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tential. Callaway and Glasser' have given V(0) due
to the uniform charge distribution for the cubic lattice,
and we have calculated V(0) for the hexagonal lattice.
The results are given below:

V(0)s,o =—(4sr/Qp) 0.06250ah„',

V(0)b,.———(4Ir/Qp)0. 0495536ab„'1 (A11)

where ci, p and ab are the lattice constants for the

~ J. Callaway and M. L. Glasser, Phys. Rev. 112, 73 (1958).

V (0)h, o
———(4Ir/Qp) 0.0496063ab.,',

V (0)b„.= —(4Ir/Qp) 0.0495536ab„'. (A12)

While V(0)h, o is slightly more binding than V(0)b„,
the differences are quite small.

two lattices. Taking the atomic volumes to be the
same in both the hexagonal and. cubic phases and
referring both results to the same lattice constant, we
obtain a numerical comparison for V(0) for both
phases.
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The Green's function approach is developed to derive the Boltzmann equation for a phonon system having
cubic anharmonic interactions. Within the framework of the lowest order scattering process, it is found that
the steady-state Boltzmann equation obtained is identical with the Peierls integral equation, except for
small correct. ion terms. These correction terms can be absorbed into the transport term by replacing the
phonon group velocity appearing in the transport term by the renormalized one, including kinetic and dy-
namical eBects of collisions. Several remarks are made on the generalization of the Boltzmann equation.

I. INTRODUCTION
' 'N this paper, we derive the Boltzmann equation for
~ ~ the phonon distribution only, in a crystal which
is subject to a constant and small thermal disturbance
such as a temperature gradient and in which phonons
interact only with each other through a cubic anhar-
monic interaction.

Within the framework of the approximation in which
only the lowest order scattering process is retained, we
can find that the Peierls integral equation' for a phonon
distribution is to be modified by correction terms. These
terms are related to the spatial variation of the phonon
distribution, so that they can be interpreted as renor-
malizing the phonon group velocity in the transport
term of the Peierls equation.

The derivation of the Boltzmann equation is carried
out here by means of the Green's function method.
Kadanoff and Baym' have developed the Green's
function approach to derive the Boltzmann equation
for particle systems of either fermions or bosons subject
to a mechanical disturbance. We proceeded initially
along similar lines. Io the particle case, there are certain
difhculties concerning the choice of the boundary con-
ditions for the Green's function defined in a real time

*Work supported by the U. S. Atomic Energy Commission.
)Permanent address: Department of Physics, Tohoku Uni-

versity, Sendai, Japan.' R. E. Peierls, QuorstlrrI Theory of Solsds (Oxford University
Press, Oxford, 1955).

2 L. P. Kadano6 and G. Baym, Qnaetlm Statistical 3fecharIics
(W. A. Benjamin, Inc. , New York, 1962).

domain. However, the thermodynamical Green's func-
tion defined for imaginary times satisfies definite
boundary conditions. Then, using the relationship be-
tween the real-time and the imaginary-time Green's
functions, and converting the equation of motion for the
imaginary-time Green s function into that for the real-
time Green's function, the Boltzmanri equation for a
particle distribution function results. Thus, the essen-
tial part of this derivation of the Boltzmann equation
appears to rest on the unique relationship between the
real-time and the imaginary-time Green s functions;
and this, in turn, is determined by the assumptions
imposed on the asymptotic behavior of the system at
the time t= —~ at which the mechanical disturbance
was turned on adiabatically.

On the other hand, in the present case of phonons,
we have a rather diGerent situation in several respects.
First, in addition to the wave nature of phonons, the
cubic anharmonic interactions do not conserve the
number of phonons. Second, the external disturbance
applied to the system is not a mechanical one. To cope
with this situation, we have had to use arguments
rather different from those used in the particle case.

In Sec. II, we introduce a "nonequilibrium" phonon
Green's function D, which is defined by the statistical
average of the complex time correlation of "displace-
ment" operators. This nonequilibrium phonon Green's
function is diferent from the usual definition of a
phonon Green's function in that no specific functional
form is assumed for the density matrix specifying the
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statistical nature of the system. Instead, the definition
of D is supplemented by assigning physically reasonable
analytic and asymptotic properties to it. The equations
of motion for D are given in Sec. III, and their deriva-
tion is described in the Appendix.

Since we are then interested in obtaining a Boltz-
mann equation for the phonon distribution, it is neces-
sary to construct the wave packet of phonons. For this
purpose, we construct a "phonon number-density"
Green's function, G. Then (Sec. IV), the Wigner-like
distribution function for a phonon is easily expressed
in terms of G.

Were we able to construct G directly, the calcula-
tions would be completed, but owing to the wave nature
of phonons, the equation of motion for G becomes
overly complicated to be handled directly. For this
reason, we work with the equation of motion for D,
instead of working directly with that for G. As is shown
in Sec. IV, there is a simple relation between G and D,
which serves to transform the equations of motion for
D into the Boltzmann equation for the phonon-dis-
tribution function.

The important basic assumptions adopted to derive
the Boltzmann equation are as follows:

(A) The nonequilibrium behavior of the system,
which is our interest, is completely described by the
"nonequilibrium" Green's functions.

(II) In the suKciently remote future, say T, which
will be eventually put equal to + co, the system tends
to an "equilibrium state, "which will be characterized
by analytic properties of "equilibrium" phonon Green's
functions.

(C) At the present time ts, the system is reasonably
close to the equilibrium state. Accordingly, we are
essentially concerned with linear phenomena.

