact was noted by de Gennes and Sarma' and
Phillips. ' The energy gap Qg has a simple interpretation
in the light of the density of states in energy of the states
broadened by scattering, and it can be zero even though
there exists an ordered state whose free energy is less
than that of the normal state. In fact, if one defines a
temperature T,' for which the energy gap goes to zero,
it turns out to be always smaller than the true critical
temperature T, so that for any value of the impurity
concentration, there is a range of temperatures near T.
for which the energy gap is zero.

The problem of a superconductor containing para-
magnetic impurities is very similar to the problem of an
ordinary impure superconductor in the presence of an
external current or magnetic 6eld. ' Here the time-
reversal invariance is removed by the external disturb-
ance, and one again encounters a distinction between
the energy gap Qg and the ordering parameter A.

We have extended the calculations of AG making
fuller use of the Green's-function formalism to derive
results that have more general validity than those of

AG, and to derive new results for the electromagnetic
properties. Section II is devoted to a derivation of the
self-consistent equations for the self-energies in a way
that differs slightly from AG and stresses the role of the
time-reversal operation. In the next two sections we
rederive some of the previous results for the critical
temperature and order parameter and present the results
of our numerical calculation of the density of states and
order parameter together with a comparison with the
experimental data of Reif and Woolf. Section V is
devoted to the thermal properties, in particular, the
specific heat and critical 6eld. In the last section we
evaluate the electromagnetic response —the presence of
the Meissner eGect for all impurity concentrations less
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5 J. C. Phillips, Phys. Rev. Letters 10, 96 (1963).
'K. Maki, Progr. Theoret. Phys. (Kyoto) 29, 10, 333) 603
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than Tl„', the penetration depth, and the frequency-
dependent conductivity. The great advantage of our
approach is the natural way in which the distinction
between the energy gap QG. and the order parameter 6
arises when one emphasizes the effect of impurities on
the density of states.

I'
(a) (b)

II. SELF-ENERGIES

The paramagnetic impurities give rise to a perturbation

X'~&(r) =P;(s,(r—R;)+»(r—R;)S; s), (2.1)

where R, denotes the position of the impurity s with the
free spin S,, and s is the electronic spin operator. The
positions of the impurities are presumed to be random
and the impurity spins are uncorrelated with each other.
The first term describes collisions which do not involve
the electron spin and would be the only perturbation
present if the impurities were not paramagnetic. The
second term describes the specific interaction between
the electron and impurity spins and permits a reversal
of the electron spin in a collision.

We use the Nambu~ notation in the mathematical
development, and in this notation, the impurities affect
both the diagonal LMp(k) j and the off-diagonal LcVr(k))
self-energies as shown in Figs. 1(a) and 1(b). The order
parameter 6 is in essence an off-diagonal self-energy as
shown in Fig. 1(c). The intermediate propagators are
the complete ones: that is to say, they include both the
superconducting interaction V and the effects of im-
purities. It is essential that the three equations repre-
sented in Fig. 1 be solved as simultaneous equations, for
it is only in this way that self-consistency can be
achieved. We have been able to do this only in an
approximate way; the propagators we use involve a
(tensor) cV averaged over the locations of the impurties
and averaged over the orientations of the impurity spins
S,. We therefore are using an averaged propagator, and
the principal limitation this imposes is that we can-
not, with such propagators, investigate the possible
fluctuations of the system. Within this limitation, we
make some other and, we think, relatively minor ap-
proximations. The functions n» and v~ are taken to be
substantially Dirac 6 functions, which, in effect, means
we neglect the dependence of the self-energies due to
impurities on the propagation vectors. We also neglect
crossing diagrams as making only a small correction. As
a result of these simplifications, only collisions with the
same impurity matter since all others vanish in aver-
aging over the positions of the impurities. The two parts
of the perturbing potential do not mix, so that they can
be dealt with separately. This is advantageous because
it helps illuminate the role played by time-reversal
symmetry. We write the reciprocal of the tensor propa-
gator (we use units in which 5= 1)

and
M'= —((o—cVp') rp+ (6—3Ir') rr, (2 3)

7», 7-2, and r3 are the usual Pauli matrices and vp is the
unit matrix. The superscript i denotes the contribution
made by the impurities.

We rewrite (2.2) as

b = egrs+Drr corp &—(2.4)

and Figs. 1(a) and 1(b) yield, as contributions from the
spin-independent part,

(i)'=m' p, (k,k') T pg(k') r,s,(k', k)
(2s-)'

(2.5)

=—'i(rr+ rp) (Mrp —Err)/(co' —Z')' ' (2.6)
where

—,'(r +r )=~' &o(It (k,k') I'). (2.7)

Here e' is the number density of impurities, Ep is the
density of states of one spin at the Fermi surface, and
the angular brackets denote an average over the solid
angle between k and k', and both propagation vectors
lie substantially on the Fermi surface. In the contribu-
tion from the spin-dependent part the 7-p component
contains the matrix element

(k Is.S,'sIk')(O'I s,S,'sIk),
whereas the v» component contains the matrix element

(~k I
ssS '' s

I
Tk )(k I

vpS ' s
I k)

=-&klssS'. sIk')(k'ItsS; sIk),

that is to say, there is a sign reversal in the r» component
as compared to the v.

p component. The average over the
orientations of the impurity spin gives rise to the factor
—,'S(5+1).We let

—,'(r, —r,)=m'~cvp(l »(»k')
I
') l~(~+ 1), (2 &')

then

I y

(c)

Fro. 1. Diagrams for evaluating the self-energy. (a) Diagonal
part of the self-energy 3fp'(k). (b) 08-diagonal part of the self-
energy M&'(k). (c) V is the superconducting interaction. This
diagram defines the self-energy A. The double line with arrows in
the same direction represents the diagonal part of the propagator
b. The double line with arrows opposed is the off-diagonal part of
the propagator. The X's denote a (double) interaction with the
same impurity.

g '= earp (harp 31*+6—rr—
r Y. Nambu, Phys. Rev. 117, 648 (1960).

(2.2) M'= (rr(harp —rpkrr) .
(~2 +2) r /2

(2.8)
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I.O where P=(~T) ' and, in Eq. (2.13), 6 occurring there
is 6(T,I').

~ 5

.2 .5

FIG. 2. The critical
temperature T„ the order
parameter /i(ol, and the
half-excitation energy gap
Ogt'0) at T=O, plotted
as a function of the in-
verse collision time F.
The superscript I' refers
to the value vrhen F=0. 1=.VOV den Re- tanh&8, co

M+Zr

d(u- tanh-.,'P,(u.
cv'+ I'

(3 1)

III. CRITICAL TEMPERATURE

The critical temperature T, is the solution of (2.15)
in the limit A(T, I') ~0 or uA~&o+ir Th. is is

The diagram of Fig. 1(c) yields for the order parameter
at T=O'.

EOV

2
R.e dc' ~

(~2 g2) i/2
(2 9)

where we have introduced a cutoff at co~' for the super-
conducting interaction. To make a connection with the
BCS theory when the impurity interaction is turned off,
~r/ (coD +LB)' ' where a&ii is the BCS cutoff. In our
weak-coupling approximation, this will have a negligible
effect on the solution of the integral equation for A.
However, it is important in the calculation of the free-
energy difference, which is proportional to 6'.

