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charge eRect, we need an increase in V of about 0.6% in
order to bring the contribution of the isotropic mean-
free-path effect to 0T, up to a value op= 0.93'K)(0.060
=0.05'K. (Gayley et tran.

" concluded from their data
that alloying must increase V.)

Pippard" was apparently the first to consider the
effect of decreased electron mean free path on V. He
stated that this must always decrease V for an isotropic
metal. However, he considered only longitudinal
phonons in his analysis. The transverse phonons also
contribute to V, and they wouM tend to increase V
when the mean free path decreases. "It is possible that
this problem will be clarified by further theoretical
examination, taking proper account of the contribution
of the different phonon modes, and including many-
body effects.
~gIn principle, the lattice parameter changes which ac-
company alloying can also inQuence co, E, and V.
However, these changes are so small". that one is not
surprised that they can be ignored.

'e A. B. Pippard, Phys. Chem. Solids 3, 175 (1957).
'4 A. B. Pippard, Phil. Mag. 46, 1104 (1955).
'5 J. A. Lee and G. V. Raynor, Proc. Phys. Soc. (London) 867,

737 (1954). For the indium alloys, see the references in Hansen' s
book (Rei. 4).

Since completion of this work, it has been pointed out
to me by Dr. D. Markowitz that his Ph.D. thesis
(University of Illinois, 1963, unpublished) contains a
prior attempt to analyze the valence effect into a part
proportional to m'R and a part proportional to p, for
the tin and aluminum alloys (not for the indium alloys).
Our limitation of the discussion to alloys in which the
solute is completely dissolved removes several of Dr.
Markowitz's apparent exceptions to the hypothesis on
which this analysis is based. Our comparison of the
results of the analysis with measurements by Glover and
Sherrill provides new support for this hypothesis. For a
treatment of some of the physical mechanisms which are
responsible for the charge effect and the isotropic mean
free path effect, the reader is referred to Dr. Marko-
witz's thesis.
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The Abrikosov-Gor'kov theory for a superconductor with magnetic impurities is applied to the calculation
of attenuation coeKcients. In this calculation several electronic time-dependent correlation functions are
evaluated, and these functions are then used to evaluate the attenuation. In the limit of low sound-wave fre-
quencies, the resulting coeKcients are expressed in terms of a single energy integral. The physical significance
of the result is discussed in terms of an effective density of normal electrons" and energy-dependent mean
free paths. Then, the attenuation is evaluated in the limit of low temperatures for superconductors both
with and without an energy gap.

I. INTRODUCTION
' ~'XPERIMENTS on ultrasonic attenuation have

~ proved to be a most useful way of gaining informa-
tion about the nature of the superconducting state. ' Be-
cause of experimental difficulties, mostly connected with
sample preparation, these studies have hitherto been

f. Supported in part by U. S. Army Research Otiice (Durham).
~ Alfred P. Sloan Fellow.
l' Present address: Physics Department, Universitet A. M.

Gorkii, Kharkov, Ukraine, USSR.' See, for example, J. R. Leibowitz, Phys. Rev. 133, A84 (1964);
R. %eber, Phys. Rev. 133, A1487 (1964); E. R. Dobbs and I. M.
Perz, Rev. Mod. Phys. 36, 257 (1964); R. E. Love and R. W.
Shaw, Rev. Mod. Phys. 36, 260 (1964); P. A. Bezuglyi, A. A.
Galkin, and A. P. Korolyuk, Zh. Eksperim. i Teor. Phys. (USSR)
39, 7 (1960) LEnglish transl. : Soviet Phys. —JETP 12, 4 (1961)j.

limited to superconductors which contain a negligible
percentage of magnetic impurities. In this paper, we
have attacked the problem of calculating the attenua-
tion coefficients in materials containing larger percent-
ages of magnetic impurities in the hope that our work
might encourage future experimental work on these
materials.