While these conditions are shown to be sufhcient to
lead to the Boltzmann equation it is not demonstrated
that they are unique, nor general.

The mathematical procedure to derive the Boltzmann
equation is presented in Sec. V, where we focus our
argument to the lowest-order scattering process of
phonons, and also to the "steady-state" case where the
phonon-distribution function is independent of time to.

Section VI is devoted to discussions of the result
obtained and the possible generalization of Peierls in-
tegral equation.

annihilation and creation operators, respectively. The
suKx k represents the wave vector, k, and the polariza-
tion index j of phonon, i.e., k= (k,j). In what follows,
we also use the conventional notation that —k=—(—k, j).
The operator A~, which is the displacement operator,
is defined by

As = (1/2tos)'"(ag, +a s+)

Defining the conjugate operator BI, by

Bt =i(t—os/2)'t'(as —a s+),

(2.2a)

(2.2b)

we find that these operators satisfy the following
relations:

~-I =~I+, &-A;= &a+,

tAg„As. j=LBs,Bp ]=0,
(2.3a)

(2.3b)

(2.3c)t At„BI.1=i'(k+k'),

A(k+k') —=8;,t ii(k+k') modK

(K is an arbitrary reciprocal lattice vector).

where

(2 4)

S=T exp i P «f.(t)A.(l), (2.8)

The coeflicients V(kr, ks, ks) in the second term of Eq.
(2.1) are the Fourier transforms of the third-order
atomic force constant, and related to the analogous co-
eflicients C defined by Born and Huang' by4

V(k„ks,ks) = (-,'&'')C(k, )ks,ks)&(k,+ks+ks). (2.3)

The coeKcients V(kt, ks, ks) have the well-known prop-
erties that they are unchanged by permutation of their
arguments, and are changed into their complex conju-
gate by an inversion of all their wave vectors.

We introduce "nonequilibrium" phonon Green's func-
tions by

D(p, t; p', l') =D~(p, t; p', l') for

0& Im(l —to) —Im(l' —ts) & —P, (2.6a)

=D&(P,t; P', l') for

P) Im(t —ls) —Im(t' —ts))0, (2.6b)
where

D&(p, t; p', t')= —i(A„+(t)A„.(l')S)/(S), (2.7a)

D&(p, t; p', t') = —i(A „.(t')A—„+(t)S)/(S), (2.7b)

&0—sP

II. I'HONON GREEN'S FUNCTIONS DESCRIBING
THE NONEQUILIBRIUM STATE

Throughout the present paper, we put A= 1 and take
the volume of the system to be unity. The Hamiltonian
of the system is taken to be

&=+ toaas+as+ p 'xsV(kr, ks, ks)AI„At„Ag, . (2.1)
fk kI, k2, %3

In this expression, the operators a~ and uq+ are phonon

A „(t)=exp (iHt) A „exp (—iHt),

( )= trace(p }.

(2.9)

(2.10)

In Eq. (2.10), p is a "nonequilibrium ' density matrix
describing the system under consideration. In this defi-
nition of D, all the time arguments, t and t', take com-

e M. Born and K. Huang, Dynamical Theory of Crystal Lattices
(Oxford University Press, Oxford, 1954), p. 217.

e A. A. Maradudin and A. E. Fein, Phys. Rev. 128, 2589 (1962).
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plex values on the line from to to to iP—, where to is a real
number and denotes the present time and P is identified
with 1/kT asymptotically. The symbol T in the ex-
pression (2.8) means to rearrange the operators in order
of magnitude of the imaginary parts of the time argu-
ments, in the same way as is expressed by Eqs. (2.6)
and (2.7). The generating operator S has been intro-
duced for mathematical convenience to derive the
equations of motion for D. The source parameter JI,(t)
may be assumed to be an in6nitesimally small quantity
which vanishes as t ++ 0—0.

We also need the "equilibrium" phonon Green's
function, D~, which is de6ned by the same expressions
(2.6) and (2.7), as D, except thatS is put equal to unity
and the density matrix p is replaced by the grand
canonical equilibrium density matrix with chemical
potential p=0,

+ ~ ~ ~

(a) (b)

FIG. 1. A schematic representation of the equation
of motion for D.

III. EQUATIONS OF MOTION FOR D

Using Eqs. (2.3) and the synunetry properties of the
coeKcients, V(ki, k2, k3), of the cubic interactions, we
obtain the equations of motion for the operators A~(t)
and B~(t) as follows:

(3.1a)
p~= exp( PH)/—trace exp( —PH) . (2.11) B„=—&u~'A „—Q V(ki, k2, ka) 6 (ki+p) A p,A 1,.

Then, we see that D~~(p, t; p', t') and D~~(p, t; p', t')
have the following properties. (1) They depend only on
the difference of the time arguments, t t'. (2) Th—ey are
diagonal in wave vectors p, because the Hamiltonian H
has the translational symmetry of the crystal. (3) They
are analytic in the restricted domains of complex time
plane, 0&Im(t —t') & —P and P&Im(t —t') &0, respec-
tively. (4) They satisfy the periodic boundary condition

D., (p, t t') =D. ~(p—, t t'+i/), —(2.12)

which can be proved by using the cyclic invariance of
the trace and recalling that the chemical potential for
phonons is zero. m (S) We also assign the property to
D~ that they are diagonal in the polarization index
of photons.

