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Impurity States in Transition Metals
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The Green's-function technique of Slater and Koster is used to formulate the Hartree-Fock problem for
impurities in transition metals. Partial account is taken of the many-band structure of the transition metals
and of electron-electron correlation. Application is made to the solution of the self-consistent-Geld equations
in simple cases, to a generalized condition for magnetization of an impurity, to polarization of near-neighbor
atoms, to the Knight shift of impurity atoms, and to the occurrence of a magnetic moment as a function of
electron concentration for Fe dissolved in the bcc 4d transition metals. It is concluded that the effective ex-
change energies that act to magnetize transition-metal impurities are no greater than 1-2 eV.

I. INTRODUCTION

HK electronic structure of widely separated im-
purities in transition metals has received in-

creasing attention in recent years. This interest is in
response to expanding experimental measurements of
susceptibility, specific heat, conductivity, nuclear mag-
netic resonance, Mossbauer eBect, and neutron di8rac-
tion. Some theoretical progress has been made in the
analysis of these observations, but the work is still in
an early stage. This is not surprising since a real under-
standing of the electronic structure of the pure transi-
tion metals is just beginning to emerge. Work by
Friedel, ' Kohn and Vosko, ' and many others' has
established some of the basic ideas concerning the
electronic structure of impurities in metals, but these
efforts have been most appropriately applied to the
study of s-p band metals and to the asymptotic behavior
of wave functions around an impurity. More recent
work by Anderson, Wolf, ' and Clogston'~ has applied
methods better suited to the narrow bands encountered
in d-band and f-band metals. In particular, the Green's
function method introduced by Slater and Koster' "
has been developed and applied in a preliminary way to
various impurity problems, including the interesting
question of magnetized local states. ~'

In its simplest form, the Green's function method has
been used by WolG' to determine the wave functions of
a single band of electrons in the presence of an impurity
atom under the assumption that the impurity potential
is closely confined to the site of the foreign atom. These
wave functions are then used to determine the self-
consistent Hartree-Fock potential for the impurity. The

method has been applied principally to discussing the
conditions under which an isolated impurity. atom will

magnetize when dissolved in a transition metal solute.
In this paper we want to extend the discussion and make
it more realistic by taking partial account of correlation
and the many-band structure of the transition metals.
We can then give a fuller account of the electronic
events that occur around an impurity atom. We shall
also give a more general account of the conditions under
which an impurity will magnetize, a calculation of the
Knight shift of an impurity atom showing how it can
depart widely from simple theory, and a semiquanti-
tative discussion of the magnetic moment associated
with an iron atom dissolved in the body-centered-cubic
4d transition metals.

+„g,(r) = P A„.(r.)W„.(r),
ursa

where E is the number of atoms in the crystal. Then
A, (r ) is given by

A, (r,)=8„e'"'"+PG~~(r, rs)c (—rs), (2)

II. THEORY

a. Exact Hartree-Fock Theory

The major results of the Green's function method can
be recapitulated as follows. ' " If E„~ are the unper-
turbed eigenvalues for some pure metal, the perturbed
wave functions for energy E=E„I,' and spin 0 are
expanded in terms of the Wannier functions W„(r—r,)—=W„,(r) for band rs and site a.

' P. F. Casteljan and J. Friedel, J. Phys. Radium 17, 27 (1956);
J. Friedel, Can. J. Phys. 59, 1190 (1956);J. Phys. Radium 19, 573
(1958); Nuovo Cimento Suppl. 2 7, 287 (1958). These papers
contain extensive bibliographies to early work.' W. Kohn and S. H. Vosko, Phys. Rev. 119, 912 (1960).' Summaries of recent work and many references may be found
in the volume Metallic Solus Solltiorls, edited by J. Friedel and A.
Guinier (W. A. Benjamin, Inc. , New York, 1963).

4 P. W. Anderson, Phys. Rev. 124, 41 (1961).' P. A. Wol8, Phys. Rev. 124, 1030 (1961).
'A. M. Clogston, B. T. Matthias, M. Peter, H. J. Williams,

E. Corenswit, and R. C. Sherwood, Phys. Rev. 125, 541 (1962).
~ A. M. Clogston, Phys. Rev. 125, 439 (1962).' G. F. Koster and J. C. Sister, Phys. Rev. 95, 116'/ (1954).' G. F. Koster, Phys. Rev. 95, 1436 (1954).' G. F. Koster and J. C. Slater, Phys. Rev. 96, 1208 (1954).

where
~ jjr. r

G-s(r) =—ZX&E„lo—E

and the c„,(r b) satisfy the difference equations

c .(rs)+Q(W s~ V,Br~ W),)
Lc

y(5.)e*'"'"+Q Ggg(r, —rd)cr, (rg) j=0. (4)

