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The expression (3.12) gives the exact answer for the
thermal conductivity of a superconductor, but it has
been used already' as an extremely accurate approxi-
mate expression. The somewhat crude justification for
this is that if one takes (1.3) for a normal metal it is
easy to see that it only differs from (3.12) by an
amount of relative order of magnitude (kT/p)', which
is completely negligible at the temperatures of im-
portance for superconductivity. Since (3.12) inakes

sense in the superconductor (i.e., remains finite) and
is extremely accurate for the normal metal, it was
natural to assume it valid to a high degree of approxi-
mation for a superconductor.
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The Eliashberg expression for the free-energy difference between superconducting and normal states for an
electron-phonon interaction model is evaluated so as to estimate the errors involved in expressions based on
the weak-coupling limit. It is shown that the major correction comes from the difference in self-energy terms
Z&, and Z&„and is relatively of order L(&/coo) ln(&/~0) 7', where a&o is an average phonon energy. The cor-
rection may be appreciable for strong-coupling superconductors such as lead.

1
~~NE of the present authors' with Cooper and

Schrieffer derived an expression for the free-

energy difference between normal and superconducting
states, 0,—0„, based on a model subject to the follow-

ing approximations:

(1) The Fermi surface is isotropic.
(2) The gap parameter 6 is independent of energy

over the important range of integration, a few times A.

(3) The self-energy Zi is the same in normal and su-

perconducting states, and is also independent of energy
over the relevant range. One may then include ZI in the
renormalized quasiparticle energies.

With these assumptions, Q, —Q„may be expressed
as a function of 6 and T. The speci6c interactions which

give rise to superconductivity enter only through A.
Thus one may use the expression to derive an empirical

A(T) from experimental measurements of the free
energy difference, as obtained for example from the
critical field. '

The latter two assumptions are presumably valid in
the weak-coupling limit, A«~0, where ~o is an average
phonon energy. The purpose of the present paper is to
derive more general formulas for the free-energy differ-

ence between normal and superconducting states and
thus to estimate the errors involved in the Sardeen-
Cooper-Schrieffer (BCS) expression. The calculations
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are based on a theory of Eliashberg' which includes
electron-phonon interactions in a general way but omits
effects of Coulomb interactions, except as they may be
included in the renormalization of the quasiparticle
energies. The major corrections arise from differences in
ZI between normal and superconducting states arising
from the phonon interaction.

The general expression derived by Eliashberg' for the
free energy per unit volume of the superconducting
state is
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The energies e„are measured from the Fermi energy
p, cv,' is the unrenormalized phonon energy, and o.„„.
is the coupling constant entering the electron-phonon
interaction. We assume everywhere that e„ is small com-
pared to p, so that there is symmetry between electrons
and holes. Then p will be independent of temperature
and the same in normal and superconducting states.

The expression (1) for n, is analogous to a similar ex-
pression given by I uttinger and Ward5 for the free en-

ergy of an interacting electron system. It has the useful
feature that it is stationary with respect to variations
in Z&, Z2, and x if these quantities are given by

The integration over momenta in (8) can then be
carried out, and we find:

Q Q [2~/1/(0)/P] Q j( f. 2)1/2 (A2(f ) f 2)1/2

where /V(0) is the density of states of one spin at the
Fermi surface.

One may evaluate C in a similar way by integrating
first over momenta coordinates. It should be noted that
if 2& depends only on the energy variable, the sum

PI
(1/P I/')E ~. "G-(-~')D(~ I")—

P'

(6) is independent of the values of Zt used in G„, and is
thus equal to Zi„. Thus we find

(- = [~/V(0)/P] P(Z.—Z„)((A'—i,')"s

( f. 2)1/2 A2/(+2 f 2) 1/2} (1 2)

The corresponding expression for 0, the free energy
in the normal state, is similar to (1) except that now

Z2 ——F=0 and Z&„and x„differ by small amounts from
their values Zi, and x., in the superconducting state.
The free energy difference 0,—Q„may be calculated by
making use of the fact that Q„ is stationary with re-
spect to variations in Z~ and x. If in the expression for

we replace Z& by 2&, and ~„by x, and call the result

0„„then 0„,will differ from Q„by terms quadratic in
the differences (Zr, —Zt„) and (s,—s „).The magnitude
of these errors is estimated below and shown to be
negligibly small.