In the deinition of the nonequilibrium Green s func-
tion D, the density matrix p describing the system is
obviously not taken to be the same canonical form
as Eq. (2.11).Instead of taking any specific functional
form at first for the density matrix p, we assign the
following properties to D, in accordance with the
basic assumptions mentioned in the introduction. (1)
D (p,t; p', t') is dependent only on t t', analytic in-
the same domains of complex time plane as D,~~ ~

and diagonal in the polarization index of phonons.
(2) As for the wave-vector dependence, we regard
D (p, t; p', t') as being sharply peaked functions about
2 (y+y') with small spread around it. (3) D& & is inde-
pendent of to. Strictly speaking, the nonequilibrium
Greens function describing the nonequilibrium be-
havior of the system should be dependent on the choice
of the present time to. However, since we consider the
steady-state case where the external thermal dis-
turbance is constant, we neg, lect the to dependence of
D~ & in the present problem. Thus, though the deriva-
tions following contain apparently separate dependence
on tj and t2, this is done for mathematical convenience
and any dependence on to ——

2 (ti+t2) is to be suppressed.

k1,k2, k3

(3.1b)

and

k1,k2, k3

Xh(ki —p, )R(—k2, ti, k„ t„p„t~) (3.2a)

p(a'/Bt2')+a)„, 'jD(pi, ti., p, ,t,)

5(itl it2) 6 (Pl P2) Q V ( kl k2 ka)
k1,k2, k3

X&(k,—p,)R(—pi) ti j k2) t2j k3, t2). (3.2b)

The second-order time derivatives on the left-hand side
of Eq. (3.2) are carried out along the line from to to
to—iP in the complex time plane. On the right-hand
side of Eq. (3.2), the first terms come from the dif-
ferentiation of the chronological ordering symbol T in
the expression of D. In the second terms, the new
Green's function E. is dered by

R(plqtl j p2)t2 ) ps)t3)
=——i(T(A„(t )A„(t )A„(t3)S))/(S). (3.3)

In the Appendix, it is shown that the new function R,
which is a functional of D, can be expressed in terms of
D. Therefore, we can rewrite Eq. (3.2a), for example, in
the following form.

t„(8 /Btl )+Nyp )D(pl)t1 ) p2)t2)

= —6 (Pi—P2)5(iti —it2)+P drL(Pi, ti, q, r)

XD(q, r; p2, t2) . (3.4)

By use of these equations, we can derive the equations
of motion for D, which are written as

L(~ /~tl )+&@1jD(plptl j p2)t2)

8(Ztl Zt2) 6 (pl p2) Q V (kl) k2) k3)



C. HOV. IF. AND g. A. I&a. UMHANSI

Here I. satisfies the following equation:

L(pl, ti., q, r) = — Q D(kl —pl) V(kl, kp, ,
—kp)

X A )„(ti)b(q+kp)5(r —tl)+i Q
g2

tp—iP &0—&P

drs drpI ( qs rp, q2 rs q r)
to

XD(qp rp kp t )i/D(ks tl q&, r,)+iA„(r,)A „,(t,)$, (3.5)

IV. PHONON NUMBER-DENSITY GREEN'S
FUNCTION 6

To derive the Boltzmann equation for the phonon
distribution, we must consider wave packets of phonons.
These may be studied by introducing the "phonon
number-density" Green's functions, which are defined
by

G(pl tl p2 t2) G (pl tl p2 t2)

0)Inl(t tp) —Im(ts —t ))——P, (4.1a)

= G~(Pl, t, ; Ps, ts) for

P) Im(t, —tp) —Im(ts —tp) )0, (4.1b)

G (pl, tl, ps t2) =(a»+(tl)a„(tp)»/(», (4.2a)

G'(p, t; p.,t ) = (~„(t.)o., (t.)»/(» (4 2b)

where

I'(—
qp, rp, qs, rs, —

q, r)
= —6D—'(—

q p, r p, q, r) /tiA „(rs)
= —51.(—qp, r p , q, r)/)IA„. (rs), (3.6)

A, (r) —= (7'(A, (r)S})/(5). (3.7)

The quantity A, (r) defined by Eq. (3.7) is not, a priori,
taken to be vanishing, because there exists spatial in-
homogeneity in the system. As a matter of fact, Ap(r)
can be regarded as representing a dynamical phonon
field produced by the crea, tion (or destruction) of
phonons. The time dependence of this phonon field
destroys the stationarity of the phenomena, introducing
a to dependence into the formulation. Eventually, we
restrict consideration to negligible to dependence, but
we may drop the terms including A, (r) explicitly only
after carrying out formally the proper evaluation of D.
Actually, in order to obtain the expression for I, we
iterate Eq. (3.5) by using Eq. (3.6) and then drop the
terms still including A, (r) explicitly. Thus, we can, in
principle, obtain an expansion of I in terms of Ds,
which is not written down here explicitly. The structure
of the equa, tion of motion (3.4) is shown schematically
in Fig. 1, where the heavy solid line represents D and
the light solid line represents the "noninteracting"
phonon Green's function Do dt;fined by

[(8 /Btl )+p)» ]Dp(pl)tl ) p2)t2)
= —A(p, p,)b(it, i—t,) . (3.—8)

Then, we can define the signer-like distribution func-
tion for phonons in terms of G~ as follows.

N(y; j; R)
f x x=Q exp( —ir. R)G~~ p+ j,tl, p———,j,

(4 3)

.Within the framework of the present approximation, in
which the to dependence of the Green's function is
neglected, the distribution function N(p; j; R) is in-
dependent of time.

As was mentioned in the introduction, it is hard to
work directly with the equations of motion for G, which
could not be obtained in a simple form. Fortunately,
there is a simple relation between G and D,

G(p„tl) p, )t,)

1
=—(P),P)„,) '"h(Pl —PP)8(it —it,)

2l.

