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Normal Modes of Vibration in Nickel
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(Received 13 July 1964)

The frequency —wave-vector dispersion relation, v(q), for the normal vibrations of a nickel single crystal
at 296 K has been measured for the L001'$, LOi'I'j, Qff)', and [0/1j symmetric directions using inelastic
neutron scattering. The results can be described in terms of the Born-von Karman theory of lattice dy-
namics with interactions out to fourth-nearest neighbors. The shapes of the dispersion curves are very
similar to those of copper, the normal mode frequencies in nickel being about 1.24 times the corresponding
frequencies in copper. The fourth-neighbor model was used to calculate the frequency distribution function
g(o) and related thermodynamic properties.

INTRODUCTION

"ANY properties of the ferromagnetic transition
- ~ metal, nickel, have been studied both experi-

mentally and theoretically over the past several years.
The electronic band structure and Fermi surface of
nickel are believed to be similar in certain respects to
those of copper" whereas the incomplete d-electron
shell and ferromagnetic properties of nickel demon-
strate its similarity to iron and cobalt. ' The simple
structure (face-centered cubic) and favorable nuclear
parameters of nickel Inake possible, in principle, a
study of several of its properties by means of the now
well-known' techniques of thermal neutron inelastic
scattering. Some measurements have already been
made' of the frequency —wave-vector dispersion relation
for long-wavelength spin waves in nickel. The technique
of small-angle scattering' has also been employedr to
observe the parabolic form of this dispersion relation.
From both types of experiment, values of the nearest-
neighbor exchange parameter J have been deduced,
which are in good agreement with those obtained from
spin-wave resonance' experiments and from measure-
ments of the saturation magnetization' as a function of
temperature. A study has been made" of the critical
neutron scattering near the Curie temperature (630'K),
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and of the frequency distribution function for the
normal modes of vibration g(v)." Is

This paper is concerned firstly with the determination
of the frequency —wave-vector dispersion relation o;(q)
(j is the polarization index) for the norinal modes of
vibration in a single crystal of unmagnetized nickel at
296'K, by means of coherent inelastic neutron scat-
tering, " and secondly with the correlation of these
results with, measurements of other properties of nickel.

In the experiments, coherent one-phonon scattering
processes occur in which the energy and momentum of
the neutrons are changed. from their initial values, Eo
and t'tks to final values E' and fik' gov'erned by the
conservation conditions:

~o—~'= +&v,

ks —k'= Q= 2org+tl,

wh, ere Q is the momentum transfer vector, q th, e reduced
wave vector of the phonon involved in the scattering
process, and ~ a vector of the reciprocal lattice. The
+ (—) sign refers to phonon creation (annihilation).
Peaks are obtained wb, en the frequency o given by
Eq. (1) coincides with that of the phonon whose wave
vector is q, given by the dispersion relation

o= I;(q). (3)
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This process is repeated for successive values of q
along high-symmetry directions in the crystal Such.
measurements provide direct information concerning
the interatomic forces.

Attempts have been made"" to calculate th, e inter-
atomic forces in certain metals (e.g. , Na, Cu, Zn) from
6rst principles, and to justify'~ the use of an "effective
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interatomic potential" to describe these forces. It is
hoped th, at th, e results contained in tb, is paper will

stimulate the further theoretical work required to
extend such calculations to th, e case of transition metals.

When a suitable interatomic force model has been
constructed from the observed v;(q), the frequency
distribution function g(v) for the n.ormal modes may be
computed, together with the moments M of this
function:

v "g (v)(Ev g(v)dv. (4)

These moments may be obtained from a detailed
analysis of precise thermodynamic data, such as has
been carried out for the alkali halides. "This process is,
however, more complicated in the case of nickel, since
the observed total heat capacity contains contributions
from the conduction electrons and from spin waves, in
addition to the usual lattice term.