The three equations contained in (2.8) and (2.9) are
to be solved simultaneously, or, (2.9) is to be solved with

1/E, V= Ln(2~D/6~(0)), (3.2)

where 3,"(0) is the gap at T= 0' for the pure material.
Consequently, at the critical value of F, 1;„

This reduces to the usual expression in the absence of
the spin-dependent scattering when I' —+ 0. That is, in
the presence of the paramagnetic impurities, the highly
singular factor co in the equation for the critical tem-
perature is replaced by the broadened function
~/(co'+I")—indicating a true lifetime effect. For finite
F. , P, must be larger than it is when F=0. The presence
of the impurities lowers the critical temperature. More-
over there is a critical concentration for which the
critical temperature T. vanishes. One recalls that

co=co+sri
(~2 g2) I /2

6=6+irm
(~i g2) i/2

(2.10)

(2.11)

1 2MD / Mn
ln =-,' Lnl 1+ =ln

EoV A~(0) ~ I"

Therefore,
2r„=z~(0) . (3.3)

These equations can be simplified by introducing
For values of F(r„.one can express T, in terms of P
functions P(x) = (d/dx) lnF(x):

(2.12) Ln(2' '/T') =0(2+p) —0(k) (3 4)

and 1 = I'g —F2 so that

ua=~+ir
(~2 1)i/v

(2.13)

TpV
a(o,r) =

2
d(u Re, (2.14)

(~2 1 ) i/2

s(2', r) =x,v dko Re t nah-,'Pcs, (2.15)
(~2 1)1/2

where Re means real part. In connection with (2.12) and
(2.13) we take the positive square root for co ~ ~+i8
and co —+ —~ —ib, where 8 is a small positive number.
Before leaving this section we state the results for non-
zero temperature. The usual factor of tanh-,'P~ occurs
in (2.14) so that it reads z (o,r)

ln = —»Lr+(I"—1)'"]+ -(r' —1)'"
Ap(0) 21'

(3.5)

——'I' arctan(I' —1) '/-'for F&A(o,r),

with p= F/2mKT, . This is shown in Fig. 2 in the curve
labeled T,/T, ~ and, as shown there, this quantity
vanishes when F!d~(0)=0.50. The order parameter
A(T=O, F)=d(o, r) may be calculated from (2.14) by
using the contour shown in I'ig. 3. One readily estab-
lishes that the contribution to the integral from the arc
is purely imaginary so that we need integrate only along
the imaginary axis. The result is, in agreement edith that
stated by Abrikosov and Gor'kov, '

s(or) ~ r
ln = —— for F (A(O, I'),

~~(O) 4 ~(O, r)
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and I'= I'/5(O, I'). The behavior of 6(0,1')/6~(0) as a
function of I'/6~(0) is shown in Fig. 2. One sees the
very important result: the order parameter 6(0,1')
vanishes at the critical concentration. Before consider-
ing the temperature-dependent function 6(T,I'), it is
useful to introduce the density of states, which we do
in the next section.

IV. DENSITY OF STATES

N

No

2.0

!.0

1

~BCS

It is customary to work with the density of states in
k space, but here it is much more convenient to consider
the density of states in ~ space. The reason is this:
because of collision broadening, the energy of a given
momentum state is spread throughout a region in k
space whose width in k is I'&/s&. On the other hand, the
energy co is conserved in each collision so that there is
no broadening. We therefore evaluate the density of
states X(a&) as

1Sp
E(co)=- ds TrLIm8(k, r0)j. (4.1)

2 x

S(-)=To Re
(Ns 1)1/2

In the limit as I' —+ 0 this reduces to

&'( )=
(~2 +2) (/2

=0 otherwise, (4.3)

which is the same as that described by the BCS theory.
This is the result whatever the size of F~. We find,
accordingly, that nonparamagnetic impurities do not
affect the parameter 6, the critical temperature, or the
density of states. The very small change in critical tem-
perature observed in the nonparamagnetic case is at-
tributable to a smearing out of anisotropic interaction.
The equations (4.2) and (2.13) must be solved simul-
taneously to determine 1V(re). This, it should be
remarked, depends on temperature by way of the

FIG. 3. Contour of integration for
determining the order parameter
/~(o, r).

I
u)n

Here Xp is the density of states at the Fermi surface and
the factor of ~~is inserted to define the density of states
for a single spin. The path of integration can be de-
formed so that one encircles the positive real axis in a
negative sense. One finds

.5 l.o l.5
ro/6(T)

2.0

FIG. 4. The density of states in energy plotted as a function of
the reduced energy for several values of the reduced inverse
collision time r //h. A(T) is to be understood as d, (T,1').

parameter A. The solution is a numerical one and is
achieved by setting

u = coshs= cosh(x+sy), (4 4)

where x and y are real. This substitution yields the
cubic equation

sin'2y+((e'+I" —1) sin2y —2(el'=0 (4.5)

for y, where co and 1 are the corresponding quantities
measured in units of A(T, I"). The quantity x is deter-
rnined by

and
cosh' cos2y= ~ cosy —I' siny

1V(&e)=Xs sinh2x(cosh2x —cos2y) '.
(4.6)

(4.7)

The results of these numerical computations are shown
in Fig. 4 where X((e)/Es is plotted against (e/h(T, I').
The asymptotic curve is E(a&)/1Vs ——1, achieved when

co/6(T, I') ~ Do; the dotted curve is that given by the
BCS theory and corresponds to F=O. The curves for
FWO start from zero at a value co&6 and, for small F,
rise steeply to a maximum and then approach the BCS
curve. The value of the energy Qg at which the curve
rises from a zero value is the half-energy gap, the
minimum energy for excitations. As the concentration
of the paramagnetic impurities increases, Qg decreases
and so does the size of the maximum. Qg is zero when
I'/6= 1 and this value of I' is another critical I', I'„'.
The curves drawn by Phillips' are a remarkably good
estimate of those shown here. One essential point re-
vealed in these curves is that a distinction must be made
between the gap Dg and the order parameter 6(T,I').
The relation between these quantities can be obtained
as follows: For a 6xed value of I'/A(1, Eq. (2.13) has
real solutions for I which are less than unity for (e/6
suSciently small. In this range of co, the density of
states is zero, as can be seen from Eq. (4.2). The density
of states departs from zero at the value of a&(Qg) at which
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l.o

I/5', to)

I OIBCSI

2 .IO
.40

I.o

on the impurity concentration. The value of this ratio,
normalized to its value in the pure material, is plotted
in Fig. 6. The limiting value of 6(0)//1T, when I'= I"„
is V2~. Therefore, it is incorrect to assume the constancy
of this ratio in any theory to explain the effects of para-
magnetic impurities. '

Before proceeding further, it is of some interest to
look at the integral equation for 6(T,I') for nonzero but
small temperatures to see how the solution changes
qualitatively as one passes from the region with gap to
the gapless region. If in Eq. (2.15) one uses tanh22pco
=1—2(e&"+1) ', the term involving unity can be
evaluated in the same way as was done in obtaining
Eq. (3.5). The remainder is

FIG. 5.The order parameter plotted as a function of temperature
for several values of the inverse collision time. The superscript I'
refers to the value when 1 =0. The dashed curve is a boundary
curve separating the gapless region from the region with a gap.

—2gpV dGD Re(N' —1) '"(e/'"+ 1) '. (4.11)

I first becomes complex. Rewriting Eq. (2.13) as

co=I—2
(1 232) 1/2

one sees that the maximum value of the right-hand side
occurs at N3 ——(1—I' ')' ' and that this point yields
the gap

For I'/A(T, I') &1, I is real and less than unity up to
06. so that the lower limit becomes Qg. For suKciently
low temperatures, we can replace the temperature-
dependent factor in (4.11) by e &". Because of the
rapidly decreasing exponential factor, a good approxi-
rnation is obtained by using the value of Re(N' —1) '"
in the neighborhood of Qg. A straightforward but in-
volved expansion of Eqs. (4.5) and (4.6) gives

Q 1/6

(2)1/2 (o1 Q G)
1/2

(N2 1)1/2 p2/3
(4.12)

The ratio Qg/h1' is plotted in Fig. 2 at zero temperature
as a function of I"/6~(0). There is another critical con- Substitution in Eq. (4.11) and use of Eq. (3.5) gives
centration or another critical value of F, I'„', the one finally
for which Qg(l'„') =0. This is

or
(4.9)

I'„'=e "6~(0)= e '21'„=0.911'„. (4.10)

~(0)—~(r)
Qg'" 2r I' )-'

= (22r/3)"- —1——
~

e p "g. (4.13)I""P3" 4 6(0}i
At any temperature there is a region of concentration
(or a region of I') in which the material is superconduct-
ing but the excitation energy gap is zero.