+-( ., ~ ) '" —+i ~ I

—) ~ )2 8$q Bt2

XD(Pi, tl, Ps, ts) (4.4)

This relation is easily verified if we write the expression
of 6 in terms of A„and B~, and compare it with the
right-hand side of Eq. (4.4), where Eqs. (3.1) are used
for the time derivatives.

In the next section, Eqs. (4.3) and (4.4) are used to
transform the equations of motion for D into that for
the phonon-distribution function X.

V. DERIVATION OF THE BOLTZMANN EQUATION

The deviation of the system from the equilibrium
state is described by the diGerence of the nonequi-
librium Green's function from the equilibrium one.
Denoting this difference by AD= D D,p (or dG-
=G—G~), we linearize the equations of motion (3.2)
with respect to ED (or AG).

In what follows, we focus our argument only to the
lowest-order scattering process, -which is represented by
diagram (a) in Fig. 1.

' E. P. Wigner) Phys. Rev. 40, 749 (1932).
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We apply the differential operator L(8/Btz) —ku»] on
both sides of Eq. (4.4), and use Eq. (3.4) to eliminate
the second-order time derivatives of D. Then, we obtain
the equation which governs the first-order time de-
rivatives of G, i.e., (8/Btz ii—o»)G(pi, tz, ps, ts), whereas

the right-hand side of the equation is still written in
terms of D's. Subtracting the corresponding equation
of motion for G,~ from the equation of motion for G
obtained, we are led to the equation of motion for AG,
which is written as

L(8/84) kv»)AG(pz, tz; ps, 4)=-', (~»~») '" P Q U(pz, —ks, ks)U( q—z, qs,
—qs)

im:2 Isa Ql Q2 QS

tp—ip

drDB/84) m»—jA(D(ks, tz; qs, r)D(qs, r; ks, tz)D(qz, r, ps, 4)}. (5.1a)

For the lowest order scattering process represented by the diagram (a) in Fig. 1, there appears the product of
three D s in the right-hand side of Eq. (5.1a). The symbol 6{~ ~ ) is to retain only linear terms of AD.

Similarly, applying the operator $(8/Bts)+Au»] on both sides of Eq. (4.4), and using Eq. (3.2b), we obtain

L(a/its)yz~»jAG(pz, t&, ps, ts)=-s, (~»~»)—'' p p U( —ps, ks, —ks)U(qz, —
qs, qs)

&2,&3 Cl, C2, V3

&0
—ip

dr/(B/Bt~)+z&u»]h{D(p&, t» qz&r)D(qs, r; ks, 4)D(ks, ts; qs, r)) . (5.1b)

i((o„—- »)DG&(p„t, ; p, t,), (5 2)

because the other terms, (8/Bt, )AG& and (8/Ns)AG&,
cancel each other on account of the fact that AG~

X (plt1, ps4) depends only on tz —4.
(2) Consider the integral appearing on the right-hand

The Boltzmann equation is then derived by the fol-
lowing procedure. To begin with, we assume that
i(4—ts) )i(ts —ts), so that it sufEces to consider
DG (pltl j psts) ~

(1) Add the two equations (5.1a) and (5.1b). Then
the left-hand side is given by

side of the combined equation. Let I" be the complex
time domain enclosed by straight line segments
(Cs,Cz,Cs,Cs) illustrated in Fig. 2. Since both D& & and
D~ ~ have no singularity in F, the integral along
Cs(to~ tp —iP) can be replaced by the integral along
C~, C~ and C~ by making use of Cauchy's theorem.
Moreover, since we assume that in suKciently remote
future the system approaches the equilibrium state, we
can put hD equal to zero along the path C2 in the
limit of T —++~. Therefore the net contribution of
this integral comes only through the integrals along
the paths Cz and Cs. Thus, in the limit of T~+ ~ the
integral along the path Co is changed to

to—ip

dry(D(qz; r , ps, 4)D(ks, t'i; qs, r)D(qs, r', ks, ti)) ~ lim dry(D (qz, r; ps, 4)D (ks, tz; qs, r)D (qs, r, ks, tz)}
z~~

T—ip

dry(D (ql r '
Ps ts)D (ks tl '

qs r)D (qs r ' ks tl)} ~ (5 3)

The other integral appearing in Eq. (5.1b) is also
changed in the same manner.

(3) Take the limit of

t, ~ t.—io, t, ~ t,—io, Li(t, —t,)pi(t, —t,)j.
Then, all the time arguments of the Green's functions
appearing on both sides of the equation take values on
the real axis or the axis parallel to the real axis. Along
these axes we can introduce the Fourier transform of
the Green's functions by

to C)

Thus, we can write the equation in terms of the Fourier
transforms.

(4) Linearize the right-hand side of the equation
with respect to hD& &. Note that the term 6{ ~ ) of
Eqs. (5.1a) and (5.1b) gives rise to three terms, each
of which consists of the product of hD ~ and two
D 's. We replace these two D ~ 's by D,~ ~'s. In
the further reduction of the equation, we make use of the

G& &(t) =

D&,&(t)—

l(d
G&, &(~)~ icei—

— 2Ã

JQ)
D&,&(~)& icut-

— 27r

(5.4a)

(5.4b)

Fzo. 2. The path
of the integration ap-
pearing on the right-
hand side of Eq.
(5.1a) or Eq. (5.1b).