As Abrikosov and Gor'kov' first pointed out, super-
conductors with magnetic impurities are uniquely
interesting because they have superconducting proper-
ties even in the absence of an energy gap. This behavior

2A. A. Abrikosov and L. P. Gor'kov, Zh. Eksperim. i Teor.
Phys. (USSR) 39, 1781 (1960) (English transl. : Soviet Phys. —
JETP 12, 1243 (1961)j.
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has been qualitatively verihed by Reif and Woolf, '
although the quantitative fit between theory' and this
tunneling experiment seems far from perfect.

Our physical model for the superconductor is essen-
tially identical to that of Ref. 2. We assume a weak-
coupling electron-gas model for the superconductor very
similar to the original model used by Bardeen, Cooper,
and Schrieffer. 4 This superconductor has in it randomly
placed impurities, some of which are assumed to have
a spin attached. The directions of the impurity spin
vectors are taken to be random. An interaction propor-
tional to the scalar product of the electronic spin with
the impurity spin causes electronic spin Qip and thereby
seriously modi6es the nature of the electronic state.
The effect of impurities is described by two parameters
I' and I'„which are, respectively, the rate of normal
and spin-dependent scattering for a normal-state
electron.

We employ this model to calculate several electronic
time-dependent correlation functions by a method very
similar to the one used by Lange. ' The correlation
functions are then substituted into Tsuneto's' formulas
for the attenuation to obtain explicit results for the
attenuation coeKcients in the limit of low-frequency
sound waves.

Tsuneto's' calculation of the ultrasonic attenuation
is based upon the determination of response functions of
the type

1
(t &,&7)(q,z) =— Ct' dr' expLiz(t —t') —iq (r—r')7

X(LA (r, t), B(r',t')]). (1)

Here, A(r, t) and B(r,t) are Heisenberg representation
operators describing an observable quantity at the
space-time point r, t The ( ) d.enotes both a statistical
average and an average over the possible random
placements and spin directions of impurities.

The three operators whose correlation functions are
needed for ultrasonic attenuation are the number
density

(2a)e(r, t) = P yt(r, t)lt(r, t),
spin

the particle current

i(r, t) = 2 iE(V—V')/»~]Lot(r', t)lt (r, t)]}"=., (2b)
spin

' F. Reif and M. A, Woolf, Phys. Rev. Letters 9, 316 (1962).
4 J. Bardeen, L. N. Cooper, and J.R. Schrieffer, Phys. Rev. 108,

1175 (1957).' R. V. Lange, thesis, Harvard University, 1963 (unpublished).
6T. Tsuneto, Phys. Rev. 121, 402 (1961).
7 Equations (3), (Sa), and (Sb) are different from those em-

ployed by Tsuneto in Ref. 6 in that they include the collision drag
eÃect discussed by R. W. Morse t IBM J. of Res. Develop. 6,
52 (1962)g; L. T. Claiborne PPh. D. thesis, Brown University,
1961 (unpublished) g; and J. R. Leibowitz t Phys. Rev. 133,
A84 (1964)j. As these authors all point out, the collision drag
effect is dominant in the transverse case for the superconductor.
Tsuneto, in a recent unpublished paper, has applied the work of
Cohen, Harrison, and Harrison t Phys. Rev. 117, 937 (1960))
to include collision drag and thereby obtains our Eq. (Sb).

and the electronic stress tensor

(V—V'); (V—V')t
r;;(r, t) = g

'
'Pt(r', t)P(r, t)

2ispin
(2c)

For waves with wave vector q pointing in the s direction
and angular frequency e,q, the longitudinal attenuation
constant is, from the calculation of the Appendix,

t([~,h, '7)(q,.)]'
0!L,= —Re

p;, n, qs 1—4ze'q s(Ln, e])(q,z)

where

—Reiz(Lhz', hr ~7)(q,z)/p;..t, , (3)

hr~(r, t) = (q/s) r„(r,t) —(sm/q)rt(r, t) . (4a)

In Eq. (3), s is to be set equal to v.q i5,—where 8 is an
infinitesimal frequency just greater than zero. For all
reasonably low frequencies the shielding is almost
complete, so that

4z esp s((m,-ts])(q,z)))1

For this reason, Eq. (3) may be replaced by

where

n&= Re —(I h;,h, '7) (q,z),
&~pion&s

hrr(r, t) = (q/s) r.,(r,t) mj, (r, t) . —

In our later work, we shall only keep the erst term in
Eq. (4b), since this is the only term which contributes
at low frequencies.