V HF is the self-consistent Hartree-Fock potential for
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spin r and is given by
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where p„(E) is the density of states per atom in the
unperturbed band n and the integral is extended over
the whole band. The principal part of this integral is set
equal to —I„(E) so that

b. Ayproximate Hartree-Fock Theory

In order to get a manageable theory, we must intro-
duce some drastic assumptions. We suppose, therefore,
that the impurity potential is large only near the im-

purity site ra=0, and that only diagonal elements of
V ~ exist between the various bands. These are
essentially the same assumptions made by Wolff, ' except
that we consider several bands to be important in
screening the impurity. We thus retain in an approxi-
mate way some important features of the many-band
structure, as is seen below. We have, then,

G g(0) = I (E)+i~rl (—E). (12)

A discussion of the functional form of I„(E) is given in
Ref. 7. Equation (10) is now written

V„,= (W„p( —Ze'/r~ W„p)

+Q t (W wip„) p/er )iwowip„)p

The direct potential due to the impurity nucleus is
—Ze'/r, and the unperturbed wave functions are 4'„oo.

The Green's function G„zjOj may be written
The suDHnations onk extend over filled statesup to the

'" " ' ' "" ~ ) y D

Fermi level. In principle, the systems of Eqs. (4) and (5) „(E')dE'
can be solved simultaneously giving a complete solution
of the impurity problem within the Hartree-Fock
approximation.

and

A„.(r,)=b„„e""

(W pi V.HFi W o)
c .(0)= —8.
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V.HF
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V,

i
W o)G (0)

The integral in Eq. (13) is the number of electrons N&,

7
of spin o accumulated on the impurity site by the
perturbation from band l.

We next further simplify Eq. (13) by assuming that
We next rewrite Eq. (1) as all the Coulomb integrals are equal to V, the exchange

integrals between identical Wannier functions are equal
@„g„(r)= (1/+N) LA „,(0)W„o(r) to J, and the exchange integrals between differ-

+~ & ( )W ( )j (g)
ent Wannier functions are equal to E. Setting
(W o~

—Ze'/r
~

W o) = ZIi, we haye—
and define V —= (W~o~ V nF~w~o) so that

W„p(r)
QN 1+V .G g(0)

a+0

We now further approximate by using in Eq. (5) only
that part of +&&, depending on W&p(r). Equation (5)

V..= Zb'+Q(U b..—J)N .. —

+ Q (U o..IC)N' .. (14)—
mgn, o'

We suppose specifically that J is much sma]ler than
U. This assumption is contrary to previous work, in
which J has been taken equal to U. It seems evident,
however, that Jmust be greatly reduced by correlation.
For an iron atom in the con6guration O', Il is about 30
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1.0t 20 eV,"while we present evidence
below that J cannot be a gbe lar er than — e

ill robably be sma er anchange integral E wil p y an
e inte ral between orthogonal or i s in

e O.i to 0.5 eV. It also becomes evident below

without changing the nature of the impun y pro
h 1 xperimental evidence. It

h ldh h
to t e enera ex

is to be expected. that correlation s ou
on the

Coulomb integrals. A discussion
n b Phillips" in connection wi e

t 6 Id obl ofof correlation on the self-consisten e
pure metal.
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we have therefore
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d. Perturbation of Nearest Neighbors

at an im urity will not usually be
completely screened on the impurity site. n a

hnical Report No. 12, Solid State and
C b id M h tt 1959

Ph s. Rev. 118, 2036 (2960).
123 420 {1961)."J.C. Phillips, Phys. Rev. 1

18—b., (WisW
~
e'/ri,

~
W„,Wts) jXi,.

This equation can be written approximately as

W„, Vt" i'~ W„.) = (e'/E) (—Z+cVt+cV)) —j7't, (19)

„iV„,and weere E. is the distance to site a, l,=

I.et us define the direct potentia a e. , so thatneighbor site n.—= (W .
~t = (H/E) ( z+et+i@,) j)vt .— —(20)

—(+i~'Wee
~
e'/ris

~
Wna+»')g. (17)

We approximate once again y pin b re lacing +&&, by the
first term of Eq. (9) and then obtain

(W„.i V.HFi W..)
= (W..

~

—ZS/r
~
W„.)

+Q f(WisW„, ~e'/rts~ WisW„.)
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(21)N..'= q„—(Er) V..'
Usually, m will be small -enough so that one can write functions at the various neighbor sites that have been
for the nearest-neighbor site from Eqs. (14) and (16), discussed by Slater and Koster. ' These effects are

usually rather small and are neglected for simplicity.

