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Quantized Vortex Rings in SuperQuid Helium*
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Evidence is presented to show that charged particles in superQuid helium at low temperatures can be ac-
celerated to create freely moving charge-carrying vortex rings in the liquid. The circulation of these vortex
rings can be determined by measuring their energy and velocity; it is found to be equal to one quantum h/IN,
where h is Planck's constant and m is the mass of a helium atom. The core radius of the vortex is approxi-
mately 1 A. The dynamical properties of such a vortex ring moving under the infIuence of external forces can
be described by a dispersion relation E~ p'~' connecting its energy E and momentum p; it can also be under-
stood in detail in terms of the hydrodynamic Magnus force. Experiments are described which verify the
essential validity of this dynamical analysis. Vortex rings can interact with various quasiparticles in the
liquid, i.e., with rotons, phonons, and He impurities. The scattering of these quasiparticles by vortex rings
can be investigated by experiments designed to study the temperature dependence of the rate of energy loss
of such rings moving through the liquid. In this way it is possible to measure the effective momentum-transfer
cross sections for scattering of the various quasiparticles by vortex lines. The cross section thus deduced is
9.5 A for scattering of rotons and 18.3 A for scattering of He' atoms. The experiments yield only scant in-
formation about scattering of phonons, but are not inconsistent with the magnitude of the phonon scattering
cross section expected on theoretical grounds.

1. INTRODUCTION

'N earlier work" ions were used as microscopic probe
~ ~ particles to study the superAuid state of liquid He'.
At temperatures sufficiently below the X point the
liquid can be described in terms of a superQuid ground
state and collective excitations (or quasiparticles) of
two different types, namely phonons (low momentum
excitations) and rotons (high momentum excitations). '
An ion in the liquid attains thermal equilibrium by
collisions with, these quasiparticles. In the presence of
a sufficiently small electric field 8, the energy eel gained
by an ion in a mean free path / between collisions is
much less than its thermal energy kT so that the ion
remains essentially in thermal equilibrium. In this case
the ion acquires a drift velocity vD proportional to 8.
The corresponding mobility lI=FD/h was measured in
previous work" and found to increase exponentially
(for T&0.6'K) when the temperature was lowered.
These results show that th, e mean free path / of an ion
becomes quite large wh, en th, e number of thermally
excited quasiparticles is reduced. (Th,e estimated
magnitude of l is of the order of a micron at 0.5'K).
Measurements of this type permitted a detailed
investigation of the scattering of an ion by th, e various
excitations of the liquid.

Th, e present work describes investigations in the
opposite limit of low temperatures (0.28'(T(0.7'K)
and in the presence of an electric field high enough so
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that eS&)kT. An ion can then acquire sufficient energy
between collisions to create excitations in the liquid.
Indeed, we have already reported in a previous note4
(which will henceforth be designated as I) that it is in
this way possible to produce in the superfluid charge-
carrying quantized vortex rings. The following pages
will be devoted to an extensive discussion of investiga-
tions dealing with such vortex rings.

In this context it is useful to recall that ph, onons and
rotons are not the only excitations possible in liquid
helium. There exist in addition macroscopic excitations
involving the flow of large amounts of liquid and hence
characterized by considerably higher energy. Suppose
that the superfIuid at absolute zero is characterized by
a stationary rotational flow pattern with, flow velocity
v, . In a quantum-mechanical description of the super-
fluid, this flow pattern can be described by a single
well-defined wave function + extending over macro-
scopic spatial dimensions. One expects this wave func-
tion to have th, e form 4= e'~Op, where 0 p is the ground-
state wave function of the fluid at rest and where q is
a phase factor whose gradient is related to the flow
velocity v, .' The condition that%' be single-valued leads
th, en to the requirement that p change by an integral
multiple of 2m. in going around any closed path. This
requirement is equivalent to the Bohr-Sommerfeld
condition in the form

p dl=m v d =hX,

where y is th, e momentum associated with a helium atom
of mass m moving with the flow velocity v„h is Planck's

4 G. W. Rayfield and F. Reif, Phys. Rev. Letters 11,305 (1963).
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constant, and F is any integer. The application of
quantum mechanics to superfluid helium thus leads to
the expectation of quantization on a macroscopic scale, '
the "circulation" I(, defined by

partial attachment of vortex lines to the wire. The
measurements led, therefore, to a wide spread in the
observed values of s, although a pronounced maximum
was found near the value h/m.

.+.a (2)

s,=z/2s. r, (4)

a relation characterizing the Row pattern of a vortex
line. LNote, however, that if r becomes less than some
cutoff parameter a which is called the "core radius, "
w. must deviate from the relation (4) since it would
otherwise become inflnite. vj More generally, vortex
lines need not be straight. They can be curved and, if
they do not terminate on walls, must close on them-
selves; in particular they can thus form circular vortex
rings. But the fundamental quantization condition
remains valid.

The existence of quantization on a macroscopic scale
is also predicted in the case of superconductors. In that
case the momentum y of an electron pair involves the
vector potential so that the condition (1) leads to the
quantization of the magnetic flux (or more precisely,
the fluxoid) passing through a hollow superconductor.
This quantization has recently been confirmed in a set
of beautiful experiments. ' The experimental situation
in the case of superfluid liquid helium has been less
satisfactory. The only experiment designed to investi-
gate directly the question of Inacroscopic quantization
has been an ingenious arrangement by Vinen' in which
he attempted to measure the force acting on (and hence
the circulation surrounding) a thin wire stretched along
the axis of a rotating bucket of superfluid helium.
Experimental difficulties were, however, encountered
in establishing equilibrium conditions and in avoiding

'L. Onsager, Nuovo Cimento 6, Suppl. 2, 249 (1949); also
R. P. Feynman, Ref. 5.
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of radius e carrying a current I. For an incompressible fiuid
div v=O and the vorticity w—=curl v=O outside the core of the
vortex line. For the wire, the magnetic field H satisfies the Maxwell
equations div H=0 and curl H= j, where j is the current density
which vanishes outside the wire. Hence the field H surrounding
the wire is analogous to the velocity v about the vortex; and the
current I=j'H dl given by Ampere's law is analogous to the
circulation of a of (1).

B. S. Deaver and W. M. Fairbank, Phys. Rev. Letters 7, 43
(1961);R. Doll and M. Nabauer, ibid 7, 51 (1961);W. . A. Little
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being not only constant as it would be classically, but
quantized in units of

Irs ——h/ms= 0.997 10 ' cm' sec '

The simplest situation is one of cylindrical symmetry.
In this case (2) becomes ~=@,(2vrr), where r denotes
the distance from the symmetry axis and v, the circum-
ferential component of v, . Thus

2. EVIDENCE FOR THE CREATION OF QUANTIZED
VORTEX RINGS

A. Experiments and Interpretation

In the present experiments a container enclosing the
liquid He' under investigation and several electrodes
could be cooled down to 0.28'K in an apparatus similar
to the one described by Reif and Meyer. "The apparatus
differed predominantly by using a nonrecirculating He'
refrigerator and a germanium resistance thermometer.
Ions were produced in the liquid by n particles from a
Po'" source immersed in it; ions of either sign could
then be drawn out of the source region by appropriate
electric 6elds. The charges arriving at a collecting
electrode gave rise to currents (of the order of 10-is A)
which, could be measured by a Cary vibrating-reed
electrometer. Gold-plated grids were used in several
different arrangements to control the electric fields
between the source and collector (separated by about
2 crn)."

The behavior of the charge carriers at some inter-
mediate temperature (like 0.6'K) is very different
depending on the strength of the electric 6eld 8. If 8 is
sufliciently small so that el'«kT (e.g. , less than about
1 V/cm), one measures a drift velocity and associated
mobility characteristic of charge carriers subject to
large frictional effects due to collisions with excitations.
On the other hand, if 8 is increased suKciently so that
ehl))AT (e.g. , B&30 V/cm at 0.6'K), the charge
carriers behave like free particles exhibiting inertial
properties and subject to relatively small friction. The
situation is particularly striking at low temperatures
where a very small field is sufficient to satisfy the
condition e81))kT. All the experiments described in
this section and the following one were carried out at
the low temperature of 0.28'K. It is then found that
the charge carriers can traverse 6eld-free regions several
centimeters in length with negligible loss of energy.
They can also move against a retarding field as long as
th, e retarding potential does not exceed. the total energy
initially imparted to them by the applied electric fields
in preceding regions of space. 4 In short, the behavior of
a charge carrier can then be simply described (like that
of a charged particle in vacuum) by assigning to it a
well-defined energy and neglecting frictional effects.