Nickel is on.e of the few materials for which a corn-
parison is possible between the g(v) obtained directly"
from incoherent neutron scattering experiments and
that computed from the normal mode dispersion rela-
tion via an interatomic force model. A third possible
method of determining g(v), by means of neutron
scattering from a single crystal specimen of natural
isotopic composition, and correcting for the coherent
scattering effects, has been attempted" with, some
success. Analysis of inelastic neutron scattering from
polycrystalline nickel (also of natural isotopic com-
position) with the help of an "incoherent approxi-
mation" has been carried out" to obtain a function
which is believed to resemble the frequency distribution
function of nickel in important respects. A fifth method
of obtaining information about g(v), recently suggested
by Guttrnan" and involving the use of polarized neutron
beams, cannot be used in the case of nickel since its
incoherent scattering does not arise from nuclear spin
disorder.

Similar measurements of v;(q) for nickel by Hautcler"
have been made independently of those reported in this
paper. No detailed comparison of these results has yet
been made.

MEASUREMENTS AND RESULTS

The present experiments were performed by means
of the triple axis crystal spectrometer' at the NRU
reactor, Chalk River. A collimated beam of mono-
chromatic neutrons, produced by Bragg reQection from
an aluminum single crystal, is incident upon the nickel
specimen. The energies of the scattered neutrons are
determined by Bragg reQection from a second aluminum
single crystal. Most of the experiments consisted in

' T. H. K. Barron, W. T. Berg, and J.A. Morrison, Proc. Roy.
Soc. (London) A242, 478 (1957).
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FIG. 1. Neutron groups for typical phonons in niclml and their
corresponding positions in the reciprocal lattice (1 THs=10"
cps).

observing the scattered neutron counting rate for fixed
values of Q and E', while the incident energy,
Ep(Ep) E') is varied. 4 Measurements were carried out
for waves propagating along the high syrnrnetry
directions $00fj, t Ot t j, Lgf'j, and L0$1$.

The single crystal nickel specimen (purity~&99. 97%)
was in the form of a 4-in. &&43-in. cylinder, purchased
from the Virginia Institute for Scientific Research.
Measurements were made at 296'K with the crystal
in either of two different orientations (i) with a (110)-
type mirror plane parallel to kp and k', or (ii) with a
(100)-type mirror plane parallel to kp and k'. Certain
branches of v, (q), such as the longitudinal (L) and
transverse (T) branches in the LOOBY j direction may be
studied in both crystal orientations; this serves as a
useful consistency check on the results, as do obser-
vations of the same phonon for different Q and for
diGerent E'. The experimental arrangement is such that
the instrumental resolution is generally speaking higher
for low E'. In the experiments at low 8', care was
taken to avoid the possibility of spurious neutron groups
arising from the second-order rejecting power of the
analyzing crystal, thus:

Ep—4E'= &he',

kp —2k'= Q'= 2s.~+q',

where v'= v;(q'). Other types of spurious processes can
also occur, though these are usually more readily
avoided.

Four typical neutron groups are shown in Fig. 1;
groups A and B were observed under conditions of
higher resolution than C and D, as is suggested by
their relative frequency widths. The upper reciprocal
lattice diagram in Fig. 1 contains a graphical repre-
sentation of Eq. (2) and illustrates the method of
"constant Q.'" The neutron group A was obtained by
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observing the scattered neutron count rate for a
sequence of spectrometer positions, the first and last
of which are indicated by means of the appropriate
neutron wave vectors. The complete results are shown
in Fig. 2 and Table I. The phonon frequencies were
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TmLE I. Normal mode frequencies in nickel at
296'K (units THz=—10"cps).
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FIG. 2. The measured dispersion curves for nickel at 296'K
compared with the best-fit fourth-neighbor Born—von Karman
model. The straight lines through the origins have the slopes of
the appropriate velocities of sound as calculated from the measured
elastic constants.
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a The polarization vectors for the T1 and &2 modes propagating along
the fOff7 direction are parallel to fOf f7 and ff007, respectively.
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determined with a precision of about 2%%u&. They have
been corrected for the effect of the variation of the
neutron scattering cross section across the instrumental
energy resolution. The solid lines drawn through the
origin (q=0) in various sections of Fig. 2 represent the
appropriate sound velocities calculated from the elastic
constants of unmagnetized nickel. "The apparent dis-
crepancies between these lines and the phonon fre-
quencies measured at small wave vectors for the
1.$00t) and T2)0ff] branches are probably within

experimental error. (The polarization vectors of the
normal modes belonging to the TsLOgj branch are
parallel to t t'00j. ) More precise measurements would be
needed to establish the significance of these discrepan-
cies. The dispersion curves are generally rather smooth
and do not display anomalies of the type observed, for
example, in the case of lead."