V„.'= v.+ Q (U' —8„J')N„.', (22) e. One Domina. nt Band
0'm

where. we have taken E'=J' for simplicity. These
equations may be solved simultaneously to give

Q (N„i'+N„i') =— E(Er), (23)
1+(2U' J') 5—(Er)

Q(N t' N„i')= ——
(vt —ni)

,~(Er)
1 P(Er)—J' (24)

Here the primes denote quantities appropriate for the
neighbor, or regular, lattice site, and $(Er) is the total
density of states for all bands defined by P(Er)
=P„g„(E~).Equations (23) and (24) are used below
in discussing the distribution of shielding charge over
the nearest-neighbor atoms to an impurity and in con-
sidering the polarization of neighbor atoms to a mag-
netic impurity.

In this discussion of the nearest-neighbor atoms, we
have presumed that each neighbor atom is acting inde-
pendently of all other neighbors. Actually this is not so.
Complicated interference effects exist between the wave

V,.= —ZF+P (U—S...J)N,.
—Q(U —8..E)qi(Er) V(, , (25)

V E.= ZF E—(U —~- J)ni(Er) VI"

+Q (U 5...E)N—i..

mQ Zcr'

(U 8 'K)H (Er)V ' (26)

These two equations can be solved simultaneously, with
the results

It may happen in an impurity problem that the
burden of shielding the impurity rests largely upon one.
dominant band. This is the case if all other bands
present a low density of states at the Fermi level by
reason of being nearly or completely filled or empty. In
this case, let us take e= 1 to be the dominant band and
e=l, m, to be the remaining bands. &e suppose
g~(Ef) to be small enough so that N& = —g&(Er) V(..
Then Eq. (14) may be written

2 (Vit+ Vii) =—

(Vit —Vii) =—

gp 2U —J 2U —E
+ 1+ (E J)P —', (Nit+—Nip)

1+ (2U K)P 1+(2—U E)P 2U—J—
J E

1+—(E—J)P (Nit Nip)—
EPJ—'

(27)

where

~~(Er)
2 (N t.t+&&») =- ZF+ (2U—E—)-,' (Nit+N»)]

I 1—(J—E)q&]L1+(2U—E)g
Ev~(E~)

(Ntt —Nii) = (Nip QT»)
L1—(J—E)&,]L1—KP]

ni(Er)

& 1—(J E)ni(Er)—

(28)

(29).

If, for simplicity, we again place K=J, the four equations can be put in the form

—,'(V, t+ Vis) = (1/51+ (2U—J)P]}L—ZF+ (2U—J)-', (Nip+Nip)]

(Vit —Vii) = —LJ/(1 —JP)](Nit —Nii)
—,', (N(t+N») = —(g)(Ey)/L1+ (2U —J)g}$—ZF+ (2U —J)-', (N, t+N, g)]

(N -N i)=LJ. (E.)/(1-JW](N t-N ~)

(30)

(31)

where now p= p & p&(E&). If we place p=0 in Eq. (30),
we obtain the appropriate relations for a single band, as
would be found directly from Eq. (14). It is clear that
the eBect of the other bands is to shield the potentials

ZF and (2U ——J) experienced by band 1. The mag-
netic effects, however, which, we see below, derive from
the second of Eqs. (30) are enhanced by the presence of
the other bands.
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It should-be remarked here that this analysis remains
approximately correct -even-: if .one of- -the low-state
density- subsidiary bands -has the character of a wide's
band. In that case, -the Fourier transform of the self-
consistent charge density:of one spin is

N

0.8—
tX=- (.0

~(V) = V(V)F(V), (32)
. O.e—

where V(q) is the Fourier transform of the self-con-
sistent potential. F (q) is given by

(33)

0,4—

0.2—
N= —T

TF

III. APPLICATIONS

a. Some Simple Examples

In this section, we consider a simple case of an im-

purity problem. to illustrate the range of electronic
events that may occur around an impurity. We consider
first a single band of electrons and a nonmagnetic case in
which Et =Ã& =1V and Vt = Vt = V. Equations (14)
and (16) then become

V = ZF+ (2U—J)X, — (35)

X=(1/x) tan —' n
x-ri (Er) V

(36)

These two equations must be solved simultaneously to
find V and E. As an example, we take the valence
contrast of the impurity Z=i and adopt the values
J"=30 eV, U= 20 eV, and J= 2 eV. We furthermore
consider a Lorentzian band for which

n(E) =
~a 1+ (E/a)'

(E/~)
I(F)=

S 1+(E/~)'
(38)

(39)

where v is the volume of the system and nk is the
occupation number of state Ek. One has

limF (q) = —(1/9) tl (Er),
q-+0

where t)(E~) is the s-band density of states per atom
and 0 is the atomic volume. The total charge accumu-
lated from the s band is then

~p(0) = —(n/fl) V(o) n(Ef) (34)

Since the self-consistent potential including contribu:-
tions from the s band will be closely confined to the
impurity site, (n/Q)V(0) will be approximately the
same as the self-consistent potential experienced by the
d-bands, so that Eq. (34) is consistent with the as-
sumptions made earlier in this section.