A numerical evaluation of 6(T,I') for various values
of F yielded the results shown in Fig. 5. The dotted
curve in this figure is a boundary curve; the intersection
with a full curve, for a particular value of I', gives the
temperature at which the energy gap vanishes for that
value of F, so that in the interval from this temperature
to the corresponding critical temperature, the energy

gap remains zero in magnitude.
In determining the curves of Fig. 5, explicit use was

made of the BCS relation between critical temperature
and order parameter at zero temperature for the pure
material. That is, 6~(0)//1T, 1' was taken to be 1.76. One
can see from the curves of Fig. 5 that the critical tem-
perature changes faster with impurity concentration
than the order parameter at zero temperature. Thus, the
ratio A(0, 1')//1T, is no longer a constant, but depends

3.0

2.5

2.0

l.5

FxG. 6. Deviation from
the law of corresponding
states for a supercon-
ductor containing para-
magnetic impurities.

I.O
0 .2 .5 .4

I/LP(o)

See, for example, H. Suhl and B.T. Matthias, Phys. Rev. 114,
977 (1959).

For I'/h(T, I'))1, Qg ——0, the lower limit on the
integral is 0 and Re(232 —1) ' ' now rises linearly with 1d

and is in fact (co/I')L(1'/d, )2—17 '/'. Again relying on
the rapid drop in the remainder of the integrand to cut
out the large ~ contribution to the integral (4.11), we
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LO

.5

.2
I/Zf(o)

.5

Fro. /. Critical temperature and half-energy gap at 2'/T, =0.25
as a function of p/a~(0). The open circles and triangles are the
experimental points for the critical temperature and half-energy
gap respectively as measured by Reif and Woolf. The dashed
curve is their linear extrapolation of the low-impurity-concentra-
tion points. The triangle at I'/t'A~(0) =0.3 is roughly the concen-
tration at which no gap is observed.

get using Kq. (3.5)

n' (sT)'
&(0)-~(T)=— I:F.(F.'-1)'"?'

6 d(0)

(F s 1)1/s F
1— ——arctan(Fss —1) '"

ro
(4.14)

for F/h(T, F))1 with Fp ——F/D(0).
Ke see that near the absolute zero of temperature, the

deviation from A(0) is exponential in temperature but
becomes- quadratic in the gapless region. Note that
(4.13) does not go over smoothly into (4.14) since as
Qg ~ 0 for some values of T, PQg is no longer large and
therefore the Fermi function cannot be replaced by the
exponential. Furthermore the expansion (4.12) is not
valid for very small I' and one cannot recover the pure-
material value from (4.13).

An expression for D(T,F) near the transition tem-
perature for arbitrary value of I' can also be obtained
by an expansion of Kq. (2.15) in powers of d. However,
it is easier to obtain an expression for 6 directly by
minimizing the free energy; we shall return to this point
later.

Comparison with Experiment

To date, the most definitive experiment to test the
theory has been the tunneling measurements of Reif and
Woolf. ' A comparison with their results can be made
using Eq. (4.8) for the excitation energy gap, obtaining
6(T,F) from Eq. (2.15) and using the observed de-
pression of the critical temperature to evaluate F.
For any given sample, the initial slope of the critical
temperature curve determines F/A~(0). For this value
of F/A~(0), and for the desired temperature (T/T, "
=0.25 for their experiment), A(T,F) is determined from
the solution of the integral equation and substituted in
Eq. (4.8) to obtain the energy gap. The result is shown

in Fig. 7 as the curve labeled Qo/A~(0) along with the
curve of T,/T, ~. The experimental points for the transi-
tion temperature are shown by open circles and the
points for the gap by triangles. A linear extrapolation
of the low-impurity-concentration points is shown as the
dotted line. The lowest point at F/A~(0) =0.3 is roughly
the concentration at which no gap is measured. One sees
that the quantitative agreement, although not good, is
probably all that can be expected. Clearly it would be
very desirable to do tunneling on a normal-supercon-
ductor junction, preferably at a low temperature to
reduce temperature broadening effects, so that a direct
comparison can be made with the density of states
given by Eq. (4.2).

RecaH that the pure material was assumed to be an
ideal BCS superconductor, that is, A~(0)/sT, =1.76.
This value is not observed in the thin 61ms used in the
tunneling experiments, but is about I.90, a difference
of about 8/~. If the measured value of this ratio is
introduced into the theory, the curves for T, and 6(T,F)
are depressed and bring the theory into somewhat better
agreement with the experiment.

Q2

F8——=4go
V

dco
(uf(cv) Imgr, —(k,(u)

Qa 2X

"& chal

+ —cu(1 —f(a))) ™Brr(k,—co), (5.1)
Qg 2'

where err(k, &o) = (~+e)(e'+Zs —co') ' is the (1,1) com-
ponent of the tensor Green's function and we have
introduced the cutoff con' ——(con'+A')'~' to make the
connection with the BCS theory in the absence of any
impurities. Substituting in this expression for g and
carrying out the integration over e, dropping terms odd

V. THERMAL PROPERTIES

In this section we derive expressions for the specific
heat and critical held of an alloy containing paramag-
netic impurities. These can easily be obtained from the
free energy. One method of obtaining the free energy is
to use the well-known relation involving an integral over
the coupling constant for the superconducting inter-
action. This is, however, difficult to perform at arbitrary
temperatures and impurity concentrations. Instead, we
will derive an expression for the expectation value of the
total energy using the previously derived Green's func-
tion. Then, using the fact that the essential effect of the
impurities is to alter the density of states, we get an
expression for the entropy and thus the free energy.

In an approximation of a delta-function interaction
with a strength t/", the superconducting interaction
energy is just —6'/V. We derive in Appendix A the
following expression for the total energy E8 in the
superconducting state:
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n e, we obtain

WE&SSSKALSKI, BE

state va ue e re
'

nce AF=AE —TAS isstate value the free energy difference)

Q2

~s——=—2&0
V /(lV —

kOQg

tanh~~pco ~8—~X= —~'0
1V(co)

ZG0 1
Ãp

2~% 0

I
1dco Re co tanh~pco

(N2 1)1/2

Q2

X 2co tanh-,'pco+ ——1Vod, '

oe

dcoiV(co) 2co taiili2 pco .
0

(5.2)

41VO /)' 1V(co)
863 ' 1

p o &&o

ates enters in a natural way, but be-y
r co contains not on y e i

6 t fthit to th
h urity effects come

b t also the eQ'ects o
5' V. e impls

f () d
l t t '

obt i dA. The norma-s a e e
th

ds onl up to coD rather than a)g),

=0 in (5.2). Since e i
'

in
the normal state extends on y up o coD

we add and subtract

ed~

Cko2co tanh-,'Pco =1Voh',0

(1V(co)—1
& 1V,

5.3X2co tanh-', pco+—1Vok .

ssar for the upper limit to be ~~It is absolutely necessary or

h forder 6' which are importan in
difference.

