
A 1290 THOMPSON, BROWN, AN D RUNGE

tained and noting accuracy of the ind. ividual measure-
ments, we arrive at a value of k= —162~16.

Thus, almost within the known experimental errors of
the various measurements, the dynamic nuclear polar-
ization of ANI can be computed from the modified
Bloch equation LEq. (1)j with T& T2 ————SO nsec and
the Solomon relation LEq. (6)j with k= —162 over a
wide range of fields and under resonant and nonresonant
conditions.

Some unexplained behavior was noted in an ANI
sample which had deteriorated over a period of time.
The time constant for the establishment of the steady-
state dynamic nuclear polarization varied markedly
with H, f and was, in addition, much longer than T1 for
the proton spin system. It has been reported, "without
knowledge of the sample deterioration, that this system
did not respond according to both Eqs. (1) and (6), but
this has now been attributed to sample deterioration.

One of the other solutions on which the low-field
dynamic nuclear polarization measurements were made
was a free-radical derived from crude oil, which was
studied by Poindexter. " This particular radical is rot
exchange-narrowed, and its linewidth is hyperfine

'2 R. J. S. Brown and Don D. Thompson, Bull. Am. Phys. Soc.
8, 620 (1963).

broadened. For it, T1&T2—10 nsec. Large signals were
obtained. from this solution with 80=0.5 G as well.

A check was made of the effect of direction of the rf
field. The coils producing II,f were turned parallel to
the dc Beld Bo. The ANI solution yielded absolutely no
detectable "parallel" signal under conditions where the
perpendicular fields gave a signal-to-noise ratio of nearly
50. This was expected from the MBE. However,
Poindexter's radical solution yielded a "parallel" signal
approximately one-third as large as the "perpendicu-
lar. " We believe that this is due to the existence of
unresolved hyperfine states in the radical, which would
permit electron absorption between m p= 0 components,
where mp is the total electron-plus-nucleus spin mag-
netic quantum number. These transitions are known to
have parallel transition probabilities in weak dc fields.

We believe this transient dynamic nuclear polariza-
tion technique to be a very useful way to study electron
relaxation behavior of solutions. First, large values of
H, & may be obtained at these low frequencies with
conventional amateur transmitters; and second, the
transient method avoids the troublesome rf heating
problems encountered in continuous wave experiments.
The rf is applied for only about 1 sec to fully polarize the
nuclei.
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Infrared reQectivity measurements have been made on single-crystal MgF2 and ZnF2 in the wavelength
range 1 to 140 p. An analysis of the data using Kramers —Kronig analysis and classical dispersion theory gives
the transverse optic mode frequencies, strengths, and linewidths. Huang's macroscopic dielectric theory is
extended to the case of several modes to study the behavior of the longitudinal optic modes in these Quorides.
A generalized Lyddane-Sachs-Teller relation and some additional sum rules are derived for the case of many
modes when damping is present. It is shown that the longitudinal mode frequencies are easily obtainable
from the reflectivity data analysis. The four longitudinal optic mode frequencies for MgF2 and ZnF2 are
presented.

INTRODUCTION

'AGNESIUM Quoride and zinc Quoride are
- ~ optically transparent insulators which crystallize

with the rutile structure. This structure has space
group F42/mrs' and point group D4q. A group character
analysis shows that these materials should exhibit three
doubly degenerate infrared active modes with the
electric vector perpendicular to the c axis and one
nondegenerate infrared active mode with the electric
vector parallel to the c axis. ' At the present time the
frequencies of these modes have not been established.
A recent report by Hunt et al. describes reAection

r P. S. Narayanan, J. Indian Acad. Sci. 32A, 279 (1950l.

experiments done on polycrystalline MgF&.' Since
reQectivity is a nonlinear function of the dielectric
constant, analysis of average re8ectivity does not yield
an average dielectric constant for noncubic crystals.
Thus the analysis carried out by Hunt et al. yields some
incorrect frequencies and mode symmetries. Recent
experiments performed by Johnson et al. on nickel- and
cobalt-doped MgF2'4 and cobalt-doped ZnF2 have

' G. R. Hunt, C. H. Perry, and J. Ferguson, Phys. Rev. 134,
A688 (1964}.

'L. F. Johnson, R. E. Dietz, and H. J. Guggenheim, Phys.
Rev. Letters 11, 318 (1963).