In the present experiments, no observations were
made of neutron groups arising from "one-magnon"
scattering processes (i.e., involving one quantum of
spin-wave energy). It is easy to avoid any confusion
between phonon and magnon processes owing to the
large energy difference between them for most wave
vectors. Figure 3 shows a sketch of the magnon dis-
persion relation (as a function of the square of the
wave vector) expected from simple spin-wave theories
of ferromagnetism" ' ', the upper shaded area is a rough
indication of the uncertainty of the dashed curve.
Although such theories are adequate for perhaps only
the region of small wave vectors, it seems very unlikely
that the actual magnon energies for large wave vectors
are within the "phonon" energy region, represented by
the lower shaded portion. For small wave vectors, in
this method of presentation, the magnon dispersion
relation is a linear function with a very small or zero
intercept at q'=0. The phonon dispersion curves, on
the other hand, appear parabolic near the origin, and
will thus intersect the magnon curve. These inter-
sections will occur for cia/2s. &0.1 in all cases. )The
reverse situation, in which the magnon curves are being

~ B. N. Brockhouse, T. Arase, G. Caglioti, K. R. Rao, and
A. D. B. Woods, Phys. Rev. 128, 1099 (1962)."J.Van Kranendonk and J. H. Van Vleck, Rev. Mod; Phys.
30, 1 (1958).
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FIG. 3. Comparison of phonon and magnon energies for nickel.

studied, and the phonons avoided, would be much less
favorable; it would be necessary to distinguish, by
means of the response of the neutron intensity to an
applied magnetic field, the true magnon peaks from
various one-phonon processes (for which the cross
section would usually be much higher) observed by
reason of the higher order reflections from the mono-
chromator and analyzer crystals of the spectrometer.
A study of the phonon dispersion relation is thus a
valuable preliminary for the more difficult deter-
mination of the spin-wave dispersion relation. f

ANALYSIS OF RESULTS

~ M. Born and K. Huang, Dynamical Theory of Crystal Lances
(Clarendon Press, Oxford, England, 1954).

25 G. L. Squires, Arkiv Fysik 25, 21 (1963).
"A. J. E. Foreman and W. M. Lomer, Proc. Phys. Soc.

(London) 870, 1143 (1957).

The application of the Born—von Karman theory"
to fcc lattices has been described by many authors.
Th, e squares of the normal mode frequencies are eigen-
values of a 3&3 matrix D whose elements have been
expressed. in a concise form by Squires. " For normal
modes propagating in th, e high-symmetry directions
(see Fig. 2), D factorizes into three linear equations.
The dispersion curves can then be Fourier analyzecP'
to yieM information concerning the forces between
various planes of atoms in the crystal. This kind of
analysis is described in detail in Ref. 22 for the case oI'

lead. As might be expected from the smooth shapes of
the dispersion curves for nickel, Fourier analysis shows
that relatively short range interatomic forces (at least
up to third-nearest neighbors, but not necessarily
beyond fifth) provide a satisfactory description of the
experimental results. This is confirmed by a linear
least-squares 6t analysis of all the data of Table I
together with the known elastic constants, " on the
basis of the Born—von Karman th, eory. An excellent
fit was obtained either with general interatomic forces
out to fourth-nearest neighbors, or with an axially

symmetric modeP extending to fifth-nearest neighbors.
The dispersion curves are indeed sufficiently simple
that a fairly satisfactory fit can be obtained with a
third-neighbor force model having only 9 disposable
parameters. The dispersion curves calculated on the
basis of the general fourth-neighbor model are shown
in Fig. 2. The force constant notation used, and their
least-squares fitted values for both the general fourth-
neighbor model and axially symmetric fifth-neighbor
model, are given in Table II. Some properties of nickel

TABLE II. Force constant notation and best fit values.