Co

C3
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and
y =

2 (pk+ y2)

&= Pl P2y

(5.5a)

(5.5b)

properties of D~~ ~, which were mentioned in Sec.II, and
the symmetry properties of the coeKcients V(k&,k2, ka).

It is convenient to introduce the mean and relative
wave vectors by

and denote AD~ ~(p&,p2,'co&) by 6D (p, &; jl ~1).
Noticing that the Pk and P2 refer to the same polariza-
tion index j&, we rewrite co„, and ~» as &u(p+ 2m, j&) and

co(p ——,'x, jk), respectively.

As a result, we obtain the equation of motion, which

is given by

1c f lc dMk

(—e) (p+ ,j —
I
—p—,j &G'(p, ;j; )

2 k 2 „2n.

k2, k3 j2, j3

d(dl IG02 dG03

lim
2x' 2' 2x' +

X LBD~(p, v. ; j&, (u&) —AD~(p, x; jk, (ok)e "']D«(k2j 2, ~2)D«(ka, ja, (o3)

x K 2 T—to

X (u& —
~~ y ——,jk & p+ —,jk; —k2, j2; ka, j3 dre '&"' "'+""'

2' 2

+ —(p+ —,j V~ p —,j;—k, j;ke, g ~

P ee"' "+"'
2' k 2' ' ' ' ' i

+fhD (k2, v. ; j» a&2) —AD (k2, x; j2, &v2)e e"']D«~(k3, ja', era)

X~ P,gl 2,J2 ~3 JB t P,gl 2,J2 3/32' ' 2' ' ' 2' ' 2'

x x
y g D )~ p g

~ (g) dre e(eel eep+eep) p

2 i 2

K x
+ —(p+—,j D-' p+ —,j;
+LAD~(k3, x; j, ; (v3) —DD~(k„x; j3, &a3)ee"']D«~(k2, j2, (u2)

x x ) r.
X ~ P ,Jl, 2 g2, ~8 ,J3 V P ,Jl, ~2 J2, 3 ,J32' ' ' ' 2'

v.

X ~k —~~ p ——,jk D., p ——,jk, ~k d7e '& ' "'+"»'
2'

v. x
(py —,j ~, & py —,j,;, ~

d ee'( ' "e ')'
2' 2' (5.6)

b,D+(p, x; j; co) =AD~(p, x; j;co)e~", (5 "I)

One of the important features of this equation is that
if hD~ & satishes

the identity
T—t0

d'e ( S
—2+ 3)&

(dg+C03&'le

then the right-hand side of Eq. (5.6) vanishes auto-
matically. In this case, Eq. (5.6) is inunediately reduced
to the Boltzmann equation for the phonon-distribution
function without collision terms.

(5) Taking the limit of 2' —++ ~, we make use of

&M'8(Mk —jeeP2+Ma) p (5.8)
Gdl —032 403 ~

where the suffix I' is to denote taking the principal
value.
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(6) Expand Lcm(y+-, x, j&) —c0(p —2x, j&)$ with re-
spect to x, and keep the first term of the expansion.
Then, we obtain

We now transform Eq. (5.6) into the equation for the
phonon distribution function. For this purpose, use is
made of the relation (4.4) which can be reduced into

where
~(p+2~, ji) —~(p —2~, ji)=~ v t (5.9)

v. ,—= (~~(P',ji)/~y'). -v (5 1o)

d,G&(p, x,j; cd)

=
L.i/»(p, j)3{~—~(p,j)}'~D'(p,~; j;~)

+0((~ harv, t/~(p j)) (5 2o)
vv, ;, is the grouP velocity of Phonon (P,j&). This aP-
proximation is valid when

v. ,& (y j) (5.11)

Substituting Eq. (5.9) into the left-hand side of Eq.
(5.6), and making use of Eq. (4.3), we can transform
the left-ha. nd side of Eq. (5.6) into

We see that AG) and AD~ are of the same order of
magnitude in the lowest order of ((x vv, ;/~(p, j)), so
that we can neglect the second term on the right-hand
side of Eq. (5.20).

Substitution of this relation (5.20) and Eq. (5.18)
into Eq. (4.3) yields

v. .. vaX(p, j, ; R), (5.12) N(y, j; R) —1V, (p,j)

e(co) = 1/(et'" —1) .

Then, A (p,j,&o) can be expressed by

A (p,j,~) = —i(D.Q'(p, j,~)—D"'(y,j,~)}

(5.15)

dt e'"'(I A, ,;+(t),A, ,;])„. (5.16)

As for the nonequilibrium Green's functions D), we
put them in the following form:

D&(p, x,j; co) =i)v(p, x,j;&o)+1]A (p,j;&o), (5.17a)

D((p, x,j; (o) = iv(p, x,j; cv) A (p,j; cd), (5.17b)

where we use the same spectral density A(p, j,&o) as
(5.16) and introduce the function v. Then it follows
that

which is the usual transport term.

Likewise, we may also expand of the right-hand side
of Eq. (5.6), except hD&, with respect to x, and retain
terms up to the erst order in (x vv, ;/cv(p, j)).

We notice that AG~ and AD are of the same order
of magnitude in the lowest order of (v. vv, ,/~(p, j)), as
is seen later. It is also noted that in terms of phonon
distribution function, the condition (5.11) can be
written as

v, ,;, VaÃ(p, j&, R)&co(y,j&)E(p,j» R). (5.13)

Therefore, the present approximation is equivalent to
neglecting the second and higher order space-deriva-
tives of E(y,j; R), corresponding to the assumption
that the spatial variation of E(y,j; R) is slow.