4L. F. Johnson, R. E. Dietz, and H. J. Guggenheim (to be
published).
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shown that phonon-terminated laser action is possible.
In MgF2.¹ithe characteristic phonon frequencies are
340 cm '. In ZnF&. Co there is some ambiguity in the
assignment of the phonon energy, the most likely
assignments being in the range 380 to 540 cm '. The
present work is a study of the phonon properties of
MgF& and ZnF& which can be detected by infrared
techniques. Polarized reflection spectra are taken from
suitably oriented samples to give the mode structure
of the infrared active vibrations. Analysis of the real
part of the dielectric constant gives the longitudinal
optic (inactive) vibration frequencies. Huang's theory
of the long-wave optic vibrations is extended to the
multimode case to illustrate the longitudinal mode
effects and to derive a general Lyddane-Sachs-Teller
relation in the case of many modes with velocity-
dependent damping.
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FIG. 1. ReQectivity of MgF2 for the electric vector of the
infrared beam perpendicular to the c axis. The solid curve is the
best fit obtained using classical oscillator dispersion theory. The
solid bars show the transverse mode frequencies and strengths.
A mode strength of 1.0 is given an ordinate of 10% reiiectivity.
The arrows give the longitudinal mode frequencies.

techniques. One sample contained about 1%%uo Ni and
1%Co and had a pink-orange color. The second sample
contained about 0.5%%uo Ni and was optically clear. A
small boule of ZnFs doped with about 1%%uo cobalt was
oriented by using Laue x-ray photographs. A rec-
tangular sample 3.5 by 4.2 by 11.0 mm was cut from the
boule so that the c axis was parallel to the 3.5-mm edge.
The sample had a deep red color. All samples showed
symmetric, clearly defined optic figures when examined
with crossed polariods. Room temperature reflection
spectra were taken in the range 1 to 140 p for the
electric vector E of the infrared beam perpendicular to
the c axis. Conventional pile of plates polarizers were
used. ' In the E~~c-axis configuration all samples had
somewhat smaller surface areas, and measurements
could be carried out only to about 45 p because of the
limited energy available. In all experiments the angle of

'W. G. Spitzer and D. A. Kleinman, Phys. Rev. 121, 1324
{1961).

EXPERIMENTAL

Two single-crystal samples of MgF2 were oriented
by x-ray then cut and polished by usual metallographic
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FIG. 2. ReQectivity of MgF2 for E parallel to the c axis. The
solid curve is given by the classical oscillator dispersion theory
with one strong mode and one weak (forbidden) mode.

incidence was near 15'. For both materials the wave-
length range was sufBcient to cover completely the
restrahlen band structure which was found. The types of
spectrometers and the measurement techniques have
been described previously. ' ' The measured reflectivities
are shown by the points in Figs. 1—4. For MgF2 where
two samples were studied, no features of the spectrum
could be associated with the nickel and cobalt doping.
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FIG. 3.ReQectivity of ZnF2 for Eperpendicular to the c axis. The
solid curve is given by the classical oscillator dispersion theory.
Transverse and longitudinal phonon modes are indicated by
vertical bars and arrows.

s A. S. Barker, Jr., Phys. Rev. 132, 1474 (1963).

DISCUSSION

It is useful when presenting infrared lattice vibration
data to characterize the modes by their strengths,
frequencies and linewidths. This is most easily done
using the classical oscillator dispersion theory where
these parameters appear explicitly and can be deter-
mined by a curve-fitting procedure. In applying the
dispersion theory to tetragonal crystals, it is assumed
that the dielectric behavior of the crystal can be
described by two dielectric functions, one for EJ
axis and one for E~~ c axis. The parameters entering
these functions are a strength, frequency, and linewidth
for each mode and an asymptotic value for the dielectric
constant at high frequencies. Values for the parameters
are chosen so that the dielectric functions correctly
predict the measured infrared reflectivity. The fitting
technique has been discussed extensively in the liter-
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TABLE I. Infrared phonon parameters for MgF2 and ZnF&.

Frequency Wavelength Strength Linewidth
(cm-) (&) S; ~7/~i.