The entropy is

1—ng 5.4S=—2)k Qg{ng inn'+(1 —ng) ln(1 —ng)), 5.

zmann's constant, eI, is the Fermi
d the factor of 2 is for spins.

iD nd t an integral over ~integral over e~ and and then o a
1Vode~ ——1V(co)dko, we obtain

fUI1C-

to an
using

dco.V(co) ln(1+e e )+ (5.5)

e used the evenness of the ginte rand towhere we have use
t' nergies only. Thus,e ral over positive enwrite i t as an integ

of no impurities is inthe only differenrence from the case o no
'
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X ln(1+e e )+ (5.6)
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H '/87r=F// Fe)—
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—C~ = T(ct/'cj T)(Se—S~) .

(5.7)

(5.8)C8
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F,—F =D,(T,r)—1V,
,V(co)

Cco —1
1V,

Xln(1+ e
—e"), (5.10)

t the right-hand side o q.of E . (5.9)
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(2.13).Then

Fs(0) F~(0)—
'1V 5'(0 I') L1 ———.'-m I'+-', I"2] or

= —-', 1V,A'(0, 1'){1—I' arcsin(i') '
'-1'" -i(I—(1-1-')'"j)+ 'L —( )-'( '—)
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be exponential in T. Furthermore, using (4.13),D6(T,F)
will be just D6(O, I') plus a term that is also exponential
in T. Therefore the leading term in the correction for
finite temperature will come from the change in the
normal-state free energy with temperature. On the other
hand, in the gapless region, the contribution from the
integral and from D6(T,F) will be of order T' just as is
the contribution from F11 (T). In fact, to a fairly good
approximation, we can replace the factor N(a)/N6 in
the integral above by its value at co=0, namely,
(F'—P')'/'/F and get

P's(T) —Z~(T)]—LV,(0)—Z~(0)]=D6(T,F)
—D3(O, F)+L(F'—6')'/'/F —1]F/1 (T) . (5.11)

In either case the critical field for small temperatures
will be of the form

II,2(T,F)=a.2(O, F)(1.—a(F)(.T/S(O, F))2], (5.12)

where the function a(F) can be deduced from (5.11),
(5.10), (5.9), and (3.5). We shall not go into this any
further but go on to consider the specific heat at low
temperatures.

It is most convenient to obtain the specific heat from
the entropy (5.5). First, consider the region where the
gap is not zero. In this case N(~) is zero up to Qg and
therefore if F is not too large, Po& will always be large and

1n(1+e s")+P&u/(es"+1) =e s"(1+Pcs).

term in T we obtain

gl/3g, il/6 &
—PQg

Cs = (82r/3) '/2/4

2/3 (~T)1/2
(5.13)

C,= t
(F2—~2)1 2/F]C„. (5.14)

Therefore, in the gapless region, the specific heat de-
pends linearly on the temperature as in the normal state
but with an altered density of states. These results for
the speci6c heat at low -temperatures were obtained
previously in AG.

The gap in the excitation spectrum shows up as an ex-
ponentially varying specific heat in the superconducting
state, as one would expect. Again note that this expres-
sion does not go over into the pure material value be-
cause of the inapplicability of the expansion of N(40) for
very small r.

In the gapless region, F)6(T,F), the density of
states is Gnite at co=0 and is in fact given by

N(63) =N (F'—iV)'/'/I'.

Since the remainder of the integrand contributes
principally for small values of co, a good approximation
consists of retaining only the constant term in the
density of states evaluated at 7=0', and extending the
upper limit to ~ .The net result is to change the entropy
and therefore the specific heat in the normal state by a
constant factor:

Furthermore, because of the rapidly decreasing ex-
ponential factor, we can replace N(&o) by its value in the
vicinity of Qg. Again using (4.5) and (4.6) it is possible
to show that

(63—Qg)'"
N(co) =N (-')'"

g 1/6r2/3

Therefore,

Ss ——4/4N6(2)'"6'"(Qg'/ F 3) '

Temperatures Near T,

Ke have already shown that the order parameter 6
goes smoothly to zero at the critical temperature for all
values of the impurity concentration. Therefore we can
use the theory of second-order phase transitions to
expand the free energy in a power series in 6 around the
critical point. To do this we expand the integrand in
(5.6) in powers of 6 up to order 64. It is easily shown
that odd powers do not contribute.

X d&u(4Q6g) '/ (1+2P )e 4/6'" N(46)

—4/4N6(2) 1/2+1/3(Qgl/6F2/3) —le-sag

X de'46""(1+440'+PQa)/: /'"',

—1=R"
(242 1)1/2

1 62 3 A4
=Re- +-

2 (46+iV)2 4 (46+iF)4
—zr

(46+iF)'

where because of the rapid convergence we have repl. aced
the upper limit by infinity. Keeping only the leading

where we have used the fact that as b, goes to zero, Nh
goes to (o&+iF). Thus the free-energy difference near
the critical point is

~s—~or =a' —go—go
V

2 2'
des (u tanh —,'Pa)+ —ln(1+e—&")+ R„-

e~"+1 (a)+iF)'

2 2M
d(u cu tanh- Pcs+21n(1+e—~—")+

es"+1

t/3 1 iF
Re~ — — . (5.15)

&4(~+iF)4 (~+iF)3
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Again, the upper limit in the last term has been replaced by in6nity because of the rapid convergence of the
ntegrand. Doing an integration by parts on the first term above gives as the coeScient of 6'.

1 Cd~

V p

da) tanh-,'Ppp.
pp2+ p2

Note that this vanishes at the critical temperature as would be expected. The remaining integral can be evaluated
in terms of the generalized Riemann zeta functions. Thus (5.15) becomes

Gl ~
Fs—F~=~'I—

kV p

dM
~2+ p2

Ep( P
tanh~Ppi I+LV—

I

—[{(3, p+) )—lif'(4) —,'+X)]
i

(5.16)

where {.(z,s) =p„p (z+s) ', and &= I'p/(2s). This expression is valid for all values of & for a suitable tempera-
ture interval near the critical temperature for which 6 is small. It reduces to the BCS expression for 1'=0.

The order parameter is now obtained by minimizing (5.16) with respect to h. Thus

Substituting in (5.16) for ni(T, I'), we see that the free-energy difference is proportional to 8, , and therefore to
(T, T)'. —

Expanding ni(T, I') to second order in the small quantity (T, T), and ev—aluating a&(T,I') at T, we obtain

2(1—T/T ){1—X.f (2, -', +li,)+-', (1—T/T)[1 —2li.({(2, —,'+X,.)—X.f'(3, -,'+X,))])
~P(T,r) =

(P./2 )'[{(3, -'+~.)—l~.f (4, l+l~.)]
(5.17)

where )~,=X(T=T,). If we keep only the (T, T) term, the c—ritical field
In the extreme gapless region, 'A,))1, we recover the as obtained from (5.16) is

AG result, since

ni(T, I') ~ —1Vpx'2''(TP —T')/121"

nu(T, I') ~Ep/241',

and therefore

and
Fe FN =—1Vo64/—241'

6'(T, I') =2x'~'(T, '—T') .

One should be extremely careful in using these last
expressions since they are valid over only a very limited
range of values of F. In fact, ), is still almost unity for
I'/h~(0) =0.49, i.e., within 2% of the critical value of
0.5. Contributions from higher orders in (X,) ' would
not be negligible.

[1—l~,f'(2, —,'+X )]'
X . (5.18)

(0 /2~)'[f(3, p+~.) ~ f(—4, 2+'l .)]
We shall be interested only in the linear term in the

specihc heat near the critical temperature, and therefore
we need retain only the term in LV in the entropy (5.5),
evaluating the coeKcient at T= T. (the upper limit can
be set equal to infinity with negligible error):

2A'Ãp
ln(1+ e Pc~)—

C p

l.0

0-
l.o .5

Tc/ Tc
0

Fn. 8. The disconti-
nuity in the specilc heat at
the critical temperature.
Note that the horizontal
scale is chosen so that the
impurity concentration in-
creases towards the right.
The superscript P refers
to the value when F=O.