-0.2—

-04
-5

I I

2 -1
rrt)(E&) v

Fro. 2. Solution of Eqs. (33) and (36) in text for F=30, V=20,
j=2, Z=1, n= —1, and ~q(Ey) =0.5.

so that 6= 1/Ls t) (E~) (1+n')). Suppose we . chose
~t)(Er) =0.5 states/eV-atom, a value typical of 4d-band
metals, and n= —1.Then the b'and has a width of 1 eV
and is 4 filled. In Fig. 2, we show' a curve for E as a
function of x-ti(Er) V for n= —1:Equation (35) is also
shown as a straight line of slope 1/(~r)(Er) (2U —J)),
intersecting the axis of ordinates at ZF/(2U J). The-
self-consistent potential determined by the intersection
of the two curves at point A is —4.5 eV, contrasted
with the direct impurity potential —ZI' = —30 eV. The
number of electrons accumulated around the impurity
is 2/=1.32, contrasted with the number Z= 1 needed
to just shield the impurity completely.

If exchange effects were ignored (J=O), if a localized
electron were perfectly effective in shielding the nucleus
(U=F), and if the density' of states were very large,
then 2Ã would be very nearly 1. This is evident since,
then, Eq. (35) would define a straight line of very small
slope intersecting the axis of ordinates at Z/2. In actual
fact, as this exampxle shows, because of exchange and
imperfect shielding, there is a tendency for an excess of
electrons to accumulate around a positive valence im-

purity. Both of these effects are absent from theories
based on Poisson's equation and the Thomas-Fermi
approximation or the Born approximation. This excess
charge must be compensated by a spreading out of the
perturbation to atoms adjacent to the impurity, which
we discuss below'. If J were not greatly reduced by
correlation, or if U were equally reducecl, the tendency
of the perturbation to aBect sites at a distance from the
impurity atom would be exaggerated. This is contrary
to the general experimental evidence that impurities in
d-band metals are shielded almost entirely at the im-
purity site;
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1.0

0.8—

0.8—

neighbor site is 0.48 eV and is much smaller at the next-
nearest-neighbor site. Since we are using the Thomas-
Fermi assumption X= r)(—E~)V, it is clear that the
perturbation decreases essentially exponentially away
from the impurity site with the characteristic Thomas-
Fermi shielding constant

LSse' P ri.(Er)g'I'.

0.2— b. Condition for Magnetization

In this section, we discuss the conditions under which
an impurity in a metal will magnetize. We begin again
with a single band. Equation (14) can then be written
in the form

—',(Vt+Vq) = —ZF+(2U —J)-', (Et+Kg), (41)

-0.4
«5

I

«4
I

«3
(Vt —Vt) = J(lt/t Xi—) . - (42)

Let us consider next in what way the above results
would be affected by the presence of another band. For
simplicity, we choose the second band to have the same
density of states s.ri(Er) =0.5 but to have rr=1. This
band then also has a width of 1 eV but is +~ 6lled. If we
chose E=J again for convenience, and name the two
bands 1 and 2, it is clear from Eq. (14) that

Vi ——Vs = ZF+ (2U J—) (Xi+Ps)—. (40)

Since we have chosen s rl(Er) to be the same for both
bands, we can find Ã& and Ã2 from the construction
shown in Fig. 3, where the self-consistent potential is
marked by the line A and is chosen so that X~ and E2
add up to the value of A for which line A intersects
Eq. (40). We now have 2/i= 1.12 electrons and
2$2=0.32 electron for a total accumulation of 1.44
electrons, a somewhat larger number than resulted
from the presence of only one band.

Finally, let us examine how the excess charge at the
impurity site will aGect its neighbors. With reference to
Eq. (20), we suppose R=2 A and neglect the small

interatomic exchange effect by placing j=0. If ap is the
Bohr radius, A'/me equal to 0.529 A, e /us=27. 2 eV.
Therefore, the direct potential at the nearest-neighbor
site is e=(27.2)(0;529/2)(0.44)=3.15 eV. We have

7rf(Er) =1.0 states/eV atom, and find then from Eq.
(23) that there is an accumulation of 0.15 holes on each
neighbor. These holes react back on the central atom
but have a small effect in comparison to the original
perturbation of 30 eV. In this approximate sense, the
behavior of the complex is consistent with the original
assumption that the perturbation is small except at the
impurity site. The self-consistent potential at each near-

rl.y(E&) v

FIG. 3. Solution for the self-consistent potential for two bands
with a& =—1, sg&(&r) =0.5, ar = 1, sos(Er) =0.5, and other
parameters as in Fig. 2.

