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Low-Temperature Magnetization of the S =-', Heisenberg Ferromagnet
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The low-temperature magnetization of the S= 2 Heisenberg ferromagnet has been investigated by the
method of double-time temperature-dependent Green functions. The equation for the lowest order Green
function and the equation for the next higher order Green function, truncated to order (n)= ', (-S—*), were
solved. The low-temperature magnetization so obtained was found to agree with that obtained by Dyson. In
particular, an argument is presented which suggests that the T term, which has'previously plagued this
method, does indeed vanish.

HE magnetization of a Heisenberg ferromagnet in
the low-temperature region has been rigorously

studied by Dyson' using the method of spin waves.
More recently various authors have applied the method
of double-time temperature-dependent Green functions
to this problem. ' ' In the case S=2 there is a dis-
crepancy of order T' in the magnetization which arises
from an error in the decoupling approximation used to
solve the Green-function equation of motion. Tanaka
and Morita' have reported the elimination of the T'
term by solving the equation of motion for the higher
order Green function. While their 6nal result appears
to be correct, we feel that they did not make the correct
approximations in deriving their equation of motion,
and hence lost some insight into the results.

Expressing the spin operators of the fth site by the
Pauli operators

S,'+iSrg= S,+=b, ,
(1)S~'= r —&~'b~ —r—&~

satisfying the anticommutation relations

f f ) ( f f)=fbf f )
and the commutation relations

[br,bg'] = bgr(1 2')'—
[br,ng] = bgfbr, [brt, ng] = bg fb f" , (—2)'

and defining an exchange sum

J(k) =P e'"'" &I(f—m), where I(0)=0, (3)
f

the Heisenberg exchange Hamiltonian with an external
field H becomes

5e= [frII+-,' J(0)]p nr
f
——,

' P I(f™)(br"b„+nrn„).(4)

We will consider the two Green functions Ggf = ((bg; b rg))

and Gg[ f ((bgtb&b; be)). The departure of the mag-
netization from saturation is then given by

S = Z

Ã ~

" [G„(8+i)—G„(E—i )]
dE. (5)

e~~—1

+Q I(g—m)[G„„—G „,] (6)

fJII 2 J(0)]Gg& f

= (1/2n)b(r(bgtb 2b.g"nlrb )—
+ (1/2rr) b„r(bg" bE 2bgtbgnf)—

+l 2 I(g—p)G, -f—l Z I(m —p)G"r

—l 2 I(l-p)G,.-
+-', Q I(g p)((bg b(b n—„+n„bg b(b

2b, 'ngb)b—; br'))

——,'Q I(m p)((bgtb, b ng+n—„bgtb(b~

—2bgtbgn b„; brt))

The reader is referred to Zubarev' for details of the
Green-function method.

The Green functions are determined from their
equations of motion:

[~—f«—sI(0)]Ggr

1
b,r(1 —2nr) ',—Q I(g——-m)G„f

2' 'm

—2b, tn(b b„bgt)). (7)
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2'sg 1——g[E(X"+k)
2~ E I

order (n)' except for certain values of the indices. We [E—E(&')—E(&")+E(&)]Give
rewrite Eq. (2) keeping only the lowest order terms.
Consider for example (b,tbrtbrb ). If f=ni or f=g this
term is zero, otherwise it is of order (n)'. However„
(b,tbibrtbr) = (b,tbrtbrbi)+ Sir(b, tbi), so we keep the
bi~(b„tbi). This is where we differ from Tanaka and
Morita who dropped all the products of four operators
without regard to their order. They partially compen-
sate for this error by carrying a subsidiary condition +E(X —k) —2E(k)]Gi y~ 4 y»+it, . (11)
along, namely Gg) f 0 if 3=m.

After a similar analysis of the last three sums in Fq If we solve Eq. (11) appro™ately by droPPing the

(2) we are left with an approximate equation of motion

[E @II sJ(0)]G & f

= (1/2~) blf(bg'b )+(1/2~) & y(bg'bi)

—(2/27r)h„fbi, (b,tb )+-,' g I(g—p)G„i r

—-', Q I(m —Ii)G,i,r —-', Q I(1 p)G„„&—

—I(m —1)G.i-r+b-i 2 I(m Ii)G—siva (8)

and

1—2(n)
[E—E(X)]G),=

1 J(X)—J(0)+J(v) —J(0 +v)
+—2 g)l

E ~ 24r [E—E(X)]

E[b(X+X')+ 8(3 +X")]—2
Gxu.- =0— Qg

2s-[E—E(Y)—E(0 ")+E(X)] (12)

The equation of Tanaka and Morita is identical except
for the absence of the third. and. eight terms on the right-
hand side of Eq. (8). However, their approximate solu-
tion is exactly what we would obtain by dropping the
seventh and. eighth terms in our Eq. (8) but retaining
the third, (2/2')b —rbir(b, tbi). The effect of our third
term appears in Tanaka and Morita's solution through
their subsidiary condition. Notice that Eq. (8) auto-
matically gives Gg~gy=o.

The solution is most easily found by expanding Gg~
and Gg~ ~ in reciprocal lattice vectors:

1
G,r ———P exp[i' (g—f)]Gi,

G,i r= P exp[i' (g—f)]exp[i'' (1—f)]
g3 u, )"

&&exp[i'" (m —f)]G),), ),",'
(9)

1
(b,tbr) =—Q exp[i' (g—f)]ni„

g
" G"(E+is) G),(E ie)— —

lE
q

E(~)=&II+-',[J(0)—J(~)].
The equations of motion become

1 J(X—v —v') —J(v+ v')
2n„. (13)

ItI2 ' 27r[E E(v') E(X —v v')+—E(v)]——

After substituting this result into Eq. (5) we And th«
the second. term on the right side of Eq. (13) is the cor-
rect energy renormalization which affects (n) to order
T'. We have shown" that the third term on the right
cancels the contribution of the —2(n)/2s. in the first
term through order T', in agreement with Tanaka and
Morita. The problem remaining is to investigate the
effect of the last term in Eq. (11), that is, the sum over
k. We have iterated this equation twice, substituted the
results into Eq. (5), and found no contribution larger
than T4. It seems possible that the iterations are con-

vergent in this sense but a de6nite proof is still lacking.

It should be pointed out that Gqy q' does give

(b,tb, tbib )=0 but does not give (brtb, tbibi)=0. For
that we must include the effect of the eighth term of

Eq. (8).It can be shown that inclusion of the 6rst itera-
tion of Eq. (11)gives (brtb, tb&b&)=0 through order T' or
(n)', although as we have said it does not contribute to
(n) until order T4. This can be explained by the fact
that terms such as Gggg f are excluded completely from
the sum in Eq. (6) and hence do not need to be known

exactly, while G„,does contribute and must be known.
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