The expression for 0,—0„,can be simplified by use of

(5) and (6). We 6nd

Inserting this result in (11), we find

n, —n...= [~/v(0)/p] p {(z.+z„)

X [( 1~ 2)1/2 (A2 f. 2)l/s+A2/2(A2 f- 2)1/s]
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In the zero temperature limit one may replace the
sum by an integral along the imaginary co axis. Bv use
of the summation methods of. I.uttinger and Ward' and
others, one may express (13) at an arbitrary temperature
as an integral along the real axis:

Q,—n„,= —(1/vp)
Q, —Q„,=ReX(0) [z.(~)+z-(~)]

where C is given by
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and is a small correction in the weak-coupling limit. Here
G„, is the electron Green's function for the normal metal
except that Z&„ is replaced by 2&,. Similarly cp„, is ob-
tained from p, by setting Z2 ——0.

The momentum dependence of Z& and Z2 is unim-

portant and following Nambu' we dehne

t z(f )=t+z, (f),
a(f) =z,(f)/zg-).
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Here Re means the real part.
Values of Z(cd) and A(cd) have been determined for

lead bv Schrieffer et al. and by Scalapino et a/. ' Equa-
tion (14) gives a rapidly convergent expression for cal-
culating the free-energy difference and thus II,'/'Sz.
It can be shown to be equivalent to an expression de-
rived bv Wada' by a diferent method. Wada's less
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rapidly convergent expression is

n, —n„=—ReÃ(0) [1+Z„(cv)]co
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The difference between (14) and (15) vanishes if it can
be shown that

which follows from a momentum integration of

Z G.(&)~ .(~)=Z G.(~)~ .(~)

Both sides of this equation are equal to
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spectrum is assumed to be of the Einstein type con-
taining a single frequency cop. Then the phonon Green's
function is independent of momenta, 6 and Z are re-
garded as constants, and Z is absorbed into the defini-
tion of the single-particle energies e„. With these ap-
proximations we find at zero te.iiperature

Z1,—Z1„=ho(h/coo)' 1n(Mo!6) cu(coo

='o(~~o!cu2)' ln(&uo/') ~&"o,
which gives

(20)
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In the weak-coupling case this term is negligible, but
cannot be neglected when the coupling is strong. Thus
for lead. ~/coo=2 and C1 may give a correction of more
than 10%.

We turn now to a discussion of the approximations
made. No error is introduced by replacing Z&„by Z~, in
the calculation of 0„,provided that Z& depends only on
the energy variable and is independent of momentum, an
excellent approximation. By integrating 6rst over the
momentum variable, we find

if it is assumed that x„=x,.
We are particularly interested here in estimating

errors involved in use of the weak-coupling approxima-
tion. If Z and 6 are constants over the important range
of integration, Z may be included as renormalization of
the quasiparticle energies e„.This neglects small terms of
order T' ln T which come from the temperature de-
pendence of Z (Ref. 4). The 6rst line of (14) then re-
duces to the original expression of BCS, given in
Eq. (3.37) of that paper. After a change of variables of
integration, Eq. (14) reduces to (3.37) plus a correc-
tion C&'.

+Z,„(P)G„(P)—(221,—Z1 )G„,) =0. (22)

Here q „and g„are the correct normal-state functions
and y„, and G„, the function with Z~„replaced by Z&, .

The error introduced by replacing m „by m, is to
second order:

»=('/4p')~ [' «)/'«)][~ «)-~ «)]'

To estimate the magnitude of ~„(q)—vr, (q) we use the
simplifying assumptions made above. The difference
depends in an unimportant way on momentum and
energy and is roughly

0 —0 =——'X(0)ZP —2$(0) .—-=(4/8)(~'/p') 1 (2 o/'). (24)
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where f is the Fermi function and Z= (o'+6')'/'. Here
C1 is given by the second line of (14):
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For simplicity in estimating the magnitude of C&, we
make the following approximation: The coupling con-
stant n, 2 is replaced by a constant g=Xo/1V(0), where
Xp is a dimensionless constant of order unity. The phonon

Since 6/p is of order 10 ', (24) leads to a change in
velocity of sound of the order of one part in 10'. The cor-
rection (23) is completely negligible.

Thus the major correction to the BCS expression
comes from C~, and is dependent on the difference in
the renormalization factors, Z„—Z„between normal
and superconducting states. For weak coupling, cor-
responding to A(~o/10, the correction is small, and the
expression may be used to estimate empirically the terri-

perature dependence of 6 from critical field or thermo-
dynamic data. However, errors are appreciable for
strong-coupling superconductors such as lead. A rapidly
convergent integral is given for calculating 0,,—0„
from Z(~) and h(au) when the coupling is strong.