These equations must now be solved simultaneously
with Eq. (16) to find Vt, V&, Et, and X&. It is clear
from Eqs. (41) and (42) that these solutions can be
found from the following construction. S as a function
of 7rg(Er) V is first plotted from Eq. (16). Next draw a
straight line on the plot with slope —1/7rr)(E&) J. If this
line intersects the curve at two points (iVt, Vt) and
(1V&,V&), these values satisfy Eq. (42) . Next displace the
straight line until the average of the two points
Li/2(cVt+1Vi), 1/2(Vt+ Vt)$ lies on the straight line

going through the axis of ordinates at ZF/(2U J)—
with slope 1/[s.ri(Eg) (2U —J)].The two intersections
then satisfy both Eqs. (41) and (42). An example is
shown in Fig. 4. Here we have chosen 7rr)(Er) =3, Z= —'„

1.0

O.S—
a=- &.0

0.6—

0.4—

0.2-

-0,2-

«0 4
«5

I

«3
rr i)(E&)v

FIG. 4. Solution of the self-consistent problem in a case giving
stable magnetic solutions at 8 and an unstable, nonmagnetic
solution at A. Drawn for F=30, 0=20, J=2, at= —1, Z=$,
wy(Er) =3. See text for detaiis of construction.
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ELECTRON CONCENTRATION

Ru

FIG. 5. Magnetic moment as a function of electron concentration
for 1%of Fe in various 4d transition metal alloys from Ref. 6.

n= —1, F=30 eV, V=20 eV, and J=2 eV. The
unstable nonmagnetic solution is shown at A, while the
stable magnetic solutions are at the points marked B.
The unstable solution corresponds to 2S=0.78 elec-
tron. The magnetic solution gives (St+Et) =0.75
electron and (Xt—1Vq) =0.65 Bohr magneton. It is
obvious from the construction that the condition for a
magnetic solution to exist is that

or simply

—dX/d( &(E,) V)&1/ &(E,)Z

dE/dV&—1/J.

(43)

From Eq. (16), we have

—rrdN/d (rrr)(Eg) V)
((a(s ti (Ef)V) —1j'+ (s.tf (Eg) V)')—', (45)

so that the condition for instability can also be written

t)(Ey)J&La (s ti(Eg) V)—1j'+(s r)(Eg) V)'. (46)

This is a more general form of the condition found by
Anderson4 and Wolf' and reduces to their condition
when a sharply defined local state exists. The right-hand
side of condition (46) has a minimum value of 1/(1+a')
for (s.g(Eg) V)=a/(a'+1), corresponding to a maxi-
mum value at this point of dE/d(rrr)(Er) V), equal to
—(1/~) (1+a')

A very important application of Eq. (46) can be
made to impurities for which Z= 0, an example of which
is Fe dissolved in Ru. In this case, V=O, and the condi-
tion is simply r)(E~)J& 1 for magnetization. This con-
dition remains true even if several bands are involved.
Suppose that a fraction x of the density of states is
contributed by the dominant band and a fraction (1—x)
by all other bands. Thenitisclear from Eq. (32) that the
condition becomes xr)(Ef)J'/tt1 J(1 x)rl(Ej')g&1 or
ri(Er) J& 1.

Now, Fe in Ru is not magnetic, and we know that
'g(E f) =0.44 states/atom/eV, ts so that I&2.3 eV, in

"R.H. Batt and N. E. Phillips quoted in T. H. Geballe, Rev.
Mod. Phys. 36, j.34 (j.964).

this case. Similarly, Co in Rh is not magnetic. ' Since
ti(Ey) for Rh is 1.0 states/eV/atom, we conclude that J
for Co is less than 1 ev. Ni is magnetic in Pd but is non-
magnetic in Pt.'4 We have r) (E~) for Pd and Pt equal to
1.97 and 1.36 states/eV/atom, respectively. Hence for
nickel, 0.51 eV&J&0.74 eV.

~=(8 /3), V(~, (O) ~s, (47)

where g is the susceptibility per unit volume of the
crystal and is not affected by a single impurity. %'e
approximate VEr(0) by its component in the central
%annier function so that

8m 1 2

k=—xQi W(0) i'
3 1+VGA(0) sr

Sx=—)tQ[W(0) i'
3

(48)

X (49)
La(~~(E~) V) 1j'+ (~—n(Er) V)'

Then the Knight shift can be written

Sm. de
)'r =—xQ

~
W(0) i'

3 d(sr)(Er) V)
(5o)

Let us set [W(0) fs= i@'(0) f'$, where C(0) is the wave
function of a valence electron of the impurity atom, and
$ is a correction factor for a given solvent. We have,
then,

Sm dX
X=—&Q~C(0)i g —~

3 - d(s ti(Er) V)
(51)

In the usual discussion of Knight shift in alloys, the
factor in square brackets is ignored. Referring to Fig. 2,
for example, this factor is just —x times the slope of the
curve at the point A for a given self-consistent poten-
tial, and can vary over a wide range. In particular, for
large ( Zt, the stable intersections are at large positive
or negative values of the abscissa, where the slope is
small and the Knight shift should be greatly reduced.
An example of this effect may be offered by the case of
vanadium dissolved in palladium, ' where it is observed
that the Knight shift of the V nucleus does not reQect
the temperature-dependent susceptibility of the Pd
solvent.