A time-of-Right velocity spectrometer of the type
shown in Fig. 1(a) was used to measure the velocity s
of these charge carriers as a function of their energy E.
If a potential V is applied between the radioactive

'0 F. Reif and L. Meyer, Phys. Rev. 119, 1164 (1960).
"A more detailed description of the apparatus and the experi,

mental procedures can be found in Appendix III of G. W. Rayfield-
thesis, University of California, 1964 (unpublished).
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source 5 and grid Ai, a charge carrier (assumed to be
singly charged) arrives at A i with an energy E= eV and
with some velocity e; it is prevented from reaching the
collecting electrode C by a retarding potential (=—V)
applied between A2 and C. A small square-wave poten-
tial of frequency s is applied to grid BI and produces
in the region ArAs (free of dc fields) small electric
fields 8' alternately directed toward and away from 8&.
If n is such that the time of flight L/tz of the charge
carrier through the distance L from A i to Bi (and thus
also from Bi to A&) is just equal to the time (2v) '
between field reversals, then the carrier remains in
synchronism with this field and thus gains from it a
small net amount of energy sufficient to overcome the
retarding potential between A&C and to reach the
collector C. The current I arriving at C exhibits thus a
resonance maximum at the frequency z

= —,'(s/L) (and
at odd harmonics th, ereof)." A measurement of this
frequency yields then directly the velocity v of the
charge carrier. It is possible to increase the resolution
of the method by using two stages of velocity selection
in succession, as illustrated in Fig. 1(b) where a square-
wave potential of the same frequency v is applied to
both grids Bi and Bs.

Velocity measurements were thus carried out under
varying conditions and with various grid spacings in
velocity spectrometers containing eith, er one or two
successive stages of velocity selectio~. The results ob-
tained were reproducible and consistent, but revealed
the following two remarkable facts. (a) The measured
velocities are very small (e.g. , v=27 cm/sec when
E=10 eV), roughly smaller by a factor 10' th, an the
calculated velocity in vacuum of a He4 ion of comparable
energy. (b) More striking still, the measured velocity
of a charge carrier is found to decrease when its energy
is izscreased (sccE ' approximately). It was verifled
that the relation between e and E is unique, i.e., that

"The odd harmonics arise because an odd number of Geld
reversals during the time of flight from AI to 81 also results in a
small net increment of energy being imparted to the charge
cg,rricr,
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FIG. 1. The time-of-flight velocity spectrometer. The Geld 8' is
reversed v times per second by applying a square-wave potential
to grids B Asi.ngle-stage spectrometer is shown in (a), a double-
stage spectrometer in (b).
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FIG. 2. Relation between the velocity e and energy Z of a vortex
ring. The points are experimental data for positive and negative
charge carriers. The curve is the theoretical relation following
from (5) and (6) with zz=iz/zl and zz=1, 2 A,

v depends only on the actual energy E of the charge
carrier irrespective of its past history describing how
this energy was attained. ' (Additional details concern-
ing the preceding experiments can be found in I.) The
experimental data showing the observed dependence
of ~ on E are summarized in Fig. 2.

The low value of the measured velocity suggests that
the charge is strongly coupled to very large amounts of
the surrounding liquid so that one observes effectively
the motion of a well-defined localized disturbance of
the Quid, a disturbance which is essentially macroscopic
but labeled by an attached charge. A natural assump-
tion is that this disturbance is a vortex ring which is
indeed a hydrodynamically stable entity characterized
by an energy E and velocity e approximately related by
the proportionality e ~ E ' (reminiscent of that observed
for the charge carriers in the present experiments).
Figure 3 indicates schematically in cross section the
Row pattern of such a vortex ring of radius E.A straight
vortex line of circulation ~ has associated with it a
kinetic energy of rotation E' per unit length. t Here E'
is proportional to the integral over space of ~,' given
by (4), i.e., E' ~ K'.$ In. first approximation the energy E
of the vortex ring is thus given by E= (2zrE)E' so that
E~ ~'E. In order to estimate the axial velocity e of the
vortex ring, one can simplify the problem by making
it two dimensional, i.e., by replacing the ring in Fig. 3
by a pair of straight vortex lines of opposite circulation
separated by a distance 2R. The Row pattern of one
vortex line would not move in space if the other line
were absent. But, if the second line is present, it
produces at the center of the first line a velocity which

is, in accordance with (4), equal to tz=s/(4zrR) and
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Fxo. 3. Schematic illus-
tration showing a vortex
ring in cross section. (The
actual Qow velocity v, at
any point is a super-
position of the Qow veloci-
ties indicated in the
diagram. )
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the exact value of a (expected to be of the order of
atomic dimensions) or to specific models describing the
behavior of the Quid within this core radius. " The
question then arises whether the relation between e

and E observed for the charge carriers in the present
experiments satisfies indeed the functional relation
predicted by (5) and (6). If this is the case, one would
then like to determine the values of the two unknown
parameters ~ and a which appear in these equations.

The data can be analyzed most conveniently by
eliminating the radius R between (5) and (6). Multi-
plication of (5) by (6) yields the relation

nE =&Pg (7/4) $(I—I —-', ), where 8=pss/8sr. —(8)

Since sl»1, (8) gives to good approximation
II= (eE/8)'Is+1. Furthermore, (7) and (5) give

which causes the whole flow pattern of this line to move
with this velocity. Similarly, the first line produces at
the position of the second line a velocity e of the same
direction and magnitude. The net result is that the
pair of lines moves under their mutual inQuence with a
velocity II ~ n/R. The axial velocity of the vortex nng
differs only slightly from this result. Hence it follows
that a large vortex ring of given circulation sc has a large
energy E, but a small velocity e; or somewhat more
quantitatively, since E~ n'R while II~ s/R, the ring
satisfies the approximate relation e ~ a'E '. The presence
of an applied force causes then the energy E (and
corresponding radius R) of a vortex ring to increase,
but as a result its velocity decreases. " (The dynamical
details will be discussed more fully in Sec. 3.)

The exact expressions derived by classical hydro-
dynamics for the energy and velocity of a vortex ring,
moving in an incompressible Quid of density p and
having a radius R much greater than its core radius a,
are'4

and

where

E= lpga'RLn (7/4) j—,

II= (s/4IrR) (rt
——,'),

rt —=ln (8R/a) .

(5)

(6)

'3This can be demonstrated visually quite vividly by experi-
ments in which a buoyant vortex ring consisting of a light liquid
is formed in a heavier liquid. See J. S. Turner, Proc. Roy. Soc.
(London) A239, 61 (1957).

"H. Lamb, Hydrodynamscs (Dover Publications, Inc. , New
York, 1945), 6th ed. , p. 241. See also L. Prandtl and O. G. Tietjens,
Fnndamentals of Hydro and Aeromechanics (D-over Publications,
Inc. , New York, 1957), Chap. 12. By virtue of the electromagnetic
analogy mentioned in footnote 6, the energy E in (5) is analogous
to the energy ~~JP associated with the self-inductance I. of a
circular current loop.

Since R»a, the parameter II is a very insensitive func-
tion of R so that the relations (5) and (6) agree to good
approximation with the previously m, entioned propor-
tionalities E~ n'R and e ~ «/R. Note also that (5) and

(6) depend on Is only logarithmically through si. The
behavior of the vortex ring is thus quite insensitive to

II=1 (16EL" ( —7/4)j ')

A combination of these results yields then the relation

El'I 3
(oE)I"=-8'" lnE —ln

~

—
~kaP

tr 16 ~+Bits ln~
~

—1 . (10)
&ps'a)

Since eE is, by (8), only a slowly varying function of E,
the logarithmic second term in the curly brackets is in
first approximation almost a constant. Hence a plot
of (sE)its versus lnE should, in this approximation,
yield a straight line of slope 8'".In next approximation,
one can use the approximate value of 8 thus determined
in the curly brackets; a plot of (IIE)Its versus the expres-
sion in curly brackets should thus yield a straight line
of slope 8'" (which determines n) and with an intercept
which determines a. If the experimental data are plotted
in this way, they do indeed appear to fall on a straight
line whose slope and intercept yield the values

tc= (1.00+0.03))(10 "cm' sec ', (11)

o= (1.28~O.13) A, (12)

with estimated probable errors as indicated. "Here we

have used p=0.1454 g cm ' for the density of liquid
helium.