Neighbor
location Force constants

Values

(a)

General
forces

(dyn/cm)
(b)

Axially
symmetric

forces

First
(1, 1, 0)

Second
(2, 0, 0)

Third
(2 1 1)

Fourth
(2, 2, 0)

Fifth'
(3, 1, 0)

nl
Pl
0

0
0

Y3

73

n4
p4
0
n5
85
0

nj, 0

0 0
p2 0
0 p&

V3 y3

p3 ~3
B3 p3

y4 0
0

0 p4
85 0
p5 0
0

nl. ——17 178
pg ———26
yg ——19 316
n2 =880
p, = —519

n3 =626
pa=320
y3 —-453
83 = —173
n4=275
p4 = —160
y4 =424

nj. =17 720
p&= -1015
+1 n1 pl
np = 1148
p~ — 998

n3 =940
p, =182
ps ——2 (aa —pa)/3
Ss = (os p~)/3—
n4=459
p4= —153
y4=n4 —p4
n5 = —363
p5 =100
vs = (9A —os)/8
sg ——3 (ng —pg)/8

& There is insuKcient data for an analysis in terms of a general fifth-
neighbor model.

utilized in the analysis are listed in Table III. Certain
low-frequency modes and elastic constants are not very
well fitted by the model, although, this lack of fit is
probably not significant. It is possible that the elastic
constant Ineasurements"" are sensitive to small
amounts of impurity or varying h,eat treatments, and
therefore Inay not correspond exactly to those appro-
priate to the present specimen. Furthermore, no special
efforts were Inade in the present experiments to make
high precision measurements of i (tl) for low tl.

The fourth neighbor force model described in Table

TABLE III. Some properties of nickel at 296'K.

Mass=58. 71 amu
Lattice constant =3.5239 L
Elastic constants' (units 10" dyn/cm2):

Cyy 2 46P C)2 1 507 C44 1 22

a The precision of the elastic constant values is believed to be better
than 1%.

"G. W. Lehman, T. Wolfram, and R. E. De Wames, Phys.
Rev. 128, 1593 (1962).

"G.A. Alers, J. R. Neighbours, and H. Sato, Bull. Am. Phys.
Soc. 4, 131 (1959).
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II has been used as an interpolation formula to compute
the frequencies of normal modes which have not been
directly observed in the present experiments. All the
frequencies thus calculated were found to have plausible
values. It seems reasonable, therefore, that the fre-
quency distribution function g(v) for the normal modes

may be calculated to a good approximation with the
help of this model. The problem of obtaining g(v) from
th, e observed v, (q) or from derived force models has
been widely studied; the various possible methods have
been summarized by Maradudin et al."It has recently
been emphasized" that all thermodynamic data may
be derived from the moments 3II„of g(v), defined by
Eq. (4), and th, at it is therefore unnecessary to compute