'4 R. M. ilosorth, D. D. Davis, and J.H. Wernick, J.Phys. Soc.
Japan 17, 112 (1962)."C.H. To@mes, C. Herring, and W. D. Knight, Phys. Rev. 77,
852 (1950).

re V. Jaccarino, J. A. Seitchik, and J. H. Wernick (private
communication).

c. Knight Shift

Considering a single band of electrons, the Knight
shift of an impurity atom can be written"
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FIG. 6. Density of states and integrated state density as a
function of energy for nonmagnetic bcc iron as calculated by
J. H. Wood.

'r J. H. Wood, Phys. Rev. 126, 517 (1962).

d. Fe in the bcc Second-Row Transition Metals

As an approach to a semiquantitative application of
the ideas considered in previous sections, we now discuss
in more detail the case of iron as a very dilute impurity
in the body-centered-cubic 4d transition metals. When
dissolved in these metals, iron sometimes exhibits a
magnetic moment and sometimes does not. The mag-
netic moment as observed by a measurement of
paramagnetic susceptibility is a smooth function of
electron concentration, as shown in Fig. 5 adapted from
Ref. 6. Proceeding in the direction of increasing electron
concentration, a magnetic moment first appears at
Nbo 6Mo0. 4 and rises to 2.1 pp at Mo. The bcc phase is
maintained to Moo. 6Reo. &. Beyond this point the
hexagonal phase sets in and the moment decreases,
becoming zero in Tc and Re and remaining zero through
Ru. The dotted line represents measurements taken
with alloys of Mo and Rh.

The band structure of nonmagnetic bcc Fe has been
calculated by Wood, "using the augmented plane-wave
method. His density-of-states curve is reproduced in
Fig. 6, along with the integrated curve giving the
number of states below energy K The double-peaked
shape of the band is characteristic of the body-centered-
cubic metals. The upper part of the band contains ap-
proximately two states per atom and is derived largely
from the d states of e, symmetry.

%e adapt this band structure to our use as follows.
First, the upper part of the band is represented by two

superimposed Lorentzian bands of width 6=0.0254 Ry

24—

0I-
20—

C
K
LLI

Cl
O

a 12-

0
0

l

0.2
I

0 4 0.6 0.e
RYOBERGS

I

1.0
i

1.2 1,4

FxG. 7. Smoothed density of states for upper and loiver parts of the
-band for bcc nonmagnetic iron adopted from Fig. 6.

"L. F. Mattheiss (private communication)."F.J. Morin and J. P. Maita, Phys. Rev. 129, 1115 (1963).

centered at 0.76 Ry and having a peak density of states
equal to 12.5 states/Ry. These superimposed bands are
shown in Fig. 7, together with a smoothed curve repre-
senting the remaining state density in Fig. 6. This
remaining state density is derived largely from states of
t2, symmetry lying below 0.7 Ry and from an s-like band
contributing roughly 1.5 to 2 states/Ry-atom. For iron
there are 8 electrons per atom. The Fermi level then lies
at the point where the integrated-state density curve
crosses 4 states/atom, or at 0.76 Ry, where we have
located the center of the Lorentzian bands.

Secondly, the band structure of iron must be adapted
to the 4d series of metals. Following recent work of
Mattheiss, "we do this by increasing the energy scale by
a factor of 1,48 and decreasing all state densities by.a
factor of 0.676. For a body-centered™cubic form of Ru
(so far unknown), the Fermi level would lie at the peak
of the expanded Lorentzian bands in this model of the
band structure. Suppose now we make the rigid-band
assumption. As Tc(Re) is alloyed into Ru, the Fermi
energy decreases. It further decreases in the alloys of
Mo and Tc(Re), and for alloys of Nb and Mo. A mini-
mum is found in experimental measurements'9 of speci6c
heat for these alloys near Mo, corresponding to the
minimum in state density for 6 electrons at 0.68 Ry,
shown in Fig. 6.

YVe now measure energies 8E~ from the peak of the
Lorentzian bands. If in a given alloy the Fermi level is
a distance SEr from the peak, we have, from Eq. (39),
n=oEq/D. In this alloy, iron then appears as an im-
purity with a valence difference 8Z which is twice the
number of states per atom through which the Fermi
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TABI'E H. Constants used in 6nding self-consistent potential for
Fe impurity in 4d transition-metal alloys. 8=30 eV, U=20 eV,J=. 2 eV, P =0.1 states/eV-atom.