It is striking that the value of s deduced in (11) from

"The relations (5) and (6) are derived assuming that the
vorticity has a constant value inside the core. If one assumes
instead that the core is hollow so that the vorticity vanishes there,
then the formulas (5) and (6) differ by replacing n by st ', $See- -.
W. M. Hicks, Phil. Trans. Roy. Soc. 175A, 183 and 190 (1884).g
Since the density of the Quid must decrease when the velocity v,
becomes sufBciently high, this second model might be slightly
preferable. But since R»a and g=10 in our experiments, the
distinction between the two models is essentially negligible and is
physically rather meaningless since the hydrodynamic approxima-
tion cannot be extended reliably down to the atomic scale of c.

' If one assumes a hollow core, only the intercept of the straight
line (10) is affected (—1 being replaced by —5/4). Hence this
model gives the same value of ft, but a somewhat smaller hollow
core radius u= (1.00~0.10) A.
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the experimental data is, within the limits of estimated
error, equal to one quantum ~0 of circulation given by
(3)." To make the comparison between theory and
experiment more explicit, one can assume that the
charge carriers are vortex rings with a circulation w

equal to precisely one quantum I(:0 and can choose for
the only remaining parameter a Lon which (5) and (6)
depend only insensitivelyj a value of the order of (12).
The equations (5) and (6) yield then a unique prediction
for z and E for various values of E.. The resulting
theoretical curve of s versus E is shown in Fig. 2

together with the experimentally measured values. The
agreement between theory and experiment is seen to be
quite good. In the investigated experimental range
where E is between 1.5 and 45 eV, the corresponding
radius R of a vortex ring lies between 5)&10 ' and 10 '
cm. It is also worth noting that th, e experimental data
for both positive and negative charge carriers faH on
the same curve (despite the fact that the mobility
measurements in the limit of very low electric 6elds
have shown appreciable diQerences between the mobili-
ties of positive and negative ions)'. This is in agreement
with what one would expect for a vortex ring since I'
and v are then determined by the properties of a large
amount of Quid, rather than by the particular small
charge coupled to it. All these results indicate that the
charge carriers observed in the present experiments are
indeed quantized charged vortex rings moving in the

supe rQuid.
The core radius a in (12) is, as expected, ' of the order

of atomic dim, ensions. From experiments on the velocity
of vortex waves Hall has inferred that the core radius
of a free vortex line is approximately 6.8 A, a value of
the same order of magnitude as that in (12)."On the
other hand, Vinen' in his experiment on quantized
circulation used equilibrium free energy arguments to
infer for a an unreasonably large value greater than
10' A; he was thus led to suggest that the simple picture
of free vortex lines is inadequate. The present experi-
ments, however, do not support this suggestion since
the simple model of free vortex rings with a= 1 A seems
to 6t our experimentally measured energies and
velocities very well.

3. Speculative Remarks

Before discussing further experiments involving
quantized vortex rings, it may be useful to interject a

"This value is based upon the plausible assumption that the
charge carriers (arising from the He+ ions and electrons originally
produced near the source) are singly charged. If they were doubly
charged, one would expect that some of them would also be singly
charged; but experimentally the data for all charge carriers,
including those of opposite sign, fall on the same curve. Further-
more, the deduced value of K would then be 2'~'Kp which seems
rather unlikely.' H. E. Hall, Advances in I'/zysics (Francis R Taylor, Ltd. ,
London, 1960), Vol. 9, p. 89. It is possible that the presence of a
charge (coupled to the vortex ring as described in the following
paragraphs} may modify somewhat the eRective core radius a
compared to that of an uncharged vortex.

few speculative comments about the coupling of the
charge to a vortex ring and about the initial formation
of the ring. Let us begin by considering the first question
from a phenomenological point of view, keeping in mind
the fact that the vortex rings actually observed are
fairly macroscopic (R)500 A). It is then most likely
that the singular region in the Quid, i.e., the core of the
vortex ring, acts as a potential well for the charge. In
this case the charge, whether it be an ion or electron, is
characterized by a wave function localized around the
core. This wave functionmay, of course, extendsomewhat
beyond the confines of the core proper to a distance
r &a, and Lnay do so by different amounts for a positive
or negative charge coupled to the ring. (The binding
energy of either kind of charge to the core may corre-
spondingly also be different, as long as it is sufficiently
large to keep the charge coupled to the ring. The experi-
ments performed up to now give no information about
such details. ) As far as motion along the circumference
of the core is concerned, the potential well acts like a
one-dimensional box of length greater than 1000 A.
Corresponding to this degree of freedom, the spacing of
the energy levels of the charge is thus much less than kT.
The charge can, therefore, be regarded as moving
around the circumference like a classical particle. Even
if its effective mass is of the order of 100 He-atom
masses, " its thermal velocity is large enough so that
the fractional change in the velocity v of the vortex ring
is always small during the time required for the charge
to traverse the circumference. In addition, the motion
of the charge on the ring is random, ly interrupted by
collisions with thermal excitations, its mean free path
(estimated from the ion mobility measurements) being
comparable to the circumference. Hence the charge
can be regarded as being in effect distributed uniformly
around the core of the vortex ring.

Let us next conjecture why the core should act as a
potential well for the charge. The following model may
illuminate the essential features of a mechanism. The
electric field of an ion immersed in liquid helium
compresses the liquid in its immediate vicinity appreci-
ably; indeed, this electrostriction should be sufficient to
cause the solidification of the liquid within a radial
distance of the order of 7 A from the ion." Consider
then a small solid sphere of this kind (which we shall
call an "ion complex" ) in the vicinity of a vortex ring.
The Quid velocity due to the vortex is greatest near the
core and falls off with increasing distance from the core;
correspondingly, it follows by Bernoulli s principle that
the pressure in the fluid is least near the core and
increases with distance from the core. The net pressure
force acting on the small solid sphere surrounding the
ion tends therefore to drive it toward the core. Indeed,
if th, e sphere is located in the core, it replaces a corre-
sponding volume of Quid rotating with high velocity
and reduces thereby the kinetic energy associated with

rs K. R. Atkins, Phys. Rev. 116, 1339 (1959l.
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the vortex ring"; hence, the situation of lower total
energy is one where the little sphere is located at the
core rather than elsewhere in the fluid. " (In the case of
an electron in liquid helium, the theory has been
advanced that it surrounds itself by a hollow bubble in
order to reduce its zero point kinetic energy"; here
again the vortex core, which tends to be hollow already,
would form an energetically favorable region for trap-
ping the electron. )

Finally we comment on the initial creation of the
vortex ring by the original ion complex. Although the
problem here is somewhat delicate because arguments
of macroscopic hydrodynamics become questionable
when applied to vortex rings of atomic size, the process
is likely to be analogous to that involved in th, e creation
of a vortex ring behind a sufficiently rapidly moving
macroscopic sphere. " The smallest vortex ring thus
created must have a radius of the order of a few ang-
stroms (the size of the ion-complex sphere). Since the
vortex ring has one quantum of circulation and is of a
size not Inuch, larger than a roton excitation, the critical
velocity v, which the ion complex must attain to create
the vortex ring with conservation of energy and
momentum should be comparable to that necessary for
creation of a roton, i.e., e,=50 m/sec. This velocity is
of the order of magnitude of that attained by an ion-
complex between collisions with excitations if the
temperature T and electric field 8 are such that
eS&kT. (Indeed, drift velocities of the order of
40 m/sec were the highest ones observed by Reif and
Meyer before their apparatus failed to function because
of the appearance of frictionless behavior of the charge
carriers. )'4 When the ion complex is initially accelerated,
it attains first the energy necessary to create a vortex
ring of one quantum of circulation, gets captured by it,
and then slows down. It is thus unlikely that the ion
complex in our experimental situation can attain the
larger energy necessary to create a vortex ring with
several quanta of circulation before it creates the
ring of minimum circulation h/zzz.

3. GENERAL DYNAMICAL PROPERTIES
OF CHARGED VORTEX RINGS

A. Dispersion Relation

This section will be devoted to an investigation of the
three-dimensional motion of charged vortex rings under

"Very crudely, by an amount of the order of 10 ' eV.
"We are indebted to Professor R. P. Feynman for discussing

with us his thoughts on the subject and thereby helping to con6rm
our own speculative conclusions about the location of the charge
on the ring."C. G. Kuper, Phys. Rev. 122, 1007 (1961).

"See, for example, the lovely Qow photographs of vortex
formation in L. Prandtl and O. G. Tietjens, APPlied Hydro- and
Aeromechanics (Dover Publications, Inc. , New York, 1957),
p. 279. It should, however, be remembered that these photographs,
although suggestive, are made by using a real Quid which exhibits
viscous effects in the boundary layer.