The correlation functions which appear in (3) and

(5) are not quite honest electronic correlation functions.
Instead, they are correlation functions computed in a
fictitious system in which the long-range effects of the
electromagnetic interactions are turned off. Therefore,
we omit the effects of Maxwell's equations in our cal-
culations of electronic correlation functions because
these effects are already included in Eqs. (3) and (5).

8 The physical source in the denominators of Eqs. (3) and (Sa)
is the screening of the interaction. The importance of this screening
has been emphasized by M. Takimoto, (Progr. Theoret. Phys.
(Kyoto) 25, 327 (1961);26, 659 (1961)].

C&Lr...~])(q, z)7'
(5a)

(t.~,~])(q,s)

In an unpublished report, v Tsuneto concludes that
because the transverse electromagnetic response is
very strong in the superconductor
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We use a Green's function approach~" to the deter-
mination of response functions (/A, B7)(q,s). In this
approach, it is natural to calculate time-ordered
products like (LA(r, t)B(r',1')7+) for real values of it
and it' being between zero and T, where T is the
temperature expressed in energy units. The + indicates
a time-ordering operation in which operators with larger
values of if appear further to the left. The definition of
an equilibrium ensemble implies a periodicity condition
upon this time-ordered product which can be expressed
by writing

(LA (r, i)B(r',~')7,)
d g'

Q expLiq (r—r') —is„(t—1')7
(2s-)s v

&&(LA»7) (q). (6)

In Eq. (6), the sum over v covers all even integers and
s„=ixvT, where T is the temperature in energy units.

In Ref. 11, the relation between the Fourier coe%-
cients of Eq. (6) and the response functions of Eq. (1)
are discussed in detail. "It turns out that both quantities
can be discussed in terms of the spectral weight function
X"~ s(q, &o). We have

(/to X g,s (q,Co)

(EA,B7)(q,s) =

to And the response function needed in evaluating the
ultrasonic attenuation.

In Sec. 2 of this paper, we translate the model we are
using into Green's function language by dehning an
approximation for a Green's function g in the presence
of an electromagnetic forcing field. Section 3 includes a
brief rederivation of relevant properties of the Green's
functions in the absence of the external fields. The
solution obtained is identical to that of Abrikosov and
Gor'kov, except that we indicate slightly more explicitly
the analytic properties of the parameters in the Green's
function. In Sec. 4, we expand g to first order in the
fields, thereby obtaining solutions for the correlation
functions needed in the evaluation of expressions (5).
These solutions involve frequency summations, which
summations are performed in Sec. 5. Finally, Sec. 6
includes a brief presentation of formulas for the
low-frequency case and an explicit evaluation of the
low-temperature limit.

II. APPROXIMATION FOR g

In our calculation it is convenient for us to use four-
component creation and annihilation operators"

ZCo X g,s(q, to)
(7b)

We also use the matrices

Therefore, it follows immediately that

(LA,B7)(q,s ) =(P,B7) (q) .

Equation (8) serves to define the Fourier coefficients
in terms of the response function ((A,B))(q,s). However,
one can use a theorem discussed by Baym and Mermin"
to travel the opposite route. These authors indicate
that the knowledge of ((A,B7)(q,s„) for the special
points s„=i7rvT is sufficient to determine (LA,B7)(q,s)
by an analytic continuation procedure when we employ
the extra condition that (LA,B7)(q,s) has no singular-
ities at z= ~.

Therefore, in this paper our basic calculational
procedure is a two-step process. First, we use the
Green's function methods to calculate the Fourier
coefIicients of Eq. (5). Secondly, we use the analytic
continuation of these Fourier coefficients and Eq. (8)

9 P. C. Martin and J. Schwinger, Phys. Rev. IIS, 1342 (1959).
"A. A. Abrikosov, L. Gor'kov, and I. K. Dzyaloshinski,

Methods of QNaltum Field Theory il Statistical I'hysics, translated
by R. A. Silverman (Prentice-Hall, Inc., Englewood Cliffs, New
Jersey, 1963)."L.P."KadanoB and G. Baym, Qizarztlns Statistical Mechanics
(W. A. Benjamin, Inc. , New York, 1963).