1+P(2 U —J)
0.4—

0.2—

-0.2—

I

~4 ~3
I I l

-2 -I 0
v'q (Eq) v

t I

2 3 4 5

0
1
j.
3

—1
3
2—2—3

—5—6

FSZ/2 (2U J)—
0.000
0.118
0.197
0.257
0.316
0.493
0.652
0.769
0.848
0.967
1.125

2(2U —J)~(Eq)
0.0323
0.0344
0.0405
0.0505
0.0646
0.1052
0.1620
0.324
0.552
0.845
1.200

0.102
0.109
0.128
0.160
0.205
0.334
0.514
1.025
1.740
2.67
3.79

FIG. 8. Solution of the self-consistent potential for Fe in bcc Ru.
F=30, V=20, J=2, hZ=0, 0.=0. Stable magnetic solutions are
at B.

level has dropped proceeding from Ru. Using Fig. 6, one
can then construct Table I, which gives, for various
values of a, Ebf in electron volts, 5Z, the density of
states ij(Er) for each Lorentzian band in states/eV-
atom, and the total smoothed density of states $(Ef) for
all bands.

In the calculation which foll.ows, we assume that the
two superimposed Lorentzian bands (bands 1 and 2)
behave exactly alike so that V.=S&,=X&,. We also
assume that these two bands dominate the self-con-
sistent shielding of the impurity atom. Proceeding as in
Sec. IIe, we find

FSZ 1+p(2U —1)
,'(Nt+Ng) -= +

2(2U —J) 2(2U —J)sg(Ef)

X7rg (Er) ,' (Vt+ Vg), (52)-

where the sum on L is over all active bands except bands
1 and 2 and P=g ~ q~(Ef) as before. In the present case,
we suppose that the 4d subbands in the lower part of
the band are so nearly filled in all cases that they con-
tribute very little to the shielding of the impurity. We
take p, therefore, equal to the s-band state density,
which is approximately 0.1 state/eV-atom. As before
we take F=30 eV, V=20 eV, and J=2 eV. The con-
stants appearing in Eqs. (52) and (53) for various
values of n can then be calculated and are listed in
Table II.

The solution of the self-consistent problem presented
by Eqs. (52) and (53) can be found graphically, as is
done in Sec. IIIb. Examples of these graphical solutions
for +=0, —1, —3 are shown in Figs. 8, 9, and 10. The
values of E and t/', found in this way are listed in
Table III. From equation (54) we can obtain P& N&„
and this is also listed in Table III. Finally, we are
interested in the polarization induced on the nearest
neighbors to the impurity. This can be obtained from
Eqs. (20) and (24), where we assume that a reasonable

(Nt Ng) =—— s.t)(Er) (Vt —Vg),
2Js.g (Ef)

p N(. —pV. ,
——

l

(53)
1.0

o.s—

o.e—
yB

TABLE I. Parameters used in impurity calculation for Fe in the
4d transition-metal alloys. 0.4

eV

n(&x) 4(&~)
states/eV- states/eV-

atom atom

0.2—

0
1

1'I
3
x—1
2—2—3—4—5—6

0.00.—0.13—0.26—0.38—0.51—0.77—1.02—1.53—2.04—2.55—3.07

0.00
0.30
0.50
0.65
0.80
1.25
1.65
1.95
2.15
2.45
2.85

0.622
0.585
0.497
0.398
0.311
0.191
0.124
0.062
0.036
0.024
0.016

1.34
1.34
1.10
0.90
0.73
0.50
0.38
0.28
0.27
0.34
0.76
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FIG. 9. Solution of the self-consistent potential for Fe in bcc
Tco.8Ru0. 2. hZ=0.8, n,= —1, other parameters as in Fig. 8. Stable
magnetic solutions are at B.
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TABLE III. Polarization in Bohr magnetons of the central impurity atom and of the nearest-neighbor atoms as calculated for Fe dissolved
in various 4d metal alloys. j=0.2 eV.

2(» —&~) Total
ZNgi &Ng &(N&t —Ng) +&(N&t —Ng) 8Z(Nmt' —Nmi') mo-

N1t Nli ~n (&I)&i ~'0 (+f)+i 2 (Nit Nli) m

0
1
1
3
4—1
3
g—2—3—4—5—6

0,42 —0.42
0.51 —0.34
0.58 —0.26
0.64 —0.21
0.69 —0.16
0.76 0.00
0.79 0.26
0.83 0.37
0.84 0.48
0.85 0.60
0.85 0.85

—4.03—4.75—4.23—3.55—2.92—2.32—1.37—0.7'4
—0.46—0.33—0.25

4.03
3.15
2.35
1.7'1'