'4 See Ref. 2; also Liquid Helium, edited by G. Careri (Academic
Press Inc. , New York, 1963), International School of Physics,
Enrico Fermi, course 21, pp. 422 and 424.

the inhuence of external forces of arbitrary direction.
Such studies provide not only further evidence that the
observed charge carriers are vortex rings, but show also
how the general dynamical behavior of such rings can
be understood in detail.

The previous experiments have dealt only with the
motion of vortex rings in one dimension. To good
approximation the situation can then be described in
the following simple terms. A vortex ring has associated
with it a certain energy E given by (5) and a
"momentum'"'

E=Ap'ts (15)

where p—=
~
p ~

and where A is a constant. This is to be
contrasted with the dispersion relation E~ p' for an
ordinary particle. Equation (15) implies that e—=

~
v~

given by (14) decreases as p izzcreases; indeed,
z=-'Ap —'t'=-'A'E —' so that e~E '.

These considerations suggest that it should be
possible to describe the general three-dimensional
motion of a vortex ring in terms of a dispersion relation
E=E(p) relating its energy E to the magnitude p of
its momentum by the Eqs. (5) and (13) Li.e., approxi-
mately by (15)$.The dynamics of a vortex ring sh, ould
then be completely described in terms of the equation
of motion p= F (where p=dp/dt and F is the external
applied force) and the relation (14) connecting v and p.

To check the validity of this general point of view
and to provide further evidence that the unusual
behavior of our charge carriers can be described in a
consistent fashion, we designed the simple transverse
deflection experiment illustrated in Fig. 4. This arrange-
rnent is similar to a cathode-ray oscilloscope. Charge
carriers are given an energy Eo= eVO by passing through
an initial potential difference Vo applied between the
source S and the first grid A. The three slits (1 mm
X6 mm) in A, Ai, and As serve to produce a well-

"More precisely this is the "impulse. "The distinction can be
found elaborated by C. C. Lin in Lip'uid Helium, edited by G.
Careri (Academic Press Inc. , New York, 1963), International
School of Physics, Enrico Fermi, course 21, pp. 98—103.

pointing along its axis in the direction (specified by the
unit vector n) of the flow velocity v, at the center of
the ring. Equation (6) is then, to good approximation,
consistent with the general result

v= BE/Bp,

relating the group velocity of any excitation to the
gradient of its energy with respect to its rnornentuIn.
(In our one-dimensional experiments p and v are always
oriented along the direction n of the applied electric
fields. ) Furthermore, since rt is a very insensitive func-
tion of R(or E), it can be regarded as nearly constant
if the energy E does not vary over too large a range. In
that case (5) and (13) imply the approximate "disper-
sion relation"
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collim, ated charge-carrier beam of rectangular cross
section. The beam, passes then between a pair of
deflecting plates of length L, separated by a distance I,.
A potential V, applied between these plates produces a
small transverse electric field B„asa result the beam
is deflected through a net angle 8. Most conveniently
one can measure the change in V required to deQect
the beam through the particular angle which makes it
pass first through one, and then through the other, of
two slits in a mask 3E in front of the collector C. The
experiment consists then of observing the current I at
the collector C as a function of V, for a given initial
potential Vo.

Since the deflection angle 8 is small, the experiment
can be analyzed by a simple impulse approximation. A
charge carrier arrives at the deflecting plates with an
energy E= e Vo, it has then a momentum po and a corre-
sponding velocity vo in the s direction. As a result of
passing between the deflecting plates, it acquires a
small net momentum Ap, in the x direction. Its final
momentum y (and corresponding velocity v) makes
then an angle g=dp, /po with, respect to the s axis.
(This means that the plane of the ring is tilted by this
angle. ) Let us first neglect edge effects by assuming
that the 6eld b has a constant value between the
deflecting plates and falls abruptly to zero outside this
region. Since hp, «po, the charge carrier spends then
to good approximation a time L,/tbIoetween the plates
and acquires as a result a transverse momentum
hP, = (eh,) (L,/IIo). Thus

hP, e8.(L,/tio) eV, L,

PotIo L*
(16)

popo

since h, = V,/L, . If edge effects are taken into account,
the momentum gain Ap, calculated above should. be
multiplied by some geometrical correction factor g.
Furthermore, (14) permits one to write quite generally
for any excitati. on

PII = P(BE/BP) =yE (p =B lnE/—B lnP) . (17)

Hence, one obtains the general result

g V, L,
8=———

yVOJ,

where we have put Eo——eVO.

If the charge carrier is an ordinary particle, then
E~ p' so that the parameter y defined in (17) assumes
the value y= 2. On the other hand, if it is a vortex ring,
the relation E~ p't' of (15) gives y = —,'. To good approxi-
mation the result (18) applied to vortex Hngs gives then

and 8.=480, (19)

where 8„ is the observed deAection angle of the vortex
ring and 80 is the deflection angle which would be
observed for ordinary particles under identical
conditions.

L,~
I
I
I
I
I

I
I
I
I
I
I
I

S A A, As

D,

C
1

I

Pro. 4. Schematic diagram of the deQection apparatus. The
detiection angle e=-',D,/D, =0.208 rad. Other actual dimensions
are L =0.3 crn, L,=0.5 cm, and D,=1.25 cm.

The correction factor g for edge effects can, actually,
be calculated very readily. Consider the most general
case of arbitrary spatial variation of the field 8, due
to the deflection plates. Since it requires a time dt= ds/tIo

for the charge carrier to undergo a displacement with
component ds in the s direction, the total transverse
momentum acquired by the carrier is given by

co

eB.dt =— B.ds.
&0

(20)

But, by Gauss's theorem, the last integral must be
equal to 4m.Q'=4mC'U where Q' is the charge per unit
length on one of the deflection plates (considered of
infinite extension in the y direction) and where C' is
the actual capacity per unit length of the pair of
deflection plates. Thus one obtains

4p 4sreC'V 4sr V,
8= C/

7 Vopo PotIo

"P. M. Morse and H. Feshbach, 3rethods of Theoretical Physics
(McGraw-Hill Book Company, Inc. , New York, 1953), Vol. 2,
p. 1246. A more accurate result is quoted in A. H. Scott and H. L.
Curtis, J. Res. NatL Bur. Std. 22, 754 (1939).

But C'=gCo', where Co' L,/(4nL, ) is th——e ideal capaci-
tance per unit length in the absence of edge eBects and
where g is a correction factor whose calculation is a
standard problem in electrostatics. LA Schwartz-
Christo8el transformation gives in first approximation
g=1+b '(1+lnb) where b= 7rL,/L, .)"—

The actual experiment was carried out in the appa-
ratus of dimensions indicated in Fig. 4. For any initial
potential Vo one could measure the potential V, re-
quired to produce the 6xed deflection angle 8. The
experiment was carried out with both positive and
negative charge carriers of several energies correspond-
ing to initial voltages of magnitude

t Uot between 5 and
45 V. As expected from (18), the ratio U,/Vo was found
to be essentially constant (V,/Vo ——0.046&0.002). The
value of the geometrical correction factor g calculated
for the deIIIection plates alone was 1.59. To get an
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improved value taking into account the presence of
other electrodes like A~, the electrode structure was
drawn to scale with silver paint on resistance paper;
this modified "electrolytic tank" analog technique
permitted measurement of the electric Geld at all points
and consequent numerical evaluation of the integral
in (20). The best estimate thus obtained for g was
g=1.39&5%. Agreement with the theoretical expres-
sion (18) requires then that y=0.51+0.04. This result
is completely incompatible with the value y= 2 for an
ordinary particle, but is in good agreement with the
value y=-,'deduced in (19) for vortex rings. " The
deQection experiment provides, therefore, additional
evidence that the general dynamical behavior of the
charge carriers can be consistently described in terms
of the dispersion relation characteristic of vortex rings.

B. Magnus Forces

It is instructive to show how the dynamical behavior
of charged vortex rings can be understood. from a more
detailed hydrodynamical point of view which provides
appreciably greater physical insight. Our analysis will
involve the hydrodynamic lift (or "Magnus" ) force. 's

Although the application of this result to the nonsteady
motion of curved vortex filaments has not been rigor-
ously established in classical hydrodynamics, it de-
scribes the observations quite well and justiGes explicitly
our previous description in terms of a dispersion
relation.