"See particularly Chap. 8 of Ref. 11.
"G.Baym and D. Mermin, J. Math. Phys. 2, 232 (1961).

(10a)

where e„is the usual set of 2X2 Pauli spin matrices and
0 is a 2)&2 null matrix and

=( .)
—I

T2 —Z

0
(10b)

where I is the two-dimensional unit matrix.
The most basic object in our calculations will be the

4&4 matrix Green's function

1(P'q'(1)q't(1') 7+)
g(1,1', U, W) ==- ——

(P'7+&

"These four-component spinor operators have been used by
R. Balian. See, for example, Proceedings of the 1963 Ravello
Spring School of Physics (Academic Press Inc. , to be published).
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formed from the spinor creation and annihilation
operators. Here ( ) stands for both a statistical average
a,nd an average over positions and spin directions of the
impurities. Following the usual technique, " the
Green's function is defined for pure imaginary times in
the interval 0(it(1 '. The + stands for a Wick
time-ordering operation in which the operators are
ordered according to the relative size of it. The 5 has
been introduced as a calculational device in order to
generate the higher order correlation functions which
will be needed in the transport analysis. In particular,
we choose

If we assume a zero-range interaction between
electrons and impurities, then an electron at the point
j.' sees an interaction potential

V(r) =—g Lv„b(r —r;)+v,b(r —r,)S,'e j, (17)

where v„and v, are the strength of the normal and
spin-fhp interaction while S; and r; are the spin and
position of the jth impurity. This interaction can be
written in second quantized form as

V=-', P e (r;)tv„r,yv, n. s;je(r;),

5= exp —i
(iT)

with
if2t U(2)e(2)+ Wo(2)ro'(2) j ~ (12) n= L(1+rS)/2j~+I (1 ~3)/2]&2~&2 ~ (19)

These normal and spin-Qip scatterings lead to the
Z„and Z, of Eq. (15).In lowest order, "where e and r;; are the operators of Eq. (2), while

U(2) and W(2) are c number functions which we shall
vary at our convenience.

For example, Z (1,1') = (m I'„/etPg) 5(ri —ri') rg (1,1')ra,
(20)

Z. (1,1') = (mI'. /mph)ii(ri —r, ') aa g(1,1')a.
8g(1,1; U, W)

—' tr2 Here, I' and F, are the rates for normal and spin-Rip
scattering for an electron at the surface of the Fermi

=((e(1)e(2))+)—(N(1))(N(2)). (13) sphere in the normal state:

5U(2) U=W 0

The term in (N(1))(n (2)) is irrelevant in all our calcula-
tions of response since it only contributes at precisely
zero frequency. The other quantity on the right-hand
side of (13) is one of the correlation functions needed in
the calculation of n J..

We now write down the basic approximation used in
the determination of g(1,1'; U, W). This is precisely the
same approximation as employed by previous authors, ' '
although it is expressed in somewhat different language.
We wri

(21)

where pv is the Fermi momentum, m the electronic
mass, Ir the impurity density, and (S;(5,+1)) the
average of SP.

III. EQUILIBRIUM GREEN'S FUNCTION

d3

te the matrix equation For the case U=W=O, the solution to Eq. (14) is
well-known25 so we shall only very briefly present

dig —i(1 1. U W)g(1 1 . U W) ~(1 1 ) (14) results here. In this case,

where

g '(1,1'; U, W)

fbi'
+~ I~,—U(1)r,—

a&, &2ns

g(11)=i2 Z g.(I)
2m '

XexpLip(ri —ri') —is„(ti—ti') j, (22)
Vx—~i'

"(1) &(I 1) where, as before, s„=imvT, but now the sum is over all
odd integers. Then, Eq. (14) may be written a,s

—a(1)5(1-1')—Z„(1,1')—Z, (1,1'). (15)

j. , 1
&"g.(I), (23)