Limiting
dielectric
constants

247
410
450
303
415
617

399
556.
625

173
244
380
227
264
498

MgF2 I&'J c axis (symmetry type E„)
40.6 2.22 0.014
24.4 0.19 0.033
22.2 1.14 0.058
33.0 (longitudinal mode)'
24.1 (longitudinal mode)
16.2 (longitudinal mode)

MgFs E~l c axis (symmetry type Ag )
25.0 2, 7 0.048
18.0 0.01 0.08
16.0 (longitudinal mode)

ZnF& F.J c axis (symmetry type L',)
57.8 4.0 0.035
41.0 0.24 0,037
26.3 1.13 0.088
44.1 (longitudinal mode)
37.9 (longitudinal mode)
20.1 (longitudinal mode)

ZnFs Lit c axis (symmetry type Ag„)
34.0 4.6 0.092
20.5 (longitudinal mode)

c„=1.9
ep ——5,4

e„=1.9
~p =4.6

choo=2. 1
ep ——7.5

Eeo~2.6
6p =7.2

' Weak forbidden mode.
& The high-frequency reflectivity did not approach a constant value

causing about 10% uncertainty for e .
& The effective charges and damping coef6cients for the longitudinal vi-

brations can be obtained by transforming to new longitudinal mode ampli-
tudes W~ which diagonalize the force constant matrix for longitudinal mo-
tions. These longitudinal charges may be of interest since they determine
the polaron coupling constants.

ature. '~ The solid curves in Figs. 1—4 show the fits that
have been obtained with the dispersion theory. The
corresponding mode parameters are given in Table I.
In addition to the infrared active phonon frequencies
(which correspond to transverse optic vibrations), the
longitudinal optic phonon frequencies may also be
obtained from the dispersion theory. Before discussing
the longitudinal optic mode frequencies, it seems
desirable to present a simple theory to illustra, te the
behavior and significance of the longitudinal vibrations.
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FIG. 4. Reflectivity of ZnF& for I' parallel to the c axis. The solid
curve is given by classical oscillator dispersion theory.

' W. G. Spitzer, D. Kleinman, and D. Walsh, Phys. Rev, 113,
127 (1959).

MACROSCOPIC LATTICE VIBRATION MODEL

Huang has given a macroscopic model for the
dielectric behavior of a crystal with one infrared active

mode. He has shown that this model can arise from the
microscopic equation of motion of the ions in an NaCl-
type lattice including electronic polarizability and
internal electric field effects. Since the effective charges,
electronic polarizabilities, and local 6elds are not known
for most noncubic crystals, we will start in the present
work with simple macroscopic equations extended to
several modes. Taking W; to be the vibration amplitude
of the jth optic mode, ' we write

Wl+ccl Wl+71WI Z1Ey

Ws+cos W2+q'2W2 =Z2Ei (&)

Ws+~s'W. +y W =Z E.
The co,', y;, and Z, are the restoring force, damping
coefficient, and effective charge coeKcients respectively
of the jth mode. The damping terms are of the usual
velocity-dependent type introduced in a rather ad hoc
manner for simplicity. "It must be emphasized that the
restoring force and effective charge coefFicients are not
directly related to the microscopic forces and charges
because of local field eRects. E is the macroscopic
electric field in the crystal. We take the polarization of
the crystal to be

P =cr tWt+crsWs+ +cx„W„+cx„E

Here also, local field eRects prevent identification of the
~; with the eRective charge per unit volume. " u„
describes the very high-frequency behavior due to
electronic effects. At very high frequencies the ions can
no longer follow the motion so 8';=0 leaving the
dielectric behavior completely determined by n„. We
restrict ourselves to plane waves whose wave vector
and polarization vector lie a) ong principal crystal
directions allowing scalar equations to be written. For
tetragonal crystals, therefore, we have two sets of

8 M. Born, and K. Eiuang, Dynamical Theory of Crystal Lattices
(Clarendon Press, Oxford, England, 1954), Sec. 8.

We have included the square root of the appropriate reduced
mass and of the unit cell volume in the definition of 8' to yield
equations where mass does not appear explicitly. In these equa-
tions the damping and charge coe%cients have dimensions of
frequency.' In a real crystal, p must be frequency-dependent and have
both real and imaginary parts which obey the Kramers —Kronig
relation [M. 1.ax, Phys. Chem. Solids 25, 487 (1964)7. Probably
the most important deviation from the constant p chosen here
occurs at high frequencies where the losses in a real crystal fall
off much more rapidly than is consistent with constant p. Such
rapid falloff is usually not detectable in reflection experiments
because it occurs in a frequency region where the real part of the
dielectric constant rather than the imaginary part dominates the
reRectivity equations. We may reproduce the essential features of
this fall off by using Re(p) =const up to some frequency cop well
above the optic mode resonance. We then attach a truncating
function Re(y)~1/co or exp( —&o/coo) for frequencies above o&0.