g(v) itself for the purposes of thermodynamics. The
most common objection raised against the direct com-
putation of g(v) from a force model by the sampling
method" is that the size of the sample required to
correctly reproduce singular features of g(v), such as
critical points, is much too large for calculation even
on high speed electronic computers. This difFiculty has
been largely overcome by means of a new sampling
method developed by Gilat and Dolling" in which the
egecti~e sample size is enormously increased with very
little increase in computing time. Details of the actual
calculation of g(v) for nickel using this method are
given in Appendix A. The resulting distribution func-
tion is shown as the solid line in Fig. 4; the principal
critical points" are very clearly displayed, and may be
correlated with the appropriate points on the dispersion
curves (Fig. 2). The solid line is in fact a histogram plot
with steps in frequency of 0.02 THz (1 THz= 10r' cps)
but the spacing and fluctuation of the individual blocks
are too small to be plotted separately. Special attention
has been devoted (see Appendix A) to maintain high
accuracy in the relatively unpopulated region of low
frequencies. The dashed curve in Fig. 4 shows the results
of Tchernoplekov et al."obtained from measurements
of incoherent inelastic neutron scattering from a sample
of nickel isotopes for which the coherent cross section
was zero. These results are plotted on an arbitrary
vertical scale, since it is not possible to normalize them
correctly with respect to the area under the computed
curve. The experimental errors are rather large, par-
ticularly for v&1 or &9 THz, and the critical points
are not clearly shown. There is, however, qualitative
agreement between the measured and calculated curves.
The solid circles represent the results of Brugger"
obtained from observations of the total inelastic scat-
tering from a siIngle crystal of ordinary nickel as a
function of crystal orientation. The energy resolution
was insufhcient to show the narrow peak near v= 8 THz.

"A. A. Maradudin, E. W. Montroll, and G. H. %'eiss, Solid
State Physics, edited by F. Seitz and D. Turnbull (Academic
Press Inc. , New York, 1963), Suppl. 3.

~ C. Isenberg, Phys. Rev. 132, 242tt (1963).
a G. Gilat and G. Dolling, Phys. Letters 8, 304 (1964)."L.Van Hove, Phys. Rev. 89, 1189 (1953).
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FIG. 4. Frequency distribution function of nickel determined
by various methods as described in the text. The experimental
results (a), (b), and (c) are taken from Refs. 11, 12, and 13,
respectively.

At lower frequencies, the resolution was somewhat
better, and the agreement with the computed curve is
quite good. The analysis performed by Mozer et al. ,

"
mentioned in the Introduction, is represented by the
open squares. Both these results and those of Brugger
have been normalized to the area under the computed
curve. In view of the crude assumptions employed in
Ref. 13 to extract g(v) from the experimental obser-
vations, the agreement between the square points and
solid curve is remarkably good. Experimental measure-
rnents of g(v) with much higher energy resolution are,
however, needed in order to provide an adequate test
of the computed distribution function of Fig. 4.

The departure of the distribution function from. that
expected on the basis of the Debye theory is well
illustrated by a plot of g(v)/v', as shown in Fig. 5. The
intercept at v=0 corresponds to a Debye "cutoff"
frequency v, of 9.374 THz, from which we obtain 0D

(at O'K)=Itv, /king
——449.9'K. (kii is Boltzmann's con-

stant. ) An expansion of the low-frequency part of g(v)
in even powers of v

g (v) =asv'+a4v4+asv'+

showed that a4, as, etc. , were negligible for v up to
about 0.9 THz. The most usual way to present results
of g(v) computations for comparison with thermo-
dynamic properties is to evaluate 0D as a function of
temperature. This function is shown in Fig. 6(a). It
should be emphasized that this curve has been com-
puted essentially from dispersion curves measured only
at room temperature. No attempt has been made to
correct the various derived functions (9ii,M„) for an-
harmonic effects which introduce a slight temperature
dependence (a few percent for temperatures less than
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is quite inadequate in the case of nickel. In the absence
of a magnetic field, the dominant term" in C is of the
form A T'~' for low T. The existing C, data for nickel
are not sufficiently precise to determine the value of A.
This can be found, however, from saturation magneti-
zation measurements, and the appropriate allowance
for C made in the analysis of C,. In this way, Rayne
and Kemp'4 have deduced the "experimental" curve
shown in Fig. 6(a). At O'K, they obtain 8D ——468'K.
(A somewhat more accurate estimate of C, using a
better value"' for the coe%cient A, and making allow-

ance for the nonzero intrinsic Geld in nickel, shows that
C and therefore also OD is rather less than that esti-
mated in Ref. 34.) If no allowance is made for the
magnetic contribution, Rayne and Kemp obtain 0&

(O'K) =441'K. The difliculties of estimating 8ii from
low-temperature calorimetric data are illustrated by
the wide variety of values in the literature. ' It is clear,
however, that very accurate calorimetric data for nickel
over a wide temperature range would provide a Inost

~ R. H. Busey and W. F. Giauque, J. Am. Chem. Soc. 74, 3157
(1952).~ J. A. Rayne and W. R. G. Kemp, PhiL Mag. 1, 918 (1956)."F.J. Dyson, Phys. Rev. 102, 1217 (1956).