2' 3~(1)= —iIgIrC(1»)r3 (N)
where

r„
The first term in Eq. (15) describes the propagation Lg"(&)j s~ 'i r' ~ r& d vg~(&)ra

2Ã
of a free particle through the potential field given by
V and v. The next term is

which describes the interaction causing the supercon-
ductivity (coupling strength IgI). The remaining two
terms describe the effects of normal and spin-dependent
scattering processes, respectively.

e„=p'/2m —p, . (24)

"The derivation of these terms can be achieved by a generaliza-
tion of the type of analysis used in Sec. 39 of Ref. 10 or in Chap. 1,
Sec. 4 of Ref. 5.
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and 2(s) ""'fywhile E . 32) 1mplies that +(s) a

e(s) =-'22(I'„+I',)+s[l I se s =-', ' '„s N(s))2 —I)'/2/u(s)
'2-(I'„ I—',)+~[[I(z)j2 —1 1/2,—2Z

d'p nzp2 dQ

(2n-) ' 22r2 42r
(25)

s A=n(s)[1 —(2r,/6)[LN(s))2 —1 —'/' .

A j.&

jth momentathe fact that only particles w'

near t eh Fermi surface con ri u

(35)

(36)
n element of so id angle.

to theNext, we musust analytica y
. The latter rausfunction g(p, s).
a of meeting this requiremenThe obvious way

demand that g(p, s) satisfy q.

r-
g ps —'= — r g —r2 —d—e,g(p, s r2g P)S =S Gp73 Q 3 6 )S 7'3

d (p,s)n. (26)
2' 3

(26) we assume thatTo solve Eq. , w

e shall need to know the ana ytic sI t structure of u(s),
1 sis. The structure

al ticfunctions is deriva e r
of ~s)q w 1c lsi, '

analytic function o s exc(i) g(p, s) is an ana
' '

n o s exc'""'"' ":"""'---- h"- ---".11,discon i ty c oss
s) changes sigfrom the fact that Img p,

's functiont fth 1GThe imaginary part o
'tive for s lyingth matrix functionnott em

usjust above ethe real axis. Thu

Lg ps =M S 6~73 —Z s)r,o1. (27)
or

;g&0Im trL(1+r )/4jg(p, z) I.=-+'2

Then, b, has the form

A=hrio. g, (28)

CO(z)+2
&o.

L ()1'—"—I:~()1'
(37)

(26) can be performedw 1. The integral inwhere 6 is rea.
to give

(o(z)+a(s) r1o1
deg(p, s) = mi—

ot defined bywhere ~I,s is the square root d

ude thatthese facts, we can conclu

or e e call the values of thesefor cuts a ong t e e cae real axis. e ca
= GD 25&functions when s lies just above e

tl1 d o t t a
y-the real axis is jus gst iven y e

'

functio")=[I ()1'-P()7}'/'
and the condition

Im-. (z))0.

qu
' 27, and (29) now define o/(z) andEquations (26), (27), an

by the equation
I'„+I', o/(s)

o/(s) =2+i

r„—r, Z(s)
Z(s) =Syz

2(s)

(30) Z(o/ —ill) =Z*(o)),

22(o/ 27'/) =N*—(o)),

~ -'~)=- "(),
2 1 1/2)8'—I}'"= —[ll:~(~)F—1[[2/(/o iB—

(38)
(31)

~()

s . re directly derivableThe first three lines . re direc y

ines follow from Eqs. (3to 3 . ines o ow8) The two last lines o ow

lo-
( ) ~

8 taking the eintegra oiii fin e ia o
ing Eq. (29), we fin

nd 6 as ournd basic functions. . Instead,We do not use co and
we employ 2(s) and —Im-', tr(1+r2) deg(p)S)

N(s) =o1(s)/Z(s) .