+ Re
ee "+1 ((u+iI')'

= —6'1Vy(P (1—X,{(2, -'+ X,)) .

[1—X,t-(2, —',+X,)]p
C~—C~——|.2yT

[f (3, -,'+X,)—X.f (4, —,'+~.)]

(5.19)

(5.20)

where y= 3gp~ g2. The jump in the specific heat at the
critical temperature is given by the right-hand side of
(5.20) evaluated at T,. This jump, normalized to its
value in the pure material, is plotted in I'ig. 8 as a func-
tion of the reduced critical temperature.
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The specific heat has been measured in the La-Gd
system" and indeed shows a well-defined jump at the
critical temperature that decreases as the concentration
of Gd is increased. Unfortunately the interpretation of
these measurements is clouded by the possible presence
of both phases of La, and the theory may be in very good
or rather poor agreement with experiment depending on
the interpretation.

VI. ELECTROMAGNETIC PROPERTIES

A basic property of a superconductor is its ability to
exclude a static magnetic field from its interior —the
Meissner effect. We shall show that superconductors
containing paramagnetic impurities display this property
for all concentrations up to the critical value e,' where
the order parameter 6 goes to zero. The penetration
depth increases with increasing impurity concentration,
rising very sharply in the gapless region. We also calcu-
late the complex conductivity as a function of frequency,
displaying explicitly the gap 20|.- in the excitation spec-
trum. We expect that most samples of these alloys will

have short mean free paths so that we can assume an
essentially local relation between 6.eld and current, and
therefore have neglected the dependence of the response
function on the wave number q. Our results will in
general be in the form of integrals that must be done
numerically; however, for T=0', we do the calculation
in detail or give numerical results.

The response to a weak transverse field is most con-
veniently described in terms of the wave-number and
frequency-dependent kernel K(q,qp):

j(q,qp) =K(q,gp)A(q, qp), (6.1)
where

A(q, gp) q=0,
and

K(q, qp) =Kv(q, gp)
—Ne'/tttc.

For the existence of a Meissner effect it is sufFicient to
show that

lim Kv(q, 0) (Ne'/tttc.
q-+P

We consider the function K„(q,Q„) with Q =2srN/ —iP
and m=0, ~1, . The analytic continuation of
K(q,Q„), which is defined for isolated points along the
imaginary frequency axis, to real frequencies will be
just the temperature-dependent function Kv(q, qp). In
general, E is determined by a two-particle Green's
function. We shall work only in the Hartree-Pock ap-
proximation where the two-particle Green s function is
a product of single-particle Green's functions:

e'
K„(q,Q„)=i

ttt'c t .t ' ip—
XP Tr(g(k+q, k', z„)g(k' —q, k, z„—Q„)),

X(k a)(k' ct), (6.2)
9D. K. Finnemore, D. L. Johnson, J. L. Ostenson, F. H.

Spedding, and B.J. Beauduy, Bull. Am. Phys. Soc. 9, 267 (1964).' D. K. Finnemore (private communication).

where z„=(2v+1)sr/ —iP, v=0, ~1, ~2, , and tt is
a unit vector in the direction of A. The average « the
product of g's is over the impurity distributions. The
average of the product is not equal to the product of the
averages; the difference can be expressed in terms of the
vertex corrections. It is well known that in the case of
nonmagnetic impurities, the major effect of the vertex
corrections is to replace the inverse collision time F& by
the correct transport value F~"which is defined in terms
of the average of the scattering potential weighted by a
factor (1—cosn), where n is the angle between k and k'.
Although we have not worked out these vertex correc-
tions in the general case, we show in Appendix 8 for
E(0,0) at 2'= 0', that this is also the case for magnetic
impurities to a very good approximation. Therefore, we
will not make a distinction, in what follows, between the
averaged product and the product of the averages, and
will consider I"& to be an experimentally determined
parameter. Alternatively, we can assume that only s
wave scattering from the impurities is important.

With this point of view

E'v(q, Q„)=
SS C ip—

XQ„TrLg(k,z„)g(k —q, z„—Q„)j(k tt)', (6.3)

where the Green's functions here contain the impurities,
since they are determined from the set of self-consistent
equations of Sec. II. Putting q= 0 in (6.3), carrying out
the angular integration, and replacing the k integration
by an integration over eI„we obtain

Ee' " 1
K (OQ )=i de

2tttc „—iP

X+„TrLb(k,z„)g(k, s.—Q„)j, (6.4)

where X is the number density of electrons. We must be
careful in what follows to do the summation over v (or
integration over co after we convert the sum to a contour
integral), before the integration over s, since only then
wiH the contributions far from the Fermi surface be
negligible and allow us to replace k in the integral
by kp."

"See, for example, A. A. Abrikosov, L. P. Gor'kov, and I. E
Dzyaloshinski, 3fethods of Qttanttttn Field Theory in Statistical
Physics (Prentice-Hall, Inc. , Englewood CliBs, New Jersey, 1963).

Zero Temperature

At T=O', the summation over v goes into an integra-
tion over oJ over a contour that follows the real co axis
below for or(0 and above for co)0. The continuation
of E'„(O,Q„) to real frequencies qp is accomplished by
just putting Q = qp. Substituting in (6.4) for g, the trace
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v ~ tx in (6.8) and. (6.6), Kq. (6.8) can be written as

Ee'
E(0,0)= — iV

mc
dy

(x2++2)1/2+ r 2 x2+ g 2

Using (6.6) to convert the integral over y to one over x,

dy= dx[1—res/(x2+ as)»27,

FrG. 9. The penetration
depth at T=O' in units
of the London penetration
depth, plotted as a func-
tion oI P/ap (0). The
sharp rise occurs at about
the value 0.45 where the
energy gap vanishes.

lo—
X

l
X„

I I I I I I

and being careful to notice that the lower limit xp when

y =0 depends on the relative size of F and 6 and is in fact

xp=0 for F&h
xs ——(I"—LV)'" for r)6,

as can be easily established using (6.6), we finally obtain

Case II:
arccoshgF—(,r)-1[1+r(&r)-27 ——

-2 ((~r)' —1)'"-

Xe'
E(0,0)=-

1ÃC

dx
(x2+ +2)((x2++2)1/2+ r )

FA'

+r(&r)- —;&r —-&r+1 . (6.10)

2(r—1)
-(~r)-'I 1+r(~r)-'7 — —L(.r)'-17-'"

(r2 1)1/2

X 1— . (6.9)
(x2+g2) 2/2

In Appendix 3 we derive the result including vertex
corrections which is just the above but with the factor

[(x2++2)((x2+g2) 1/2+ r )7-1

replaced by

[(x2++2)((xs++2)1/2+ r tr)+ rt+27-1

One can assume that the exchange scattering is much
weaker than the direct scattering, making F(&F2. The
term in F' above will therefore contribute negligibly to
the integral and so can be dropped. The only other effect
of the vertex corrections is to redefine F2. This is the
principal justification for the remarks made earlier in
which we agreed. to interpret F2 as an experimentally
determined parameter.