- The core of a charged vortex ring may be regarded as
a charged thin solid ring of negligible mass; by Newton's
second law of motion the net force on this body must
then always vanish. But this force consists of two parts:
(1) the applied force F due to external fields and (2) the
hydrodynamic Magnus force. Thus the core must
always move so that F+G= 0 or

(22)

where the Magnus force G' per unit length will quite
generally be assumed to be given by "

2rrplrRR = (d/dk) (r.psR') =F,. (24)

Since v is by (6) a decreasing function of R, the axial
velocity N, =v of the ring decreases in time according
to dl, /dt= (dv/dR)R. Using (13) as a definition of the
momentum II, the relation (24) is equivalent to p, =F,.
Furthermore, the energy gain of the ring in time dt is
equal to the work done on it by the applied force, i.e.,

the fluid velocity at this position caused by all sources
other than this core element itself. Note that the
relations (22) and (23) imply that a straight charged
vortex line in the presence of an external force must
always move so that U is perpendicular to this force.

In applying the relations (22) and (23) to a vortex
ring, we shall assume that its core is constrained to
remain always circular in shape. "As a result of external
forces changes can, however, be produced not only in
the velocity v of the center of this ring, but also in its
radius R and in its axial direction I which specifies the
orientation of the plane of the ring. By direct calculation
it can be shown that the Quid velocity N~ at any core
element due to the rest of the circular vortex ring is
equal to vn where v is essentially given by (6). In
considering the effect of an applied force F=eh at any
instant of time, one can resolve it into a component
parallel to the axial direction n (which we shall choose
as the z direction) and into a component (chosen to be
in the x direction) parallel to the plane of the ring. We
shall consider the effects of these components in turn.

When the applied force F is in the axial (or s) direc-
tion, the Magnus force must, by (22), point in the
opposite direction. Hence the relative velocity U must
point along the outward radial direction of the ring
see Fig. 5. The core velocity becomes then u= v+U
where v= vz is axial and the radial component U=BR
tends to increase the radius of the ring in the course of
time. The total Magnus force on the core is by (27)
equal to G,= —ply(2s. R). Hence, (22) requires that
the radial velocity 8 be

G'= pr. X U. (23)

Here p is the density of the Quid, x is the circulation
vector of the element of core length under consideration
(the direction of x being such that the fluid in the
vicinity of the element Rows in a counterclockwise sense
about this direction), and U is the relative velocity of
this element with respect to the fluid. Thus U= u —uy,
if u is the velocity of the core element and if uy denotes

Fzo. 5. Cross-sectional
view of a vortex ring in the
presence of an applied axial
force F' per unit length.
(The symbols o and Q in-
dicate that the circulation
vectors points out of, or in-
to the paper, respectively. )
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"A more accurate evaluation of p(BE/Bp) in (17) yields, by (5)
and (13), y=${1+Lri—(7/4)g ')=0.56 since v=10. The deiiec-
tion experiment is not accurate enough to discriminate between
this result and the simpler value y=-,'.' For a derivation of this hydrodynamic result see, for example,
K. Oswatitsch, Handbuch der Physi k, edited by S. Flugge
(Springer-Verlag, Berlin, 1959},Vol. 8/1, p. 84. See also L. M.
Milne-Thomson, Theoretical IIydrodynamicg (Macmillan, Ltd. ,
London, 1938), pp. 237-243, in particular the theorem of Blasius.

'9 We shall thus neglect vibrations of the ring or any e8ects due
to a possible nonuniform distribution of charge along the core of
the ring when it is in the presence of an electric 6eld parallel to
its plane.
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FIG. 6. Cross-sectional and frontal views of a vortex ring in the
presence of a force F' per unit length applied in the x direction
parallel to the plane of the ring. (The symbols o and 8 indicate
vectors pointing out of, or into, the paper, respectively. )

dE= F,n.dt =p. (s.dt) =dp, v, which is consistent with the
relation (14).

When the applied force is in the x direction parallel
to the plane of the ring, the Magnus force on each
element of the core must have a component in the —i
direction. The cross-section diagram of Fig. 6 shows
then immediately that the relative velocities U of core
elements on opposite sides of the ring must be equal
but of opposite sign. As a result, the plane of the ring
must thus rotate about the j' axis. More precisely, the
relative velocity U can have no radial component since
this would lead to a Magnus force in the 9 direction in
which there is no applied force. Hence the radius of the
ring, and hence its energy, remains constant. Rotation
of the plane of the ring about the j axis with angular
velocity 8 produces, however, a relative core velocity
U= —(R cosy)8a at a ring element of length (Rdq&)

making an angle y with the i axis. The Magnus force
on this element is then —pKR cos&p0(Rdq) in the R
direction. If this is multiplied by cosy and integrated
over all angles 0( y(2m-, one obtains the total i com-
ponent of the Magnus force on the ring. By virtue of
(22), one obtains then the following relation for 0:

6 = —x'pzR-'8= —F . (25)

Using the definition (13) of the momentum p, (25) is
equivalent to

~
p~O=F, or to p =F, since p, =

~
p~8

when E is unchanged and the vector p simply rotates.
Thus the situation is again consistent with our previous
description in terms of a dispersion relation.

4. INTERACTION OF VORTEX RINGS WITH
QUASIPARTICLES

A. Energy Loss Measurements

We already pointed out that at su@ciently low tem-
peratures (say 0.28'K) a vortex ring subject to no
external forces can traverse an appreciable distance
with negligible loss of energy. At higher temperatures
the energy loss does, however, become increasingly
pronounced; e.g., at 0.65'K, it may amount to as much

dElds=~(T)x(E—) (x=n —-'). (26)

Here p depends on E only logarithmically by virtue
of (9), while n is some coefficient which, for a ring of
given circulation, can only depend on T. The relation
(26) separates explicitly the dependence of P on energy
and temperature. Since (5) and (7) permit calculation

so K. R. Atkins, Lipid Helium (Cambridge University Press,
New Vork, 1959), p. 109.

' This is certainly true for rotons () =1 A) and He' atoms; it
is also approximately true for most vortex rings in the case of
phonons where ) &400K at 0.3'K.

as 15 eV/cm. This energy loss can be attributed to the
interaction of the vortex ring with the various quasi-
particles in the liquid. These quasiparticles are expected
to be phonons or residual He' impurities at low tem-
peratures, but at higher temperatures they are pre-
dominantly rotons since the number of these increases
exponentially. A systematic investigation of the energy
losses of vortex rings at several temperatures should,
therefore, allow one to study these scattering processes
in detail and to deduce explicit values for the cross
sections describing the scattering of these various
quasiparticles by vortex lines.

The quantity of experimental interest is the effective
frictional force F acting on a vortex ring because of the
scattering of such quasiparticles. In the present context
we shall again deal with the simple case where the
vortex ring is moving in one dimension, say in the 9
direction. The force 5 acts then in the —z direction and
is related to the vortex ring energy loss per unit distance
traveled by the ring, i.e., F= ( dEjds) —This fric.tional
force is, of course, some function of the temperature T
and of the energy E of the ring. It is, however, readily
possible to infer the functional form of F on the basis
of a very general argument. Suppose that a long
straight vortex line moves with velocity ~ relative to the
quasiparticles of the fluid (the velocity n being very
small compared to the mean speed of the quasiparticles).
The frictional force 5' per unit length of the line must
vanish when ~=0. If 5' is expanded in a power series
in z, the leading term of appreciable magnitude is then
proportional to ri; i.e., F' ~ w. )Since the mean free paths
of all quasiparticles are known to be large, greater than
10—4 cm at the temperatures below 0.7'K of our experi-
ments, " the force can be calculated by using kinetic
theory to analyze individual scattering processes of
quasiparticles with a vortex line (see Appendix II).j
But the radius R of a vortex ring is large (R)500 A in
the present experiments) compared to the distance over
which a vortex line interacts appreciably with a quasi-
particle and also large compared to the wavelength X

of a quasiparticle. " Hence the frictional force on a
vortex ring must be the same as that on a vortex line
bent into a circle of radius R, i.e., 5'= (2mR)F'~Re.
The expression (6) for s shows then that P is almost
independent of the radius R, or energy E, of the ring.
More precisely, 5: can be written in the form
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FIG. 7. The frictional force F on a vortex ring as a function
of its energy 8 at a given temperature T=0.615'K.

of E and rI for various values of R, the dependence of
X(E) on E can be calculated explicitly (e.g. , when
2=5000 A, E=19.5 eV and X=10.1).