(21) it follows thatFrom Eq. ) i

(33)
=Re— )0. (39)

[LN(~)]'—I}"'
2 1 1/2o/(S) = 2(z) [N(z)/[LN(Z) 12—1

~(s) = 2(s)/[I:N(s) 1'—1 '" (34b)

(34a) Then Eq. (36) implies

Imu(M) )0. (40)
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IV. SOLUTION FOR g

In the previous section, we calculated g(1,1'; U, W)
for U=lV=O. For our ultrasonic attenuation calcula-
tions, we need the first order terms in the expansion of

g in a power series in U and V, i.e.,

Z. (1,2; 1',2)

To calculate the 2's we notice that"

Z„(1,2; 1',2)

= 8g(1,1')/8U(2)

KT i
8g

—1(1 li)
did 1'g(1,1) g(1', 1')

BU(2)
8g(1,1'; U,v)

8U(2) U= %=0

8Z(1)= g (1,2) rsg (2,1)+ dig(1, 1) g(1,1')
8U(2)

V+) V

dp dg
&-(p, q, s+,s-)

(2ir)' (2ir)s
xF„

mpv

8g(1,1')
dldl'g (1,1)8(ri —ri') rs rsg (1',1')

8U(2)
&&exp fip (ri —ri')+iq. L-,

' (ri+ri') —rs]

-';(1.-1.)+' (1.-1.)} (41)
mpv

~ 8g(1,1')
did 1'g (1,1)8(ri—ri') —.

3 8U(2)

T
(I ~,~j&(q,')=—

2

dsp
Z t I: &-(p, q, +, -)]

(2ir)s v+

z+ =zÃv+T
(43)

s =is(v+ v)T.. —

For notational convenience, we define the quantities

(LA,Bj&(q,s+,s ), which have the property that

(LA,B1&(q, s„)

=Tg (I A,B]&(q,is(v++v)T, imv+T). (44)

Thus, we have

(Ll,~j&(q,s+,s-)

d p
-', trrsZ. (p, q, s+,s ),

(2ir)s

In Eq. (41), s~=imv~T and the sum over v+ and v

ranges over all odd integers. The variation with respect
to W;;(2) yields

Z„,(1,2; 1',2) =kg(1, 1')/5W;;(2) jp s s. (42)

We define Z, (p, q, s+,s ) in a manner directly analogous
to the definition of Eq. (41).These two 2's are suflicient
for calculating all the correlation functions needed for
transport since, for example,

fVs —Vs') Vs —Vs'
g (1,2') rsg (2, 1')

2i ), 2im —2'=2
(47)

The term in 86(1)/8U(2) in Eq. (46) reflects the
presence of a collective mode like the one originally
discussed by Anderson. Tsuneto has shown that this
collective mode does not a6ect the ultrasonic attenua-
tion for the case of ordinary impurity scattering.
Consequently, we neglect 86(1)/8U(2) in Eq. (46).'r

The Fourier transform of Eq. (46) is introduced with
the aid of Eq. (41).Thus,

&-(p,q, s+,s-)

=g(p+q/2, s+)f }g(p—q/2, s-),
g3~i'„

( }=ra+ rsvp„(p', q, s+,s )r,
(2m)s

dsp/7rl'.
+ n Z„(p', q, s+,s )ts. (48)

3rispv (2ir)'

&«g(1', 1') (46)

The equation for 2„,, is identical in form except that
for Z„, the inhomogeneous term is

(Lr.~,~h&(q, s+,s-)
d p p~pi

—'.«rs ~.(p, q, s+,s-)
(2s-) ' sos

d'p,
s «r ~.;;(p,q, &+,s-)

(2')'
(I . ,"3&(a+, -)

d'p p'pj
trrs ~ sr(p q s+s—).

(2s)' m

(45a)

(45b)

(45c)

In the transverse case, in which we wish to calculate
2„„the analogs of the final two terms in Eq. (48) do
not contribute since it is impossible to form a scalar
from Z... and a wave vector in the z direction. Thus,
the transverse correlation function can be obtained
immediately by substituting expression (47) into
Fq. (45c) and then performing the momentum integral.

"Y.Osaka, in J. Phys. Soc. Japan 18, 877 (1963), has stressed
the importance of constructing approximations of 2 and Z, that
satisfy gauge invariance, i.e., the differential number conservation
law. Baym and Kadano8 LPhys. Rev. 124, 287 (1961)g have
indicated why approximations like (46) do, in fact, include all
conservation laws.