The result is that to a good approximation we can still use a real
and constant p in all our equations for frequencies below cop,.
however, the restoring force parameter c0P now contains a fre-
quency-independent contribution arising from the imaginary
part of y."We may show that n;=Z; if we assume a fairly simple and
obvious form for the free energy density in the crystal. See
Appendix 5 of Ref. 8.
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co;y,/;n; coefhcients, one set for vibrations along the
u axis and one for vibrations along the r, axis. We try
plane-wave solutions

roots of the following form:

p Qj H/ . . . tg ~~i(cot—kz)

On substitution of these solutions into Eq. (1), the
mode amplitudes 8', are obtained. Substitituion of the
W; into Eq. (2) gives

=(og'a)z' co„'(Sz+Sz +S~+c„)+za&( )

g2 ~ ~ ~ $Q) 3 ~ ~ o g o ~ e gg'o ~ ~ ~ ~ ~ ~

P= Q +a„E.
(u—'+i&up;

The dielectric constant is immediately obtained as

e = 1+4zrP/E

S,a),'
co~' M +zcop~'

i.e., the usual classical oscillator dispersion equation.
e„=1+4zru„ is introduced to describe the high-fre-
quency asymptotic behavior of the dielectric constant.
In addition we have introduced S;=4zra;Z, /a&P as a
convenient dimensionless mode strength. In terms of
this mode strength, the low-frequency dielectric con-
stant e(0) is given by

e (0)= e„+PS, .

The dielectric constant e merely gives the ratio of
displacement D to electric field E for plane waves of
arbitrary or and k. k or cv or both may be complex since
up to this point we have not restricted ourselves to
free vibrations. Sy a suitable arrangement of charge
and current sources, waves of arbitrary k and co may of
course be excited. We now solve for the free vibrations
by insisting

divD= 0=divtI,

CurlE = H/c, —
CurlH =D/c,

D=E+4zrP,

that is, we remove all arbitrary sources (free currents
and charge) from the medium. The 6rst of the above
equations divD= e divE=O has two roots. If divE=O,
then the wave vector k is perpendicular to E (trans-
verse modes); if &=0 then divE need not be zero and k
turns out to be parallel to E (longitudinal modes) for
the principal crystal directions being considered.

LONGITUDINAL SOLUTIONS

We start by studying the roots of ~ =0 in the case of
zz modes. It is convenient to multiply through Eq. (5)
by all the resonant denominators and consider the

The brackets containing dots represent different terms
containing complicated combinations of 5;, cv;,

and 6~.
Since the right side of Eq. (8) is a polynomial of

degree 2e, there are 2e roots to the equation &=0.""
We will provisionally call these roots the longitudinal
mode frequencies co~„co~„. co~,„. From the form of
the polynomial, we note that, when co& is a root, so is its
negative complex conjugate —co~*. We may write the
polynomial in its factored form:

where Im stands for "imaginary part of," and we have
chosen the coefficient (—1)"e„by inspection to give
the correct leading term. We have also relabeled the
roots in the third line making use of the way they
occur in pairs and used (a&~) (—~~*)= —~cog~'. We
obtain 2e—1 sum rules by now equating coeKcients of
equivalent terms in Eqs. (8) and (9). The most impor-
tant of these sum rules is the Lyddane-Sachs-Teller
relation which comes from equating the constant term
in each polynomial. Equating the constant terms on
the right-hand sides of Eqs. (8) and (9) we obtain

~2~2~2. . .~ 2

&(0)

"The resonant factors do not introduce any roots in addition
to those of e.

"The appearance of 2N roots in an e mode problem simply
rejects a freedom in phase for each solution allowing us to specify
both position and velocity as initial conditions.