Two methods were used to measure the frictional
force P. The first of these (which we shall call the
"constant-velocity method" ) is based upon the com-
pensation of the frictional losses by a known applied
electric field. The basic apparatus is the two-stage
velocity spectrometer of Fig. 1(b) where the velocity
can be measured either in the region Fi or the region F2.
In the absence of any applied dc electric fields, a vortex
ring loses energy in traversing the spectrometer so that
its measured velocity is greater in the region I"2 than
in the region F~. It is, however, possible to apply a
constant uniform electric fieM 8 throughout both F~
and F~, and to adjust 8 until the measured velocity is
the same in both I"i and F~. Under these circumstances
the vortex ring does not lose any energy in traversing
the apparatus and the applied force just balances the
frictional force so that F=e8. The energy of the ring
can be computed from its measured velocity if it is
assumed that the relation between v and E determined
in Sec. 2 of this paper is a characteristic temperature-
independent property of vortex rings. (This energy E
is somewhat less than that given by the initial potential
between C and grid A i, but the difference is consistent
with the energy loss caused by the measured friction
force 5'.)

Figure 7 shows experimental values of 5 measured
by this method at a given temperature T=0.615'K for
vortex rings of various energies. It is seen that the data
are indeed consistent with the very insensitive energy
dependence expected from (26). A plot of F versus X(E)
gives the value of rr(T) at the given temperature of the
experiment (e.g. , rr=1.04 eV/cm at T=0.615'K). The
solid circles in Fig. 9 show values of e obtained at
several temperatures by this method. Small values of
e cannot be measured accurately because of the diffi-

culty of resolving small changes in velocity between
the regions I'r and I'&. (The small energy loss becomes
then comparable to the energy gained from the alter-
nating electric square-wave field. )

The second method of measuring 5 (the "stopping-
potential method") attempts to determine the energy
loss suffered by a vortex ring in traversing a long
field-free region and is more accurate at low tempera-

Fro. 8. Schematic diagram illus-
trating the stopping-potential
method of measuring the energy loss
of vortex rings (Lr =0.3 cm,
L=2 cm).
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The stopping potential V~ was determined by observ-
ing the current I to the collector C as a function of the
voltage V between A~ and C. The experimentally ob-
served current I does not fall abruptly to zero at a
sharply defined value V=V~, but exhibits a more
gradual cutoff characteristic. It was, therefore, neces-
sary to use a systematic extrapolation method to
estimate the potential V~ corresponding to essentially
complete suppression of the collector current I."This
procedure proved to be reproducible and consistent.
Its consistency could be checked by the following facts:
(1) The energy dependence of P determined in this
way by the present method varied properly as X(E), as
expected from (26) and from the experimental measure-
ments of the constant-velocity method. (2) The values
of rr(2') measured by the present method were in good
agreement with those obtained by the constant-velocity
method as can be seen in Fig. 9.

~' The fractional error involved in this approximation is at most
of the order of (Vr —V2)s/(4xVr V2) which is small since x is of
the order of 10.

tures where n is small. In Fig. 8 the field-free region of
length I is contained between the grids A i and A2. The
initial energy Ei of the ring entering this region at A~
is measured by the magnitude Ui of the potential
applied between the source S and A&, the final energy
E2 of the ring leaving the region at A2 is measured by
the magnitude U2 of the opposing potential which, when
applied between A~ and C, is just sufficient to prevent
charge carriers from reaching the collector C. The
spacing I.i between SA i and between A 2C is appreciably
smaller than L. By virtue of (26), the energy Ei is given
by Ei= eUi —cr(X)iLi, where (X)i is a suitable average of
X(E) over the energy range extending from E=O to
8=Ei. In Appendix I it is shown that to good approxi-
mation (X),=Xi—1 where X, is the value of X(E) for
E=eVi. Similarly the energy E2 is given by E2=eV2
+rr(X)2Lr. Here (X)s is the same kind of average of x(E)
over the energy range between 0 and E~, so that
(X)9 Xs 1, where Xs is the value of X(E) for E= eVs.
The energy loss in the drift region between Ai and A2
can, by (26), be written as Er —Es ——rrXL where we have
used the fact that X (E) is a very slowly varying function
of E to replace it by its mean value in this region; one
can put X=-', (Xr+Xs) to excellent approximation. "
Eliminating E~ and E2 between these relations one can
thus calculate e at the particular temperature of the
experiment from the expression

e(Vi—Us)
(27)

—,
' (Xi+Xs) (L+2Li)—2Li
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roton by a vortex line. (Note that, in describing the
scattering by a vortex time, the cross section 0. has the
dimensions of a length and represents some effective
width of the line responsible for scattering. ) The
detailed calculation of Appendix II yields the result

3' K
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FIG. 9. Logarithmic plot showing for both positively and
negatively charged vortex rings the dependence of the attenuation
coefBcient 0. as a function of T '. The dashed curve shows the
behavior of n expected from roton scattering alone; the dotted
curve that expected from both roton and He' impurity scattering;
the solid curve that expected if phonon scattering of the predicted
magnitude is also included.

At high temperatures where m is large, the consider-
able energy loss in the main drift space AiA2 was
partially compensated by applying a potential V across
this space. )An extra term eV should then be added to
the numerator of (27).$ At the other extreme of low
temperatures, where o, is so small that the energy loss
in the main drift space is of the order of 0.3 eV or less,
the method tends to become inaccurate. The main
reason is that an apparent accumulation of electric
surface charge on the source electrode can introduce
uncertainties of this order of magnitude in the measure-
ment of the vortex ring energies. In determining V~, a
systematic attempt was made to correct for such
"charging eAects. ""The values of n thus determined
for both positive and negative vortex rings are shown
in Fig. 9 and are in good agreement with each other.

»J. L. Yarnell, G. P. Arnold, P. J. Bendt, and E. C. Kerr,
Phys. Rev. 113, 1379 (1959).

B. Roton Scattering

The number of thermally excited rotons increases
exponentially with increasing temperature, i.e., propor-
tionately to exp( —6/kT), where 5 is essentially the
energy necessary to create a roton (6/4=8. 65'K)."
The energy loss of vortex rings by roton scattering
should, therefore, be predominant at relatively high
temperatures. The corresponding attenuation factor n
should accordingly be proportional to the mean number
of rotons present and to some effective momentum-
transfer cross section 0-„p describing the scattering of a

where o,p is precisely defined by (A18), pp is the momen-
tum of a roton with energy 6(Pp/Pi=1. 92&&10' cm '),PP

and tc is the circulation of the vortex ring (sr= Is/its in
our case of one quantum). The exponential factor in
(28) predominates over any possible slow temperature
dependence of 0-„p. In the following we shall assume O,p

to be temperature-independent. The experimental
points of loge versus T ' in Fig. 9 indicate that at high
temperatures o. does indeed reQect the exponential
temperature dependence expected by (28). At the
highest temperature of the plot (0.67'K) the scattering
should be due almost entirely to rotons. One can thus
use the experimental data at this temperature to deduce
from (28) the magnitude of the cross section for scatter-
ing by rotons. Thus one finds

o;p=9.5+0.7 A. (29)

ss H. E. Hall and W. F. Vinen, Proc. Roy. Soc. (London) A238,
204 (1956).

"H. E. Hall, Advances sts Physics (Francis 8z Taylor, Ltd. ,
London, 1960), Vol. 9, p. 89; see particularly pp. 111and 126.

At lower temperatures the experimental points of
lno. versus T ' in Fig. 9 deviate increasingly from the
straight line, presumably because interaction with
other quasiparticles (phonons and He' impurities) be-
comes predominant. Before discussing these other
scattering mechanisms, it is worth commenting on the
value of o;p deduced in (29) from the present experi-
ments. A cross section for the scattering of rotons by
vortex lines can also be inferred from experiments on
the attenuation of second sound'4 and on vortex waves
in rotating liquid-helium II."Hall gives a review of this
work" which leads to an estimated cross section of
about 10 A. This value is in good agreement with the
one obtained in (29) from the present experiments.

Several attempts have been made to deduce a value
for 0-„p on the basis of microscopic arguments. Hall and
Vinen'435 assumed that the predominant interaction
between a roton and a vortex line is given by the
expression p v, by which the energy of a roton of
momentum p is increased when it finds itself in a super-
Quid which is not at rest, but is moving with a velocity
v, ; here v, is the velocity (4) due to the vortex line.
They used a Born approximation, which is of question-
able validity and which suRers from some convergence
difficulties, but they obtained order of magnitude
agreement with the experimentally deduced value of
a„p', they also predicted it to be proportional to T
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Lifshitz and Pitaevskii, " on the other hand, used a
"quasiclassical" approximation to calculate 0.„0. They
found a temperature-independent cross section an
order of magnitude too small and predicted also an
appreciable amount of nonisotropic scattering. To
account for the discrepancy they suggested, in addition
to the y v, interaction, the existence of a predominant
hard-core strong interaction effective only if a roton
passes very close to the vortex line and leading to a
temperature-independent cross section. None of these
calculations can be considered really satisfactory and
there is nothing in the present experiments which
would tend to favor one of these calculations over the
other.

as ———ss. (2s.nz*kT)'I'eso sp(T) . (30)

Here e3 is the number of He' atoms per unit volume,
m' is the effective mass of such an atom (where nz' may
be different from the actual mass ms of a He' atom),
and cr30 is an effective cross section describing the
scattering of a He' atom by a vortex line.