The integral in Eq. (6.9) can now be done, and the
result depends on both F and F2. Since F&F2, we need
to consider three cases: (I) r, rs(6; (II) r(5, r2) 6,
and (III) r, r2) A. The results for E(0,0)/(1Ve2/222c) are:

Case I:
arccosgF-(.r)-'I 1+r(.r)-'7—

-2 (1-(~r)')'"-

l -(r—1)(r/I' —1)—'/2~
x

I
arccoshr/r —2 arctanh-

l (r+ 1)(~r+ 1)

+(nr)-' (s~'r'+1)(r-(r'-1)'")

[r—17—-,'~(r2 —1)1/2(-', ~—1)—~r2-
(r2 1)1/2

)1=[—(42r/c)E(0 0)7 '". (6.11)

This quantity is plotted in Fig. 9 as a function of the
parameter r/4~(0) for two different values of the
parameter r2/r which one might encounter in an actual
sample of such alloys. Note that the curves are not
extended to very small impurity concentrations since
we would not expect (6.11) to be valid here; in this
region it is necessary to calculate the q dependence of
E(q,O) explicitly.

Where We haVe uSed the nOtatiOn r/= rs/r and I'= r/A.
Note that here 6= 6(O,r).

First of all we see that even in the gapless region,
E/0, and in fact it becomes zero only when F=F„;
there is a Meissner effect for all values of F&F„.Also
we recover the nonmagnetic-impurity result of Abrikosov
and Gor'kov" in the limit F=O.

In our approximation, the penetration depth is
given by

+r(r/r) ' 222)2r2 ——r/r+1
"A. A. Abrikosov and L. P. Gor'kov, Zh. Eksperim. i Teor. Fiz.

55, 1558 (1958) )English transl. : Soviet Phys. —JETP 8, 1090
(1959)].
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Qe-qo//2
/

I.O—

Re Os

(a)

Qst qo/p
.5

Sls —qo/2

1.0 P.O 5.0

QG+ q0/2

FIG. 10. Contours used in evaluating the integral in Eq. (6.12):
(a) go (2Qg, (b) qo&20g, where Qg is the impurity-concentration-
dependent function Qo (O,Fl.

FIG. 11. The real part of the conductivity for q=O, at T=0'
plotted as a function of frequency for several values of the im-
purity concentration. 0 is to be understood as A(O, F).

then possible to show that as the cut is crossed,

'D~P
A bsor pfio22

~e now calculate the frequency dependence of the
kernel E.The real part of the complex conductivity, and
therefore the absorption, is related to the imaginary part
of E. Rewritten in a more symmetrical form that will

facilitate further worl~, Eq. (6.7) becomes

($)2 /)12)1/2 ~ L(2)2 /2)1/2]+

(22 +2)—1/2 ~ L(t)2 g2)—1/2]4

(2)2 +2) 1/2 (2)2 g2) 1/2

(6.13)

1 Se
z(o,q,)=—

2 Pic
dM

(2) 2 +2)1/2+(2) 2 /) 2)1/2+i2F

(2/+2/ +dP)
X 1—,(6.12)

(2)
'2 g2) 1/2(t) 2 g2) 1/2

where o)~=pp+qp/2, etc. Now 2) has a cut along the
real co axis from —~ to —Qg and from Qg to ~. Now
2) —2 pe+i F as o) ~~+ib(b) 0), and 2) ~ o)—iF as
& —+~ —ib, so that v goes into its complex conjugate as
the cut is crossed. Using (6.6) for the case qp

——0 it is

Let us write Ay=~Jy/(2)~2 —62)'/2 B =g/(2) 2—g2)1/2

C+ ——(2~' —LV)' '. Then (6.12) becomes

1 Ãe' 1—A+A —9+8
K(0,qp) = —— do)-

2 mc o C +C++i2F2
It is convenieni. to give go a small imaginary part so as
to separate the cuts for v+ and m .

For the case qo(20t. , the contour is shown in Fig.
10(a). Over the interval 0o—qp/2 to 0o+qp/2, we have
A —+ (1/i)A, B ~ (1/i)B, C ~iC, where, for
example, C = (62—2) ')'", and because 2) is real in this
interval, the quantities', B,and C are all real. Then

E(O,qp) =—1Ve2

mC 0g+qp, '2

1—A+.4 —8+8
d~ Re-

C +C +i2F2

SEC g g qo/2 iC +CP+i2F2

cVe' "o+'" 1—(1/i)A A+ (1/i)B—B~
dM Re (6.14)

n1ediately have that ImE(O, qp) and therefore Rea.(O, qp) is zero for qp(20&. 20& again plays the role of a
gap in the excitation spectrum —there is no absorption of electromagnetic radiation until enough energy is supplied
to cause a transition into states above the gap.

When qp) 20o, the contour is that shown in Fig. 10(b). Incidentally, this is also the case to consider in the
gapless region of impurity concentrations. Then

E'(O, qp) =—Ee2

1SC kg+go//2 C +C++i2I'2

1Ve' ng+« ' 1—(1/i)AM+ (1/i)B B+—
der Re

SEC g g+go/2

+e2 g
—Qg+qo/2

pgc 2 Qg—&0/2

iC +C~+i2F2

(6.15)—C *—C+*+i2F2

1+ApA *+B+B* 1—A~*A * Bg*B*—
dM —C ~+C++i2F2
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The last term is complex so that there is a contribution to ImE(p, qp) for qp) 20g. We shall be interested only in
the real part of the complex conductivity

Reo.(O,qp) +i Imp. (O, qp) = (c/iqp) E(p,qp) .

Furthermore, for values of qp that are not too large (qpr«1, where 2 is essentially (212) ' with the reservation
noted previously concerning vertex correctionsj, we can neglect all terms in the denominator of the third term
above compared to F2. Then

a&+qn

ImK(0, qp) =- dcp Re{A+A *+A+~A *+B+B*+B+*B*)
4 ~CI 2 Qg—qp/2

—00+qp/2

6—qp/2

dc' Re Re- +Re Re
(p 2 +2)l/2 (~ 2 +2)1/2 (p 2 +2)l/2 (p 2 +2)l/2

where we have used I'2 ——(22) ' and o//=1Vepr. /m. Finally,

Reo (O,qp) 1 -"'+'o"

gp Og—qp/2

dao{22(pp+qp/2)22(pp qp/2)+m(pp+qp/2)m(cp qp/2))—, (6.16)

for qp) 206. and zero otherwise, and 22(cp) = Rel//(v' —/p')'" and m(cp) =Red/(v' —LV)'". These functions are just
the density-of-states function and the kernel of the integral equation for 6, respectively. Notice that 22(cp) is an
even function and m(cp) an odd function of cp, and therefore the two terms above come in with opposite signs since
the range of integration is over negative arguments. However, 22(cp) )m(cd) so that the result is positive. For the
case of nonmagnetic impurities, I'=0, and (6.16) reduces to the result of Abrikosov and Gor'kov" and Mattis
and Bardeen. "Note that the ratio Reo,/o// has the same form in both the dirty limit S«$ of Abrikosov and
Gor kov and the extreme anomalous limit of Mattis and Bardeen. This comes about because in both cases we can
approximate the kernel I(cd,R,T) of Mattis and Bardeen by I(cp,O, T).

Equation (6.16) is plotted in Fig. 11 for different impurity concentrations. In the gapless region, the conductivity
is proportional to the square of the density of states as qp ~ 0.