(7) Introduce the spectral density A (p,j,co) by

D %&(»j ~) = it~(~)+ 1)A (yj~) (5.14a)

D,~((p,j,a)) = im((u) A (p,j,(o), (5.14b)
where

dc'—c: '"' AG&(p L j (o)
— 2'

=(—1)

where

" d(u fo)—(v(p, j)}2
A(p, j;c0)

„2n- 2co(p, j)
XAv(p, j;R; (o), (5.21)

trav(p, j; R; co) =p e '"'ahv(p, x,j;~). (5.22)

~(p j)r (P j)»1. (5.24)

In this approximation, Eq. (5.21) is reduced to

&(P,t'; R) —ii'"(P,j)=—A (P,j; R; — (P,j)) (525)

Thus, Av is directly related to the deviation of phonon
distribution function from the equilibrium distribution
function. Therefore, in accordance with the argument of
Peierls, ' we introduce a new function g by

(—1)trav(y j; R; c0) =g(y j; R; co)tt(cd)Le(~)+1). (5.26)

It should be noted that this function g satisfies

g(y j; R;~)= —r(—y; j; R; —~) (5.27)

Thus, we can transform Eq. (5.6) into the equation
for $(p,j,R), which is not written down here ex-
plicitly, because it is too complicated.

(8) In order to simplify the equation thus obtained,
we will make an additional approximation. We take
the simplest form for the spectral density:

A(y j ~)=(~/~(p j))
&&(~(~+~(p j))—&(M —~(p,j))} (5.23)

This approximation is valid in the limit of weak inter-
action, and allowed when the phonon lifetime r(p, j)
is long enough to satisfy

where

AD& (p x,j; co) =BD((p,v.,j; co)

=iAv(p, x,j; co)A (p,j;ao), (5.18)

The proof of this relation is given as follows; if we use
the property of operator A v, Eq. (2.3a), it follows from
Eq. (5.16) that.

6v (p, x,j; cd) =—v (y, v.,j; c0) —e (co) . (5.19) A(p, j;(u)= —A( —p, j; —co). (5.28)
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Similarly, it also follows from Eq. (2.7) that

AD~( p,—x,j; —s)) =AD~(p, x,j; co) . (5.29)

On the other hand, it is obvious from Eq. (5.15) that

n (—(a) = —[n (ro)+ 1]. (5.30)

Substituting Eqs. (5.26), (5.28), and (5.29) into Eq.
(5.18), and making use of Eq. (5.30), we obtain the
relation (5.27).

By making use of Eq. (5.27), we obtain 6nally the
Boltzmann equation for Ã, which is given by

v, ;.»Ã(y, j; R)

{ll'(p, j; —y', j', p", j")I'~(~p, —~p, '+~p-, ')Inp, +1]np. '[n' '+1]
2COP jap, j COP

X[—g(y, j; R; —~p, j)+g(y', j'; R; ~p, ') g(y",—j";R; —~p-.j )]

+AVIV(p, j;—p', j'; —y", j")I'~(~p, —~', ' —~', ')
X[np I+1]np jn;. , j [ g(y j R Npj)+g(p j R M j)+g(p j R M ' )]}

n(p j )v—p,; »X(yj;R)+ p {p&"(p j; p', j') vpj+p&'&(y j; p', j')vp, j }»X(y'j'; R)
pl j/

—2 {v"'(y,j; p",j")vp, +v"'(p, j; p",j")vp-, ' }»&(y",j" R&.
t

In this equation we have used the abbreviation that

n, ,
;=1/(ee"p I—1), (5.32)

n(pj)= & & {8~p,j'~p, j~p„,j„}-[n, /+1]-~
pl p/ I jl jl I

n, ,'[n,",'.+1], 1 [n, , , y1][n,„j„+1]
X +-

Gg / I/apt j +up/I I I )~ 2 (cop I+~pl lt +(gpt jul)i

pl jl Pf pl I j/ I

2 ((up j cop1 jpl Mpfl jpf1)Q

x I l'(y, j; p',j '; p", j")I'——
I

—ll'(p, j; —y',j '; y", j")I'
I , (5 33)

I3"'(y,j P', j') = 2 {4~p.~', '~p , ' } 'Ln', '+1] 'n'. 'n. , ll'(y, a P' j ' P",—j")I'
p/ I j/ I

[np. ,'+1]np. j.. , 1 [np. l'+1][np ~,'.+1] 1 n; j.np", j.+-
( 2, ,;—,,'+, ,;) 2(, —,,; — ",') ' 2( +,'+ ",') '

1 [np",,'.+1]
+ 2 {»p j~p j&p" j } n» ~("»—"p j+»" j-)+-

/ I 'l l
79 I I '/I

I

X
Vp j

Vp, j 8
ll(y, i; p',j'; p—",j") l'*(y—,j; p',j', p", j"), (5.34)—

Vp,j BP

j3"'(p,j p' j') = E
pl I j/ I Vpt jt

gp/ jr

,l'(y, j; p',j'; p",j") l'*(y,j; —p', j', p", ")—
Vpt jr l9 P

1
X {2GDp,jap'j~cdp~i ~} ji1,l np j 5(&3pj Mp~ p+Mpii p~)+—

2

[n;;"+1],
t'(~pj~pj-~p- j, ), , (5 35).