"W. H. Keesom and C. W. Clark, Physica 2, 513 (1935);J. C.
Walling and P. B. Bunn, Proc. Phys. Soc. (London) 74, 417
(1959);K. P. Gupta, C. H. Cheng, and P. A. Beck, Phys. Chem.
Solids 25, 73 (1964). The go values given in these references are
413, 348, and 330'K, respectively.

296'K) of the normal mode frequencies. We th, erefore
expect the computed 8ii to be about 10'K too low at
very low temperatures.

Also shown in Fig. 6(a) is a curve representing the
experimental heat capacity data of Busey and Giauque"
and of Rayne and Kemp, '4 as interpreted by the latter
authors. As mentioned in the Introduction, the analysis
of heat capacity (C,) data for nickel is complicated by
the existence of a magnetic contribution C, in addition
to the usual conduction electron (C') and lattice (C')
terms. Thus an analysis of C.(T) for T(10'K by
means of the formula

C.=C'+C'=v&+PI'
00

vs= exp —+ g(v) lnvdv
0

g (v)dv

The variation of v„with e, computed from th, e distri-
bution function, which in turn was derived from the
measured dispersion relation, is shown in Fig. 6(b).
(In the simple Debye theory, v is of course a constant,
th, e "cutoff" frequency. ) The existing heat capacity
data for nickel have not been analyzed so as to extract
v„values for comparison with this calculated curve.
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Fio. 6. (a) Comparison of calculated and experimental values
of the Debye temperature. (b) Calculated "Debye frequencies, "v„.

valuable check on theoretical calculations of the various
contributions to the total heat capacity.

Estimates of 8ri (O'K) may also be made from the
elastic constants measured at very low temperatures.
Alers et al."have obtained 8ii ——4'/6'K for nickel under
conditions of saturation induction. The value appro-
priate to unmagnetized nickel is probably somewhat
lower than this, if the room temperature results of
de Klerk" are taken as a guide.

Taking the above considerations into account, the
agreement between the two curves in Fig. 6(a) may be
regarded as quite satisfactory; it provides additional
support for the validity of the Born—von Karman force
model constructed from the observed v;(q) results.

An instructive way' to express the frequency-
distribution result, which is more generally useful for
the purpose of comparison with calorimetric data, is
by means of its moments M„, defined by Eq. (4).
These, in turn, can be conveniently expressed in terms
of "Debye frequencies, " v„, defined for e& —3 by

v = L'(++3)M /3ji~" for nWO.

It can also be shown that

v s
——(hid/h) 8i) (O'K)

and
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DISCUSSION

The main features of the dispersion relation for
normal modes propagating in the principal symmetry
directions in nickel at 296'K have been determined.
It is of interest to compare these results with the
dispersion relation found"" for copper. Cribier ef al."
have measured v;(q) for the $00$]', LOg], and jgf']
directions. Preliminary results of Sinha and Squires"
for the first two directions are in agreement (within the
experimental errors of about 5%) with the earlier
results. The available data are barely sufhcient to
perform a detailed analysis as described above for
nickel. Sinha and Squires have attempted, with fair
success, to Qt their results by means of a modified form
of the model proposed by Toya." Both the experi-
mental and theoretical dispersion curves for copper
show a striking similarity to those obtained for nickel.
The phonon frequencies in copper, apart from certain
I. modes very close to the t Og] zone boundary, are on
the average a factor 1.24 less than the analogous fre-
quencies in nickel. The individual ratios are the same
within experimental error, though there is a tendency
for slightly higher ratios to be associated with th, e lower
frequencies and vice versa. The exceptional J[0g]
modes are in any case not well fitted by the model of
Sinha and Squires (which fits the simple ratio rule
quite closely). The elastic constants Cii and C44 and
the values of 8ii (X=0'K) are also consistent with the
rule, but the ratio appropriate to Cis is about 10% too
low. An analysis of heat capacity data to obtain the
"Debye frequencies" v has not yet been carried out
for nickel. Values of v„ for copper have, however, been
deduced's for r4= —3, —2, —1, +2, +4 and +6. The
ratios of the v calculated for nickel to the observed