Nonzero Temperature

For temperatures greater than zero it is convenient to write Eq. (6.4) in terms of an integral over cp following a
contour that encircles the imaginary axis in the positive sense. Then Eq. (6.4) becomes, after substitution for cl,

cpcp +ED +cp 2—6 2de 1
dp f(cp) — +

p2++2 cp2 (p2+g2 cp2)(p2+g 2 cp 2)
(6.17)

where cp and 6 are defined as in (6.6) but with Q„replacing qp and, f(M) is the Fermi function. We must handle
the formally divergent first term above by 6rst doing an integration by parts over co. Proceeding in the same

way as in the T=0' case, the first term becomes

Pep i c/ cpf(cp)
dM—

mC 2 C Bcp (5,2—cp2)'" 2
dc'

(g2 ~2) 1/2

On distorting the contour in the 6rst term so as to surround the real or axis from Qg to ~ and from —Qg to —,
and using the properties of (p2 —LV)'/2 as one crosses the cut and f( cp) =-1—f(cp),—the terms containing the Fermi
function give zero and the remainder is just Ãe //'mc. Again, this combines with E„on the left-hand side to give
K, and the result is

1 Xe'

2 tÃc

cpcp +AD +cp '—6 2

d6
(p2+ Q2 cp2) (p2+ g 2 cp 2)

dcd f (pp)
(p2 +2)1/2+ (p 2 +2)1/2+i2P (p2 +2)1/2(p 2 +2)1/2

(6.18)

"D.C. Mattis and J. Bardeen, Phys. Rev. 111,412 (1958).
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Before going on to calculate the frequency- and temperature-dependent conductivity, we derive an expression
for the temperature-dependent penetration depth. Putting 0„=0 in (6.18) and deforming the contour to encircle
the real axis from Qg to ~ and from —Qg to —~, we obtain

1 Xe'
E(0,0) =—

2 ssc
do)f((o) 1—

(52 +2)1/2+ zF — 52 g2

1 Se

2 mc
(6.19)

Using the properties of e and (v' —b, ')'~' as the cut is crossed, this can be written as

1 Ãe' 1—A' 1—(A*)'—
E(0,0) = —— d(u(1 —2f((o))

2 mc gg C+~F, —C*+zF,

&Ite'
d(o tanh-', P(o Re

ygc g (y2 —g2) ((p2 —g2) ~~~+jFp)
(6.20)

We can evaluate this integral in the limit of temperatures close to the transition temperature as was done earlier
with the free energy. That is, we retain only the leading term in 6'. Since E is already proportional to 6', the
remainder of the integral can be evaluated at 6=0, T=T,.

2Ve'

E(0,0)= dP der tanh-,'P,s) Re
8ZC p

with F&——F+F~. The result is

(a&+iF) '((u+ iI',)

Xe' P,'6' FP,~ FP,~
'- —'

E(0,0) = — Q n+-,'+
~

I+-,'+
mc 47r2 ~=o 2m. p 2~)

In the limit of large F~ (short mean free path), we can neglect I+,' compa-red to FP,/2s in the denominator
and then

Xe' LVP ( FP,
E(0,0)= — f'~ 2, —'+

mc2~F, 5
'

2~

(6.21)

with 2F~=(r) ' and P, and 6 are the values in the presence of the magnetic impurities. The penetration depth
follows from Eq. (6.11).It reduces to the usual result for F=0. In the extreme gapless limit, FP,))1,(6.21) reduces to

and the penetration depth is
E(0 0) = —(4s-'/cF)o~~'(T '—T')

(6.22)

the result obtained previously in AG. Note that this relation is true for all temperatures provided FP,.&)1 because
then T, itself is smalL Unfortunately, as remarked earlier, the condition FP,))1 is not satis6ed except over an ex-
treinely limited range of impurity concentrations close to the critical value.

To conclude this section, we simply state the results for the temperature-dependent kernel E(O,go); the conduc-
tivity follows from o(O, qo) = (c/igo)E(0, qo). The details of the calculation are given in Appendix C. For positive
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qp, in our usual notation,

1 Ee' " 1+AA+*+BB+*
E(0,qp) =— d~ {tanh~~p(a&+qp) —tanh~~p~)

2 mc oe C+*—+C+i2I' p

1 Xe'
de

2 mc gg

1—A A+—BB+-

C+Cp+ Z2I'p
tanh-', P((o+gp)+

1—AA+ —BB+ ~

tanh-,'P~
C+C++ i21'p

1 Se'

2 mt Qg qo, Qg

1 (1/—i)A Ap (1/—i)BB+
do)2 Re tanh-', p(co+ gp)

iC+C++i2I'p

1 Xe'
de

2 mt og qo

1+A*A++B*B+ 1 A*A~*—B*B+*-
—C~+C +i2I" —C*—C ~+i21'

tanh-', P(M+ qp), (623)

where the lower limit on the third term is Qg —
qp for qp&20g, and —Qg for qp) 20g, and the fourth term appears

only for qp&2Qg. Note that in contrast to the case at T=O', the 6rst two terms have an imaginary part even for
qp&20g. Therefore there will be absorption even in the gap when T&0, This is just the contribution from the
thermal excitations across the gap which are not present at T=0 . The integrals themselves must be done numeri-

cally. We remark that Qz is the impurity-concentration and temperature-dependent function &g(T,I').

VIL CONCLUSIONS

These detailed calculations show clearly that the essential feature of superconductivity is the correlation of the
electrons rather than the existence of a gap in the exciation energy spectrum. For even in the absence of a gap, so
long as correlations persist there is an ordered state below a certain critical temperature which displays the usual

properties of a superconductor. %e have not discussed persistent currents, although this can be done without difG-

culty with the use of the sum rule for the conductivity. This shows that such currents are possible in spite of the
absence of a gap, but we leave this for a later report.

APPENDIX A

In this appendix we derive Eq. (5.1) for the total energy. The Hamiltonian is

1
X=— P. dPng. t(x) Vy, (x)—-', V g, dPry. t(x)y, t(xg .(*)P,(x)+P.P; d'rv, (r—R;)P.t(x)P, (x)

2m

+P; d'rv (r—R,){S;Pt'(x)$4(x)+Si+g '(x)4 (x)+S'(4't'(x)4' (x)—4' '(x)f (x)))

=XI+X'@+X)+Xp) (A1)

where x= (r,t), S;+=S*(R;)+iS"(R.;) are the impurity spins and we have assumed a local superconducting inter-
action of strength (—V). The equation of motion for the operators ft(x) and g tt(x) are

(8 |7
I

i—+ —Vi(r) l4t(*)= L4t(x),Xr]+Z'»(r —R~)(S' A(x)+S'Vt(x)),
(Bt 2m

(A2)

z + V,(r') Iftt(x') Q tt(x ) Xr]+g—, v, (r R,.)( S,+ftt(x ) S,.*ftt(x'))
at' 2m

(A3)

with a corresponding pair of equations for Pt(x) and Ptt(x), and where V&(r) =P; v&(r —R;). Now multiplying
through (A2) on the left by P&t(x') and (A3) on the right by f&(x), integrating over r or r' and similarly for the
spin-down equations, and adding all four equations together setting x= x at the end, we get

=2Xz+ 2Xg+ 2Xp+4Xr .
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Carrying out the average over the impurity distributions, and the ensemble average, this becomes

(8 r))
2i d'r

~

i —i ~g„&(x—x')
E rent Bl'f a=x'

=2(X)+2(Xv),

where err&(x —x') = i—(Ptt(x')Pt(x)), and (X)= L~,s is the total energy. Furthermore, (X)rr is —6'/V, so that

8 8
i z —g„—&(x—x')

V R Bt'
(A4)

Introducing the Fourier transform

g»(x —x') = X:.-

we get
2

Es =——Z—) P, s,c)rr(k, s„)e—"',
V

where s„=(2)+1)7r/ iP, —) =0, &1, . Converting the sum over v to an integral over a contour enclosing the
imaginary ~ axis in the positive sense we have

and f(o)) =(e(' +1) '. Using the fact that g is analytic except for a cut along the real axis from —~ to —Qg and
from Qo to m, and the fact that Im&& changes sign as we cross the cut, the contour can be converted to one sur-
rounding the real axis to get

Q2

&s——=4 +)
V

dc'
+ —o) Imgtr(k, (0)f(o))e""

Qo 2'
(A5)

Putting o) —-) —o) in the second integral and dropping the e"'+ (which merely assured convergence) we get Eq. (5.1).