Qp/I jrl
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~"'(p,j y",j")=2 (4 p, ;~y,' ~y-, ;-) '(», -,;-L»y-, ' +13) '»,
,, Il'(y, ~; —p', ~', y", Z")I'

L»y ~,p / 1)»p», p ~ 1 Lny~, /'I +' 1jL»y~ ~,p ~ +' 1j
X

c
2

(g~ /
—Q)y /'I+(/Rgb /'Il)g& 2 (Q7~ /

—id~ P —fgyr /'Ii)~

+ 2 (». /~~, /'~, ~-/' ), 'L&u-, /'+1j '&~/I &, u/+, 1j
p/ ~'/

p/

2 (&i/'+, &i',/'+~i"/") ,&

X $ (Q) ' —(0 i ~+$7 rr
p i p i p 8(M '—GD i 'I —M ~ '»)p» p» p

2 Jzp// j//

Vp, g 8——V(y, j; —y', j';y", j") I'*(p,j; —y', j' p" j"), (536)
Vp g' BP

p"'(y, j; p",j")= 2 ( 1)—~(»u ~u '~~-,'.) , 'E»-;. ;-+,1j '», -,;t »y,'+lj

X 8/(jg ' (g r ' +MIii 'I i) ——
p~2 p ~1 & p

2

t »y-, ,'.+1)
$ ((d —(0 r i —4) i i 'I I )p~

j'gp/ / j/ /

gp// j//

„I'(y,j; y',j', p",j—") V*(p,j; y',j'; p", j"—) (53&)
~ Qp// j// QP

If we compare Eq. (5.31) with Peierls' integral equa-
tion for phonon distribution (Eq. (2.76) of his book $,
we see that the terms represented by the first four
lines on the right-hand side of Eq. (5.31) are identical
with the collision term of Peierls' equation. Equation
(5.31) includes the additional terms represented by the
last three lines on the right-hand side, which were
omitted in the Peierls' equation. These additional
terms as well as the transport term on the left-hand
side of Eq. (5.31) arise because the wave packets have
a small spread in wave vectors around the mean wave
vector.

One of the additional terms, which is represented by
—n(p, j)v~,; VR1V(p,j; R), can be transferred to the
left-hand side of Eq. (5.31) to modify the original trans-
port term. In addition, if the spatial variation of
1V(p,j; R) satisfies a simple relation such that

E(y,j;R) =nR, ,+E'(yj; R), (5.39)

a.nd assume that », ,; shows R dependence only through
the temperature factor T(R) (introduction of the idea
of local temperature), then VR1V(y,j; R) can be re-

VRX(p'j '; R) =C(p',j'; yj)VRN(pj; R), (5.38)

then the terms represented by the last two lines on the
right-hand side of Eq. (5.31) also can be rearranged so
as to modify the transport term on the left of Eq.
(5.31).Obviously, such a modification of the transport
term results in the replacement of the phonon group
velocity vp, ; by the new velocity, which will be just a
renormalized phonon group velocity.

It is interesting to observe that the relation (5.38) is
not unreasonable. In fact, according to Peierls, we put

placed by

VR1V(p,j; R)

8»y, ,(T) ~op, ,
VRT= n, ;$», ,;+1] VRT, (5.40)

kT2

because we can neglect E' in the transport term, as was
discussed by Peierls. ' In this case, we have the simple
relation

VR1V(y', j'; R)

VR1V(y,j;R) . (5.41)
u, /L .,/+ 3

VI. DISCUSSION

In sununary, we have presented in this paper a
Green's function approach to derive the Boltzmann
equation for the phonon distribution function in an
interacting pure-phonon system. The Boltzmann equa-
tion derived is identical with the Peierls integra, l equa, -

tion, except for certain additional correction terms.
Under a reasonable condition /see Eq. (5.38)g, the cor-
rection terms can be absoorbed into the transport term,
provided that the phonon group velocity appearing in
the original transport terms is replaced by the renor-
malized one. Tracing the procedure of deriving the
Boltzmann equation, we can find tha, t the renormalizing
effect of the phonon-group velocity is related not only
to collisions of three wave packets of phonons„but also
to interactions between phonons constituting the wave

packet itself.
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One may suppose that the renormalization of the
phonon group velocity should come partly from the
shift of the phonon spectrum due to interactions. It is
hard to identify this effect in our expressions (5.33)-
(5.37). However, it is ra, ther obvious that in the ex-
pression of the renormalized group velocity there is
also included another effect, which is connected with
the wave vector spread in the representation of the
wave packets. It is possible that we could estimate
the contribution due to the usual phonon-energy shift,
if we take the expression of the renormalized phonon
frequency, which is given by Maradudin and Fein. No
further discussion of this matter is given here.

In the present derivation of the Boltzmann equation,
we eventually assumed that the to dependence of the
nonequilibrium Green's functions can be neglected. If
this t{)-dependence were not neglected, it would yield
additional terms to the Boltzmann equation. Formally,
it seems that the analytic and asymptotic conditions
imposed are sufhcient to have a well defined problem.
However, the expression of the Fourier transform of the
Boltzmann equation corresponding to (5.6) would con-
tain not only a term in 0, a transform variable conjugate
to tq, and representing (8/Btq) on the left-hand side, but
also there would be a complicated modification of the
collision terms due to conservation conditions which
now must incorporate 0. Since the to dependence of the
phonon distribution function provides an additional
energy to the system, the conservation of energy of
wave packets in collisions should be modified. For ex-
ample, we can see that the factor b(qq2, , coq, , +1dq,;—),
which appears in Eq. (5.31) should be replaced by

l&(~.,
—~', '+~' 3 +-'f~)

+-,'8(CO2, ,—qq2, ,'+lq, ,; —20),

where 0 represents the frequency corresponding to the
to dependence. The direction in which further approxi-
mations to cover the cases where either the distribution
or the collision terms must be corrected because of a

rapid dependence on to is indicated by the present ap-
proach, but is yet to be worked out in detail.