1.24
0.00—0.34—0.30—0.25—0.20—0.25

1.68
1.70
1.68
1.70
1.'?0
1.52
1.06
0.92
0.72
0.50
0.00

0.21
0,26
0.2'l
0.28
0.30
0.38
0.35
0.38
0.40
0.44
0.47

—0.21—0.11—0.15—0.14—0.13
0.00
0.09
0.15
0.22
0.27
0.47

0.42
0,43
0.42
0.42
0.43
0.38
0.26
0.23
0.18
0.17
0.00

2.10
2.13
2.10
2.12
2.13
1.90
1.32
1.15
0.90
0.67
0.00

4.50
4.57
3./0
3.05
2.49
1.52
0.80
0.52
0.39
0.36
0.00

6.66
6.70
5.80
5.17
4.62
2.42
2.12
1.67'

1.29
1.03
0.00

value for j is 0.2 eV and take J'=0. For the neighbors
we take $(Ef) to be the total density of states, since the
potentials are so small at the near-neighbor sites that
all bands contribute. The total polarization contributed
by the 8 near neighbors is listed in Table III as
8 P (X t' —X &'). Table III shows, finally, the total
moment associated with the impurity complex.

The principal results of the calculation are shown in
Fig. 11, which gives the moment on the impurity atom
and the total moment of the complex as a function of
the valence difference of the impurity. These results
may be compared with the experimental facts shown in
Fig. 5. Considering the many uncertainties of the
theoretical model, the agreement is quite satisfactory.
To the left of the bcc-hcp boundary, where the com-
parison can be made, the model predicts a total moment
of about 2 p, p, as is observed. As 8Z increases, the mo-
ment decreases and goes to zero at about the same alloy
composition as found experimentally. The model does,
however, predict a less precipitous decrease of the
moment in the alloys near Mo than is found for the

measured moments. The slope of the curve in this
region is rather sensitive to the choice of parameters and
could be made to resemble the experimental curve more
closely by a somewhat diferent choice of the exchange
constant J and the s-band density of states P. One of the
most important conclusions to be drawn from the
calculation is that a reasonable description of the ex-
perimental results can be made using an exchange con-
stant no larger than 2 eV. It is clearly not necessary to
have J as large as 10—20 eV in order to maintain a
magnetic moment in these alloys.

It is interesting to note the rather substantial di6er-
ence that exists between the moment that resides on the
central impurity atom alone and the total moment of
the complex of impurity atom and its near neighbors.
In the case of molybdenum (HZ=2), these moments are
approximately 1.5 p, B and 1.1p,B in our calculation.
Experimentally, the total moment is observed to be
2.1 1iB ' and the density of states to be" 0.42 state/eV-
atom. (This value is probably enhanced by electron-
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Fro. 10. Solution of the self-consistent potential for Fe in
bcc Mop. ggTcp. pg. BZ=1.95, 0.=—3, other parameters as in Fig. 8.
Stable magnetic solutions are at 3.

FIG. 11. Calculated magnetic moment as a function of valence
difference for iron dissolved in various bcc 4d transition metal
alloys.
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phonon interactions. ) The moment resident on the
central atom would then be 1.2 pp, assuming once more
that j=0.2 eV. This discrepancy between the impurity
moment and the total moment may account, in part, for
the results of Mossbauer-eGect measurements Inade on
Fe dissolved in Mo which show an unexpectedly small
hyperfine field at the nucleus of the iron atom. "

In carrying out this calculation, one very important
feature has emerged. That is the rather profound effect
produced upon the self-consistent problem by the shield-
ing due to the s-band density of states. If I8 is taken
equal to zero in Eqs. (52) and (53), no self-consistent
magnetic moment can be maintained beyond about
hZ= 2, and agreement with experiment would be rather
poor.

Finally, we should like to remark on the results ob-
tained to the right of the bcc-hcp boundary which relate
to a group of hypothetical bcc alloys. If these alloys
could be experimentally obtained in bcc form, the
theory predicts that iron would exhibit a magnetic
moment in dilute solution all the way to Ru or hZ=0.
Furthermore, it is predicted that the total magnetic
moment would become large in these alloys, approaching

~ P. P. Craig, D. E. Nagle, W. A. Stegert, and R. D. Taylor,
Phys. Rev. Letters 9, 12 (1962).

6.5 pg near Ru. This occurrence of giant moments is a
familiar effect observed in alloys near palladium. '

Note added tv proof. In connection with the discussion
in Sec. IIIb, it is worth noting that the Stoner criterion
for the instability of the Fermi ground state against
separation into two spin bands is also rt(Eq)J) 1.Thus,
since Fe is a magnetic metal, following the discussion
in Sec. IIIb it must also be possible to find Hartree-
Fock states where a single atom is magnetic, although
such a state would have a higher energy than the com-
pletely magnetic state. It would seem reasonable to
suppose that such local magnetic states could be used
to describe approximately the condition of iron above
its Curie temperature of 1043'K. With an exchange
energy of 1 eV and a moment per atom of about 2
Bohr magnetons, the local magnetic moments should
be stable to temperatures much higher than the Curie
temperature.
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