APPENDIX 8

We derive an expression for E(0,0) including vertex corrections at T= 0 . The major contribution will come from
the ladder diagrams and we consider only these. In this approximation, the equation for the vertex part is

A.,(k,o)) = r o&,+P), (&(k—k')() (k', (0)A, (k', o))g(k', o))w(k' —k))„,
where p=x, y, s, and the average is over the impurity distributions. The interaction matrix 'll(k —k ) will have
the following form

w(k —k') =P; Lt, (k—k')r, +t,(k—k')g's„j (~—~ ) n' (B2)

Now it is not at all obvious that the exchange interaction term will just be proportional to 70. In general it will
not be. However, for the particular case we are considering (q=0, qs

——0), a more detailed calculation (which is
faciliated by using the Eliashberg i four-component spinor notation) shows that the spin-dependent effects can
be represented in the above form.

Now the vector A, must be directed along k; therefore, on introducing the function

kp(o)), p),=( ll(lr', k ).
—c)(k'o))A', ,(k o)) g'(, k )eo)',(k' —k)), ,

the equa, tion satisfied by p(~) is

k,y(o)) =P) ( tt(k —k') g(k', o))k,'(r()y4((0))g(k', „)~(k'—k)).„ (B3)

p
S(S+1)

p(re) = '@ +&'
I
zr(rr) I

cosnrs, , (k', re)(re+a(ce)) B(k',re) rs+rr' — Z&~' I es((r)
I

s cosnc)(k', o))(re+a(ce))g(k', ie), (B4)

Using the assumption that &(k—k') is essentially independent of the magnitudes of k and k', and carrying out the
avera e over im urities we get

"G. M. Eliashberg, Zh. Eirsperim. i Teor. Fiz. 38, 966 (1960) /English transl. : Soviet Phys. —JETP 11, 696 (1960)g.
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=k k'. Makin the azzsafs g(co) =y(co)re+8(oi)rs+Iz(co)ri and doing the integration over e~, it is
easv to show that 8(ce) =0 and. we get coupled equations for y(oi) and zz(co)~co~ whose solutions are

W

—F2'I

Z(1 I—') '"+I's'I' —I'1'
z(~)= )

Z(1—Nz) z~z+ r,~lz —i,~

where F&', and F&' are de ne exac y as & and fi .d tl I' and I'2 were except that the angular average is weighted by a factor
cos o.. Now

M
& (0,0)= r. —T I:8(k, )( o+4( ))9(k, )7(k ")'.

ns2c c 2z'

u s i
' t 6 t a artial integration over co and then the integration over &1,Substituting for @(~) and g and carrying ou rs a par i

just as in the body of the text, we get an expression for K(0,0):

E(0,0) =
Ee2 6'

~c 2 & (v' a&—)$(v& az—)»z+ir, z 7+sr as

I' "is defined in terms of the angular average weighted by the factor (1—coso). We see comparing Eq. 6.8,
e

'
h I' to I' "' and to add the factor iI"6' in the denominator.that the eGect of the ladder diagrams is to c ange 2 o 2 an

APPENDIX 0

con
' . . b d f d t th t. shown in Fig. j.2 where the cuts for v and v are displaced by

"fre uency" Q„. The function E(0,q&), extended to all values of the complex frequency qe,
d C th h the points oi=(2zz+1)zr/ —iP where thelarities since the contours Cg an 4 can pass roug

re to continue the function E(O,Q„) l ti ll, t o d th,
that f(~)= f(oi~2zzzr/( iP)), so —that by using the transformationsingu ar'i larities. This is accomplished by noting t a

co—0„—+ —co', the integral over C2 corn ines wiC b' ith the integral over C&, and similarly for the contours C3 an
For example,

1 Ãe'
C=—

2 mc

$ Q7e2 —00+Q~

2 5$C Qg+Q&

I Ãe'

1 AA 88 —1+A.A—*+88 *
&CO

C+C +i21's C—C *+i21's

d(gf((g){h(A, A,B,B,C,C ) h(A, —A *,—8, 8*,C, C *)}—

2 1sc gg

d&u'(1 f(ei'))' —h( A ——A 8—, 8 C C)+h( —A A*, 8, 8*,C, —C*)}, —(C1)

ll f t th 't ~ 'v and 5 ~ 'vas M 0„~—(u, aild f(—~ +0 )=f(—(g )=1—f(~). Inputwhere we have used the fact that v —+ —v an v

1Ã'
{a(A,A-, B,B-,C,C )—I,(—A*, A, —8*,8, —C*, C )}f( ).1

2 mc gg
(C2)

Gg C(

-Q+ qo Q+ q

(a)

G2 Cg

(

Q~+G~

FIG. 12. The contour used in evaluating the integral
in Eq. (0.18).Og means Qg(T, F).

(b)

QG+qo Q~+ qo

F1G. 13.Contours used in evaluating the temperature-dependent
function Z(O, qo): (a) qo(200, (b) qo)2Dg, where Q&p means
ng(T, r).
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Therefore, Eqs. (Ci) and (C2) can be combined to give a single integral over the contour C&. In exactly the same
way, the integral over C4 combines arith the integral over C3 to give a single integral over the contour C3. After
substituting back for A, B, C in terms of v, etc. , the result for the function K(0,qo) analytically continued for all qo is

1 Ee'
K(0,qo) = ——

2 saic

1 vv +6'
d(u tanh-,'P(o 1—

(v2 —Q2) ~2+(v 2—lg) +22@2 (v —Q2) ~ (v —Q ) /
(C3)

Consider qo real and positive. As at T=0', two cases arise, qo(20~ and, qo) 2Qg, because in following the contour,
different values for the phase of v and (v' —LV)'" will come in for the two possibilities. (See Fig. 13.)

For qo&20G,

1 Xe' " 1 AA —BB —1+A*A +B*B
K(0,qo) = —— Cku' tanh-2P(o'

2 mc o „C+C+i2I'2 C—*+C +i2I'2

1 Xe'

2 saic —C*—C *+i2I'aC—C *+i21'g

1+AA ~+BB ~ 1—A~A ~—B*B *
d(u' tanh-', Pa)'

1 Xe'

2 mc

~G+ QO 1—(I/i)AZ —(1/i)BB 1+(1/i)A*X +(1/i)B*B
der' tanh-,'p(o'

iC +C+i2I'2 zC —C*+z21'2
(c4)

gf in the first and third integrals one makes the transformation ~' ~ ~+qo, (v ~ v+, v ~ v), and in the second
integral the transformation co' —+ —~, (v ~ —v, v ~ —v+), and then combines terms, (C4) becomes

1 1Ve' " 1+AA~*+BB~*
g(0,«)=- d~ f tanh-,'p(o&+q, )—tanh-,'p~}

2 mc ag C+*—+C+i2I'2

1 Ãe'
dco

2 mc og C+C++i21'2

-1—AA+ —BB+-*
tanh-,'P(~+qo)+

C+C +Z21'g
tanhx2P~

2 ac Qg gp

1—(1/i )ZA+ (1/i)BB+-
Cko2 Re tanh-', p(++qo) .

iC+C++i2I',
(CS)

For qo) 20', in exactly the same way, we get (CS) again except the lower limit on the third term is —Qo instead
of 00—

qo, and there is an additional term

1 Ee'

2 ssc Qg qo

I+A*A++B*B~ 1 A*A+* B*B+*]— —
du) — tanh-,'P((o+ q0) .—C*+C,+;2r, —C*—C,*+~2r, l