W. Cochran, Z. Krist. 112, 465 (1959)."T.Kurosawa, J. Phys. Soc. Japan 16, 1298 (196j.).

This is the Lyddane-Sachs-Teller relation. It is interest™
ing to note that for our model which includes damping,
this Lyddane-Sachs-Teller relation connects the ab-
solute value of the longitudinal mode frequencies with
the force constant parameters co,. In the case of no
damping, the co, w'ill actually be the transverse mode
frequencies, and the or&,. will be real allowing the absolute
value signs to be dropped. Equation (10) then becomes
identical in form of relations which have been derived
by Cochran' and Kurosawa'5 from quite different
considerations based on microscopic models.
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The coefficient of the oP" term gives no sum rule
since this term was adjusted to scale the polynomial.
The coeS.cient of the co'" ' term gives a sum rule on
they s.

Vi+72+ +Y„=2(Im((ui, )+Im(~ai, )+ +Im(coi„)).

The coe%cient of the co'" ' term gives a sum rule on
the frequency weighted mode strengths co,~S;. The
importance of these weighted strengths is their direct
relation to the efFective charge z; Lsee discussion
immediately below Eq. (5)j. Equating coeflicients of
the oP" ' term we obtain

E ~'~ =Z(l~i;I' —~P).
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This relation has been derived by Kurosawa" in the
case of no damping. The remaining sum rules involve
less useful combinations of the mode parameters and
will not be given here.

For the case of one mode the sum rules are

and
7,=2 Im((vi, ),

l(oi, l2 si+ e„e(0)

To complete the discussion of the longitudinal solutions,
we insert a=0 into Eq. (7) and find H=O, and that E,
I', W, and k must all be parallel. The solutions are thus
longitudinal modes with the frequencies given above
and no k dependence (flat dispersion curves).

TRANSVERSE SOLUTIONS

For &&0 Eqs. (7) permit transverse solutions with
the k, E, and Bvectors forming a right-handed system.
The equations give the dispersion relation when E and
H are eliminated between the two of Maxwell's equa-
tions involving the Curl. This relation is

P2g2/~2 —
6

where e is given by Eq. (5). If the square root of e is
defined as the complex index of refraction, then
Eq. (10) states the familiar result that the phase
velocitv of the transverse waves is determined by the
index of refraction in the customary way. There are
nontrivial wave vector dependences for these transverse
modes. We will brieQy examine the dispersion curve of
the transverse modes for real frequencies since this gives
a picture of the wave behavior in a dielectric during the
usual infrared experiment. Figure 5 illustrates the
transverse solutions for the three classical modes which

These relations are easily obtainable directly from the
longitudinal root which can be written explicitly

f f»+&~) 'Yi') ' ' &'Yie„4 2

0 I I ~ I I

&e IS &2 9 e
' 3 0 3 e 9 &a &S &S

IMAGINARY PART REAL PART OF
OF WAVE VECTOR WAVE VECTOR X)0

Fxo. 5. Dispersion curves for the transverse modes in MgF2 with
I&" perpendicular to the c axis and for real frequency.

fit the t,-axis dielectric behavior of MgFg. The curves
show the usual regions of photon-like behavior at very
low and very high frequencies /with slopes determined
by e(0) and e„, respectively) continuously joining
horizontal phonon-like curves, The quanta associated
with such mixed phonon-photon curves are sometimes
called polaritons.

We define the transverse phonon frequencies as
co~, , the poles of the dielectric constant given by

Mi =+ (RP 'Yjl4')'"+zYj/2. (12)

We note, however, that transverse vibration modes
exist at all frequencies. Born and Huang have given an
excellent discussion of the dispersion curves in the
case of a single undamped mode. ' They point out that
for such phonon dispersion curves, as the wave vector k
increases, energy is carried more and more predom-
inantly by the elastic rather than the electromagnetic
part of the field. The definition chosen above

l Eq.
(12)] for the transverse optic phonon mode frequency
corresponds to the limit of large k, where the ratio of
mechanical to electric field amplitude has become
infinite. As mentioned earlier, we note that the phonon
frequency is shifted from the restoring force value co;
when there is damping present. The limiting behavior
where the dispersion curves approach the phonon
frequency is only partially shown in Fig. 5 since this
figure is drawn for real frequencies.