'7 Ql'hen this term is dropped, the solutions for 2 are no longer
gauge invariant.
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d3P mpv

(27r)' (2m)'

ev+q( 2
= Ev+ 2 Vvg COSO ~ (49)

The momentum integrals needed to calculate the
response functions delned by Eq. (45) can be evaluated
directly, if we assume g'/2m((p, so that

with
X=X(q,s+,s ) =qev/fI'„—c(s~,s )r.]. (56)

pv V—tan 'I'
L1—c(z+,s )]F 4 -', F'+ (F—X)

x'q X—tan 'I"

(55)

where 8 is the angle between p and q. Thus, we Find.

(fr*.,~-]&(q,s+,s-)

rI'P P*P~
. =-,' trr3 g(1+&/2, s+)r g(1 —q/2, s-)

(2s-)' m'

P—c(s„.)]F- L-;F+F—(F +1) tan- F]
2%q

(5o)

V. FREQUENCY SUMS

To form the needed correlation functions, (LA,B]&
X (q,s), it is necessary to perform frequency sums on
(LA,B]&(q,s+,s ). According to Eq. (44)

(LA, B]&(q,is vT)

=T P (LA, B]&(q,i~(v++v)T, Arv T)&, (57)

where the sum over v+ covers all odd integers and v is
an even integer. This sum may be evaluated by noticing
that all the singularities of (LA,B])(q,s+,s ) appear for
real values of s+ and z . Hence, this function has a,

spectral representation

%here
N(s+)u(s )—1

C(s+,s )=-
L~(s+)'—1]"'t&(s-)'—1]"'

Zco+ &cD X~ a (g&My&M )
(58)

2% 2Ã (s+ M+) (s —M )

Here, y is the real quantity

F= F(s+,s,q) =iqv, /L.-(s+)+-.(s )], (511 )

(52)g(F) =sF '( —F+(F'+1) tan 'F&.

(51a,)
Xg, a(g,M+,a) ) = —(LA,B]&(g, (o++iS, co +ib)

—(LA,B])(q, (u+ ib, (o —ib)—
+(P.,B])(q, (o++i5, M —ih)

+(LA,B]&(q, a)+—i8, o) +ib) . (59)

The longitudinal correlation functions are a bit
harder to evaluate because Eq. (48) is an integral
equation. To solve this equation, we integrate Eq. (48)
over all p and try a solution for 2 of the form

=-:ra(L~,~]&(q,s+,s-)+l.2 f(q, s+,s-)

and. a solution of a similar form for J'd'PZ„, (p, q, s+,s ).
After considerable algebra, the correlation functions
emerge as

&t.'N, ~]&(q,s+,s-)

ns' X tan 'I'
=—t1—c(z„s )]

m.q X—tan 'F

K~,r-]&(a,s+,s-)

Equa, tion (58) may be substituted into Eq. (57) and
the summation performed with the aid of the Sum-
merfeld-Watson suln formula. The result is

(P,B]&(q,i

de+ ko XA,B(q,My, M )
t:f(~+)—f(~-)] ', (60a)

2Ã 2' + —27I v T—co

with f(~)=t1+e" ] '. The analytic continuation of
Eq. (60a) is simple and obvious: We need to construct
a function (/A, B]&(q,s) which agrees with the right-
hand side of (60a) at all the special points s=s„=is.v T
for even integral p. This function shouM have no
singularity at s= ~. Clearly a possible choice of such
a function is

dG0+ tlag X&.a ('Cp&+p&—)
X — Lf(~+)—f(„)] — (60b)

2' 2x 8—GO

pv'm F—tan 'F
-L1—c(s„s )]XF-2

7iq X—tan 'I" (54) According to Baym and Mermin, "it is the only such
function.
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dc'
=(P,B]&.— —f(-) I ([~,B]&(q, -+'~, -+'~)

The right-hand side of Eq. (60b) can be rewritten in The low-frequency limit is
terms of the known functions ([A,B)&(q,z+,z ) by
making use of the definition (59) of x in terms of these ([~,B)&(q&z)
functions. This gives

dGO

.f( )(([~,B]&(q, —~, —)
27ri

—([A,B)&(q, o)+i(), o)—z)+([A,B)&(q, o)+z, o) ib—)

do) 8f(o))
+iz — (Re([A,B))(q, (0+27'), o)+iI))

2Ã t9GD

—([A,B)&(q, ~+i&, ~—g)) . (64)

([~»]&(q o)+z~ o)+i())) (61) Therefore, Eq. (64) may be simplified to read

Equation (61) should permit the calculation of all
the response functions needed for the attenuation
coefFicients.