values for copper are 1.30, 1.25, 1.23, 1.21, 1.21, and
1.22, respectively. Perhaps this correlation between

copper and nickel, crude and unsophisticated though
it may be, is an indication that the normal modes of
vibration in nickel may be adequately treated within
the theoretical framework developed by Toya" and
Cochran. " Finally, we emphasize the need for more
extensive and precise calorimetric data for nickel and
neutron scattering data for copper, in order to facilitate
the achievement of detailed and comprehensive ex-
planations of the thermal, magnetic and electronic
properties of these two metals.

D. Cribier, B. Jacrot and D. Saint-James, Ref. 3, p. 549.
'4 S. Sinha and G. L. Squires, Phys. Chem. Solids (to be

published)."L.Salter and J. A. Morrison (private communication).

APPENDIX A

The irreducible 1/48 of the Brillouin zone (BZ) is
taken to be defined by the five planes aq, /2m = 1, q, =0,
q„=q„q,=q„, and (q,+qv+q, )a/2rr=1. 5. This poly-
hedron is subdivided into three parts labeled A, B, C
in order of increasing q, values, by the pl@,nes aq,/2x
=0.125 and aq /2m=0. 0625. The normal mode fre-
quencies are computed for wave vectors lying on a
simple cubic mesh (CM) of spacing aq/2s. =1/144.
CM is chosen so that the origin P (and, in fact, all the
corner points of BZ) of reciprocal space lies at the body
center of a basic cube of the mesh. This choice is sub-
stantially more efficient than the other alternative, in
which F lies at a corner point of the mesh. A straight-
forward calculation of g(v) on this basis would involve
254040 matrix diagonalizations to obtain a total of
35 831 808 phonon frequencies in the entire zone. This
difficulty is avoided by diagonalizing the matrix D at
points throughout the region C (high q) on a "crude"
mesh of spacing aq/2~= 1/16. At each q value (labeled
X, say) the frequency gradients Bv,/Bq, are computed
by simple perturbation theory; the phonon frequencies
corresponding to the 229 points of the basic mesh CM,
which lie in the vicinity of each X, are then computed
by straightforward linear extrapolation. This method
may not be sufFiciently accurate" over the whole of
BZ, particularly at small wave vectors. Thus we di-
agonalize the matrix D for wave vectors on an "inter-
mediate" mesh of spacing aq/2s. = 1/48 over the region
B, and utilize perturbation th, eory at each point to
compute only nine basic mesh points CM. Finally, the
region C of the zone (aq,/2s. (0.0625) is treated by
diagonalization at all CM points, without the use of
perturbation theory. The distribution function g(v)
thus calculated (see Fig. 4) is believed to be an ex-
tremely accurate representation of the general fourth-
nearest-neighbor force model (Table II). It is adequate
for the computation of all thermodynamic quantities
except those which are sensitive to the moments M„
of g(v) for I&~—2. In order to increase the accuracy of
g(v) for very low frequencies, a second calculation was
made for the regions A and B (i.e. , for aq, /2~(0. 125)
of BZ. The spacing of the basic mesh CM was aq/2s.
= 1/720, five times smaller than in the first calculation.
A three-stage system of computation was again em-

ployed, and the results of the two calculations added
together after proper normalization. The results shown
in Figs. 4, 5, and 6 are based on this "combined" g(v).
All these computations were performed on the Control
Data G-20 computer at Chalk River; the total corn
puting time involved in producing the data for Figs. 4,
5, and 6 was about 25 min.