EXPERIMENTAL DETERMINATION OF
FREQUENCIES

For discussing most infrared experiments we may
restrict the frequency to be real. If the dielectric
constant function for real frequencies can be deter-
mined (for instance by fitting the reflectivity), then
the constants ao;, y;, 8;, and e„can be determined and
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's D. W. Berreman, Phys. Rev. 130, 2193 (1963).

any of the above complex frequencies can be evaluated.
Roughly speaking, for thick samples with well-spaced
lightly damped modes, the high- and low-frequency
edges of the restrahlen band fall at the real part of the
longitudinal and transverse phonon frequencies. In
transmission experiments with thin samples, absorption
lines are obtained at both the longitudinal and trans-
verse phonon frequencies if non-normal incidence is
used. "Figures 1 to 4 show the transverse and longi-
tudinal mode frequencies in MgFq and ZnFq along with
the reQectivity for comparison. These frequencies are
determined as follows. In the present work, p; is at
most 9% of to, , and reflectivity fitting can be carried out
to an accuracy of about 1% in frequency. Therefore,
terms like yy4' can be neglected compared with ~,~ in
most of the formulas. The procedure has been adopted
therefore of quoting the parameters or; which produced
the best reQectivity 6t, as the transverse phonon
frequencies. Next the zeros of e' (the real part of e) along
the real frequency axis are determined. Alternate zeros
are discarded since along the real frequency axis e' has
extra zeros from a factor (toP —co) in the numerator.
The remaining zeros are adopted as the longitudinal
phonon frequencies. If e' does not have zeros (for real
frequency) corresponding to some of the longitudinal
modes, the damping can be set equal to zero in Eq. (5)
and the real part of e can be recalculated. Zeros now
appear which approximate the real part of the longi-
tudinal phonon frequencies within the accuracies stated
above. Figure 6 shows the real part of e for MgF2 and
the changes that result when the damping of the two
highest frequency modes is reduced to zero. We note
that two new zeros appear and that the other zeros are
not shifted. According to our procedure, the lower
frequency zero of this pair is to be discarded and the
higher frequency zero designated or~, . Table I gives all

the optic mode phonon frequencies for MgF2 and ZnF2
deduced in the manner just described. Comparison of
Table I with the work of Johnson ef al. shows that none
of the phonons observed here could be associated with
the laser action by a one-phonon process. Since the
MgFg Quorescence spectrum' probably reQects a one-
phonon density of states, we might look for compari-
sons with the forbidden mode seen in MgF2 at 556
cm ' in the present work. It appears likely that this
forbidden mode is a sum band involving phonons seen
in Quorescence at about 6164 and 6300 cm ', i.e.,
phonons with frequencies 338 and 200 cm—'. If the optic
branches are fairly Qat across the Brillouin zone in

MgF2, the 556 cm ' forbidden mode might also be due
to the 410 or 415 cm ' optic modes combining with the
155-cm ' phonons seen in Quorescence.

The low-frequency dielectric constant e(0) may be
predicted from the mode strengths and the high-
frequency dielectric constant obtained in the present
study. Table I gives e(0) for the electric vector parallel
and perpendicular to the t," axis for MgF~ and ZnF2.

CONCLUSION

The eight infrared mode frequencies in MgF2 and in
ZnF2 have been evaluated from reQectivity data. Four of
these modes are the usual "infrared active" or trans-
verse phonon modes and four are the associated longi-
tudinal phonon modes split oft by the Coulomb interac-
tion. Though the transverse modes usually determine
absorption (see, however, Ref. 16), the longitudinal
modes determine important features of the dielectric
constant and are easily obtained from an analysis of
reQectivity measurements. A general Lyddane-Sachs-
Teller relation has been derived which reduces to the
form given by others in the case of zero damping.
Additional "sum rules" connecting mode parameters
and the phonon frequencies are derived in a systematic
way. The low- and high-frequency dielectric constants
are deduced for the principle directions in MgF2 and
ZnF2. It is to be emphasized that in infrared experi-
ments where there is appreciable damping any
frequency associated with a physical effect must be
de6ned quite carefully relative to the theory used to
describe the dispersion. A simple example is provided by
the classical oscillator with one mode. While the
imaginary part of the dielectric constant e" is often
plotted to show the mode structure, it is known that
the maximum in e" does not occur at the frequency
or&. The maximum of the real part of the conductivity
however, occurs exactly at or& for any value of damping.
Thus the conductivity curve may be used to determine
or~ directly. The point being stressed here is that once
or& is determined it must be recognized as only a
parameter of the theory, not as a phonon frequency, if
accuracies of order yt/coi are important.