In order to measure e3 experimentally, a known small
quantity of He' was added to the He4 gas which was
later condensed to form the liquid under investigation.
The fractional He' impurity concentration used was
28.4X10 '. This concentration was subsequently also
checked by mass-spectrometric analysis and was found
to agree within 3%. The measurements of the friction '

force were carried out by the stopping-potential method
at 0.28'K. At this low temperature the energy loss
caused by rotons or phonons is quite negligible com-
pared to that caused by the relatively numerous He'
impurities so that the measured friction force F is due
entirely to these impurities. These measurements
verified again the weak energy dependence of F given
by )t (E) in (26) and yielded the result as ——(1.46&0.01)
eV/cm. The relation (30) leads then at 0.28'K to an
effective cross section

osp ——18.3&0.7 A, (31)

if one assumes for the effective mass the value m*= 2.5m3

E. M. Lifshitz and L. P. Pitaevskii, Zh. Eksperim. i Teor. Fiz.
33, 535 (1959) /English transl. : Soviet Phys. —JETP 6, 418
(1957)g.

C. He' Scattering

The interaction of vortex rings with He' atoms is of
interest both intrinsically and because such scattering,
due to the small number of He' impurity atoms present
in ordinary liquid helium, becomes the predominant
mechanism responsible for the friction force 5 at
sufriciently low temperatures. The general expressions
for the force F due to He' scattering is again expected
to be of the form (26) with a corresponding attenuation.
factor us derived in (A20) of Appendix II and given by

deduced from experiments on the propagation of second
sound in He4-He' mixtures.

A further experiment was carried out to verify that
the observed scattering was indeed due to He' atoms
and that 0.3 was properly proportional to the He' con-
centration es as expected by (30). The previous sample
was therefore diluted with ordinary helium (well
helium with an estimated natural isotropic He' con-
centration of 1.4X10 r) to give a new sample with a
He' concentration of 7.55X10 ', i.e., smaller than the
concentration of the previous sample by a factor of 0.27.
The value of e3 measured in this sample at 0.28'K was
mrs ——(0.42&0.02) eV/cm, smaller than the value of us
in the previous sample by a factor of 0.28. This veri6es
the proportionality e3 ~ e3 within the limits of estimated
error and supports the consistent interpretation of
these experiments in terms of He' scattering with a
cross section given by (31).

This diluted sample was also used to verify the
additivity of He' and roton scattering by performing
an experiment at the relatively high temperature of
0.61'K. The directly measured value of u was then
n=-1.42 eV/cm. Roton scattering alone at this tem-
perature should, by Fig. 9, contribute a value rr„=0.87
eV/cm while (30) predicts for scattering by He' atoms
(assuming osp to be temperature-independent) a value
as=0.62 eV/cm. The sum n„+us ——1.49 is thus in
reasonably good agreement with the directly measured
value of 0,.

The value of oss in (31) cannot be compared with
data obtained from other experiments since we know
of none which have attempted to measure the scattering
between vortex lines and He' atoms. Such experiments
on second sound propagation or vortex waves jn rotating
liquid helium containing He' impurities would, of
course, be possible.

D. Comments on Photon Scattering

The approximate isotopic abundance of He' atoms
in ordinary helium (obtained from wells) corresponds
to a He' atom concentration" of 1.4X10 ' and is
sufFicient to lead at 0.28'K to a calculated value
as= 7.2X10 ' eV/cm in our "pure" helium. This value
of 0, is far greater than that due to rotons at this low
temperature and is consistent with the estimated
magnitude of the rate of energy loss observed for vortex
rings at 0.28'K. The relation (30) shows that ns ~ T'~'

if 0-30 is assumed to be temperature-independent. The
dotted curve in Fig. 9 illustrates then the predicted
temperature dependence of the total attenuation
coeflicient (o.,+mrs) if both roton and He' impurity
scattering are taken into account.

"H. C. Kramers, in I.iglid Helium, edited by G. Careri
(Academic Press Inc. , New York, 1963), International School of
Physics, Enrico Fermi, course 21, p. 395. See also K. R. Atkins,
Lsqmid Helilm (Cambridge University Press, New York, 1.959),
p. 289."K. R. Atkins, Ref. 30, p. 230.
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Finally, we turn to a discussion of the expected
interaction of vortex rings with phonons. The analysis
of Appendix II yields for the attenuation coefficient
due to phonons the result

kT)4
~a= ——

I
ass.

20h' c l
(32)

Pitaievskii" has attempted to calculate the momentum-
transfer cross section of a phonon of momentum p by a
vortex line and finds o.„s——(zr/2) (zc'p/c' h). Equation
(A18) of Appendix II gives then at 0.28'K an effective
phonon cross section zr„s——0.3 A; correspondingly
cr~= 2.2 X 10 ' eV/cm, a value about 30% of the
attenuation coefficient ns due to He' impurities.
Because of its rapid temperature dependence o.„should,
however, become more important than n3 at higher
temperatures and should be noticeable until, at tem-
peratures appreciably above 0.5'K, it becomes in-
significant compared to the coefFicient o,„due to roton
scattering. It was pointed out previously that measure-
ments of the attenuation coefficient o. become increas-
ingly inaccurate at low temperatures where a is small.
Nevertheless, the experimental points in Fig. 9 are seen
to be not inconsistent with the theoretical solid curve
obtained by adding to the attenuation coefhcient
(cr„+zrs) due to rotons and He' impurities the phonon
contribution cr„calculated by (31) on the basis of
Pitaevskii's theory of the phonon-scattering cross
section.

5. CONCLUDING REMARKS

"L. Pitaevskii, Zh. Eksperim. i Toer. Fiz. 55, 1271 (1957)
/English transl. :Soviet Phys. —JETP 8, 888 (1959)j, particularly
Eq. (29). See also A. L. Fetter (to be published).

The previous pages have presented evidence showing
that it is possible to create charged vortex rings in
liquid helium. Since these are created in the middle of
the liquid, far from the disturbing eBects of any walls,
and since their charge allows them to be manipulated
by external electromagnetic fields, the properties of
these vortex rings can then be studied in considerable
detail. In particular, we have discussed experiments
showing that their circulation is equal to one quantum
It/zrt; we have investigated their dynamical properties
and found them to be consistent with those expected.
from hydrodynamical considerations; and we have
studied their scattering by rotons and He' impurities
and thus determined the scattering cross sections
describing the interaction of these quasiparticles with
vortex lines.

We a,re interested in pursuing a number of other
experiments. For example, it would be desirable to
determine the magnitude of the binding energy coupling
the charge to the vortex ring. (A measurement of this
kind might also have a bearing on other experiments

suggesting a trapping of ions by vortex lines. ") It
would also be interesting to devise an experimental
arrangement which would favor the creation of vortex
rings with more than one quantum of circulation.

APPENDIX I: ENERGY GAIN IN THE
STOPPING-POTENTIAL METHOD

We do not see what connection, if any, there might
exist between our present experiments and the discrete
discontinuities in ionic mobilities observed by Careri
et a/."in superQuid helium at much higher temperatures.
The latter authors suggested at one time that their
results might be interpreted in terms of the creation of
quantized vortex rings, although they pointed out that
the estimated orders of magnitude involved in this
explanation were rather inconsistent. " Later they
suggested a more complicated hydrodynamical explana-
tion." It should also be pointed out that discrete
discontinuities in ionic mobilities have recently been
observed in ordinary liquids like argon and nitrogen. 4'

On the other hand, it seems likely that the very small
deAection of ions observed by Careri eI, a/. 44 in a mag-
netic field in superfluid helium at 0.2'K was due to the
fact that these workers were not observing ordinary
ions, but the charged vortex rings created by them.
The velocities of vortex rings tend to be so small that
the Lorentz force exerted on them by a magnetic field
is ordinarily quite negligible. Recent experiments by
Meyer" at 0.4'K have verified explicitly that the
magnetic deflection of charge carriers is negligible when
the latter have been given enough energy to exhibit
vortex ring behavior.