Since we have seen that the Boltzmann equation of
the Peierls type is still valid within the framework of
the lowest-order scattering process, we can refer ques-
tions of its solution to standard references. Here we are
content to note that the solution g(y,j; R; —~, ,;)
should satisfy the symmetry property represented by
Eq. (5.27).

Finally, we wish to make a few remarks on the gen-
eralization of the Boltzmann equation. It seems possible
to include the effect of the finite lifetime of phonons into
the Boltzmann equation if we use a more general ex-
pression of the spectral density A(p, j;qq) instead of
using Eq. (5.23), in the step (8) mentioned in Sec. V.
(We do not discuss the result here. ) It also seems

interesting to generalize the Boltzmann equation to
include higher order scattering processes. However,
there is no guarantee, for example, that the higher-
order scattering processes via cubic interaction are as
important as the lower-order scattering processes by
quartic interactions. Even if this were true, it wou1d

not be sufhcient to replace the cubic interaction matrix
V(ki, kz, kz) appearing in the Peierls equation by a more
general T matrix, which could be obtained from the
perturbation series for V. Obviously, we should also
take into account the possibility that the phonon
Green's functions constituting the T matrix should be
replaced by the nonequilibrium ones, so that they would

yield additional terms to the Peierls equation.
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APPENDIK

We derive Eq. (3.4), in which the Green's function R
is expressed in terms of D. The function R defined by
Eq. (3.3) can be expressed in terms of functional de-
rivatives' with respect to J2(t) as follows:

1 1 5{(S)D(—k, , t; p, t)) 1 61n(S) 18D(—k, , z„p,, t )
8( k2 31' k3 fl '

p2 f2) =- D(—k3, t, ; p2, 4)+- . (A.1)
z (S) 5J 21(zl) z 5J 2, (ti) z 6J 2, (tl)

From the de6nition of S, we obtain

It is also seen that

1 81n($) 1
(T{A 2, (tl)S))=A 2, (zi).

z SJ „(t,) (S)
(A.2)

—SA, (t)/~J„. (t') =D(—p, t; p', z')+zA, (t)A„(t'), (A.3)

so that A~(t) can be regarded as representing the phonon field generated by the creation of phonons, p' at time t'.
From (A.3), we can regard D( p, t; p', t') as being a func—tional of A. Thus, we have

1 ~D( k3) ~l ) p2) z2) 1 '3 '& 5D(—k3, 4; p2, z2) 8Aqq(r2)
dr2 (A.4)

z 8J 22(tl) z 2 3, sA„(.,) sJ „(~,)
6V. L. Sonch-Bruevich and S. V. Yyabloikv, The Green Function 3fethod in Statistical 3IIechanics (North-Holland Publishing

Company, Amsterdam, 1962).
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On the other hand, we introduce the inverse of the phonon Green's function by

tp-iP

dt"D(p, t; p",t")D'(p-",t";p', t') = S(st it—')h(p —p').
tp

(A.5)

Taking the functional derivatives of both sides of this equation with respect to A, (r), and using (A.S) again, we
obtain

tp—iP

l7y
bD ( k3) tl ) p2) t2) =(—1) Z

bÃs(TS) 3) 3) )3

bD '( qS, r—S., ql, rl)
ARTSD( k3) tl) qS) T3) D(ql)rl ) p2)t2)

p bA„(TS)

tp—sP

d71
tp

tp—iP

drSI'( —qS, rS, q2, r2, —ql, rl)D( kS, t—l, —qS, rS)D(ql, rl, pS, t2), (A.6)

where we used the notation I' (see Eq. (3.6)j.H we use (A3) and (A.6) into (A.4), and then (A.4) thus obtained
and (A.2) into (A.1), we obtain

+( k2) tl) kS) tl) p2)t2)

tp—iP

drl A —ks(tl)5(ql+k3)8(sr 1 stl)+3 Q
tp—iP

d72

tp—iP

( q» TS) q» 2) ql) 1) (q» 3)» 1)
al tp

where we have used the property

aS aS tp

XD(ql)rl) p2)t2)LD(k2)tl) qST2)+SAss(T2)A ks(tl) 1
f

) (A.7)

D(p, t; p', t') =D(—p', t', —p, t), (A.S)

which is obvious from Eq. (2.3a) and the definition of D, Kqs. (2.6) and (2.7). Substitution of (A.7) into Eq. (3.2a)
yields Kq. (3.4).

The last equality of Eq. (3.6) comes from the following consideration. Suppose D(pl, tl,. p2, t2) are matrix elements
of a matrix D. Then, Eq. (3.4) can be written in a matrix form

Then, it easily follows that
D= Do—BOLD.

I.=D ' —Dp '.
(A.9)

Thus, we are led to the last equation of Kq. (3.6), because DS ' is independent of A.
Finally, we calculate the vertex I' LEq. (3.6)) in the lowest approximation, in which we take the first term of

Kq. (3.5) for L. Then, we use the I' obtained into the second term on the right-hand side of Eq (3.5) a.nd neglect
terms including A (t) explicitly. The result is given by

I (pl) tl ) q)T) = Q 2 V(pl) k2) kS) V(—q) q2)
—qS)D(k2) tl) q2, T)D(qS, T ) kS) ti) .

Z a2, as a, , as

(A.11)

Substituting this into Eq. (3.4), we obtain the term represented by the diagram (a) in Fig. 1.