Consider the space between S and A~ in Fig. 8. An
applied potential V~ between these electrodes produces
a field hi ——Ui/I. i. The energy 8 of a vortex ring starting
out near S is essentially zero. Taking into account the
frictional force (26)', one can then write

dE/ds= ehi —zrx(E) (A1)

"G. Careri, W'. D. McCormick, and F. Scaramuzzi, Phys.
Letters 1, 61, (1962); also Proceedings of the 8th International
Conference on Loze Temperature Physics (Butterworths Scientific
Publications, Ltd. , London, 1963), p. 88.' G. Careri, S. Cunsolo, and P. Mazzoldi, Phys. Rev. Letters
7, 151 (1961).

4'G. Careri, S. Cunsolo, and P. Mazzoldi, Proceedings of the
Etlz International Conference on booze Temperature Physics (Butter-
worths Scienti6c Publications, Ltd. , London, 1963), p. 90.

4' 3.L. Henson, Phys. Rev. 1BS, A1002 (1964),
44 G. Careri, F. Dupre, and I. Modena, Nuovo Cimento 22, 318

(1961)."L. Meyer (private communication). We wish to thank
Professor Meyer for permission to mention his unpublished
results.
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or
( ax ' ( aX)

eB,ds=dE] 1— =dE~ 1+
e8i k chil e=- (2~8) 5."= 2mEi (S'/i) . (AS)

the component in the —a direction contributes. Thus
one can write

where we have assumed that the frictional force is
relatively small so that nx(&e8&. After integration this
becomes, putting 8&L&——V&,

nLg
e Ui Ei+ —— X (E)dE.

eVg
(A2)

But (9) shows that X—=q
—i~ has to good approximation

the functional form X=c+lnE, where c is some constant.
Integration of this expression gives the result"

X(E)dE= LX(Ei)—IjEi= (Xi—1)Ei (A3)

APPENDIX II: CALCULATION OF SCATTERING
BETWEEN VORTEX RINGS AND

QUASIPARTICLES

A. General Formulation of the Problem

We should like to calculate the magnitude 6 of the
frictional force on a vortex ring of radius E. moving
through liquid helium with a velocity ~ in the 2 direc-
tion. The discussion leading to Eq. (26) showed that,
since the radius E is relatively large and the superQuid
velocity at each ring element is v, the ring can be
imagined straightened out so that the problem is
reduced to the two-dimensional one of calculating the
frictional force 5' per unit length on a long straight
vortex line (and. associated superfluid) moving with a
velocity v with respect to the quasiparticles of the Quid.
Equivalently one can calculate this force 5' by con-
sidering the vortex line stationary in the superQuid
while the gas of quasiparticles moves with respect to
this line with a mean velocity e in the —a direction.
We shall adopt this last point of view in the following
paragraphs and consider the geometrical situation
illustrated in Fig. 10 where the i axis points along the
vortex line. With the assumptions discussed in connec-
tion with Eq. (26), the total force on the vortex ring
can then be computed by imagining the vortex line to
be bent into a circle of radius R with its axis pointing
in the 9 direction. Any components of P' in the 9 or g
directions of Fig. 10 cannot contribute to the net force
on the ring since they must cancel by symmetry; only

4~ Actual numerical integration yields 0.9 instead of 1 in (A3);
this difference is negligible.

where we have used the approximation of putting
X(Ei)=X(eVi) =—Xi in the last step since X is a slowly
varying function of E. Substituting (A3) into (A2) and
solving for E~ gives then the result used in the text

Ei ——eVi —n (Xi—I)Li.

The last form reQects the expectation that 5' is propor-
tional to v so that X/v is independent of v. Using the
expression (6) for v, (AS) can then be written in the
form (26) with

e=-', ~(S'/v) . (A6)

t d'pf(p)u sin8j

&( p sin8gcos(C+ q) —cosC)od&p, (A7)

where the second integral is over all possible scattering
angles y and the 6rst one over all possible momenta y
of the incident quasiparticles.

The mean number f(p)d'p of quasiparticles per unit
volume in a thermal equilibrium situation where their
mean velocity is v can readily be expressed in terms of
the corresponding mean number fo(e)d'p in thermal
equilibrium when their mean velocity vanishes (so that
fo depends only on

~ p~ ). Thus one has quite generally

f(p)=fo(~ —v p)=f0(~) —(Bfo/B~)v p (A8)

"In the case of rotons p'=p= po to good approximation.

The force 5' is equal to the mean component of
momentum in the —9 direction transferred to unit
length of the line per unit time by virtue of collisions
with the quasiparticles of the Quid. Denote the momen-
tum of a quasiparticle p and its energy (with respect
to the superfluid at rest) by e(p), where p= ~p~. We
assume that the collision of a quasiparticle with a vortex
line is elastic so that its energy is unchanged; then
p'=P, where the prime denotes quantities after a
collision. 4' We assume further that the momentum
component parallel to the vortex line is unchanged as
a result of collisions; thus p '=p„ i.e., the angle 8

specifying the direction of p with respect to the i axis,
is unchanged. Denote the azimuthal angle of y about
this axis by C before, and by (4+ q ) after the collision.
The line acquires in this kind of collision a component
of momentum in the —s direction equal to p,

'—p,
=p sin8Lcos(C+p) —cosC j. The probability of occur-
rence of scattering by an angle between p and p+dq is
specified by the scattering cross section 0.(p; p)dp
which gives the number of particles scattered into this
angular range (per unit length in the x direction) per
unit incident Qux of quasiparticles incident on the line.
This flux is given by f(p)d'p(u sin8), where f(p)d'p
denotes the mean number of quasiparticles per unit
volume with momentum between p and p+dp and
where u=

~
Be/Bp

~
denotes the magnitude of the group

velocity of such an excitation. The total force P' in the
—9 direction per unit length of line is then equal to
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See (m'/2) —8

pl

(Bfp/Bp) in (A12) is appreciable, and extend the range
of integration over t' from —pp to + po with negligible
error. Using the subscript r for rotons, (A12) then
becomes

371 K

cp = ppe e 0'p.
8 h'

$ide view Top view

FIG. 10. Side and top views illustrating the scattering
of a quasiparticle of momentum p by a vortex line.

where

~p(p) =

3m' " 8fp
w dp up'op(p),

8 o Bc

(1 cosy—)e'(p; pp)dy

(A9)

(A10)

where the last step uses the approximation that ~ is
small. In our case v= —vz so that v y= —vp sin8 cosC.
Writing d'y=P'dP sin8d8dC and using (AS), integration
of (A7) over all incident angles 0&C & 2ir and 0&8&pr

gives then the result

Here the eRective cross section is given by (A11), the
integrals being conveniently expressed in terms of the
dimensionless variable q

—= (p —pp)/(2pk T)'~'

dqe "Iql p o(pp+ (2pkT)'I'q). (A16)

kT)4
&n=

20k' c ) (A17)

C. Phonon Scattering

The distribution (A13) is still applicable, but the
dispersion rela, tion is simply p= cp where c is the velocity
of sound. Thus u=Bp/Bp=c. Hence (A12) becomes,
using the subscript p for phonons,

k T ~
dqe'(e' 1) 'q'o„p q

—
l
. (A18)O&p=

4x4 p
Bfp

dp up'~p(p)
p 86

Bfp
dp up' (A11)

86
D. He' Scattering

Putting q= p(kT/c) —', the eRective cross section (A11)
js a total momentum-transfer cross section. Introducing is here given by
the following average of this cross section over all

15
momenta

the result (A6) can then be written

3pr' " ( Bfp
Q= Icop dpi up ~

16 p E Bp

The dispersion relation for a He' atom is simply
p=p'/(2m*), where m* is its effective mass. Hence
u=-p/m'. The He' impurity atoms obey Maxwell-

(A12) Boltzmann statistics since their number np per unit
volume is quite small. Hence

B. Roton Scattering fpd'y= np(2m. m*kT) P~'e e'd'y (A19)

Bose-Einstein statistics are applicable in the case of
phonons and rotons so that

fp(p) k P(=e&' —1)— (A13)

(A14)p= ~+ (p —pp)'/2~.

Hence u=
l
Bp/Bp l

=
l p —ppl/u. Since pp))1, fp is only

appreciable when p is close to pp. Hence one can write

p=pp+f use the fact that l| l«pp wherever the factor

where p—= (kT) '. For rotons the dispersion relation
assumes the form

which is properly normalized so that integration over
all momenta yields m3. Using the subscript 3 for He'
atoms, the attenuation coefficient (A12) for scattering
due to He' atoms becomes then

ap= p~(2prm*kT)'IPn, p.,p. (A20)

The eRective cross section (A11) can here be written,
putting q= p(2m*kT) 'I', — —

dqe p'q'0 pp((2m"kT)'~'q) . (A21)