Unfortunately, Eq. (61) is wrong. It is wrong because
of a curious ronditional convergence" of the sum and
integral in J'de Q„Z(p, q, z+,z ). In the interchange of
orders of integration and summation, we get an extra
spurious term which comes from very large s+ and e.
Since this term comes from high energies, it is almost
independent of s—it does not vary appreciably through-
out the entire range IzI «p. Another consequence of
the high-energy source of this term is that it can be
estimated perfectly well from the normal-state Green's
functions.

Thus, we write instead of (60b)

d(d 8f(o))
([~»)&(q ') =(P B]& —iz

2x' BM

X([a,B))(q, ~pic, ~—iS). (65)

By employing Eq. (5b), (50), (52), and (65) we can
now directly read off

qadi)it)p 1 8f(o))
do) [1—c(o)))F' '

pionts Bco

X[1—g(y)], (66)

c((o) = c((o—ii), (o+ib)
=—[I&(~) I'—1)/I [~(~)]'—lI

(P,B])(q,z) =([~»)&- y=y(o)) =qv);/[2 Ime(o))]
—qDp/(2 Im[['o)(o))]2—[5(o))]'j'(')do)+ do) Xg n (q&G)+&M )

[f(~+) f(~ )] —(62)-
22r 22l z o)++o)

(68)

The longitudinal case is a bit more complex. From
Eqs. (5a), (63), and (65), we 6nd that the low-frequency
attenuation tal~es the form

where

([n,ii]&„=—mp);/ir2,

([22. ..])„=—X,
(L"...**)&-=—l(&p'/~)
([r...r..]).= slqP~'/~, —

2

(63) ~,=Re
pE

(I ".,".))(q,-)—2 (L **,~]&(q,z)
3mion&8

p
2 2

VI. FORMULAS FOR LOW-FREQUENCY
ATTENUATION COEFFICIENTS qlV2)it)2 1 8f((d)

(rr, ——— — do) [1—c(o))]
Pion&e BcoEquation (61) can, in principle, be used to study

attenuation for all frequencies. The algebraic complexity
is so fearsome, however, that we shall limit ourselves
to the case of relatively low-frequency sound. Therefore,
we expand Eq. (61) about z=0. We can simplify this
expansion by noting that, for all our cases, ([A,B))
&&(q,z~,z ) is even under the interchange of z+ and z . with

x(~)+3y '[x(~)—y)
X

x((o)—tan —'y

X[2stan 'y —y '(y —tan 'y)), (70)

are the high-frequency contributions to their respective +(, ) (L-,-j)(e, ) (69)
response. These terms should be added on to the right-
hand side of Eq. (61) in order to make that equation

Equation j65j may be employed together with Eqs.
(53), (54), and (55) to evaluate (69) as

'() This behavior is noted by Tsuneto (Ref. 6) and discussed in
detail in Ref. 10, p. 310.

x((o) =X(q, o)—i(), o)+ 27'))

=q"/[I'--I'( )). (71)
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and thus

e(~) = —1,
y (u) =x (~) = qv F/(F „+I',) =ql; (72)

nzS~p 1 (ql)' tan-'(ql)—X — —— —1, (73)
p;„„v,l 3 (ql) —ta, n—'(ql)

For an elementary check of this formula, consider
the normal state for which

e(~) =2(S/F, )2—1

y((o) = ql

x(~) =q.,/[F„+F,—2'/F, ],
(78)

The integrations in (66) and (70) may be performed
analytically in the limit of low temperatures. When
F,/A&1, there is no gap in the energy spectrum, so
that we can write Bf/8~= —5(&u). At &v=0,

p /p=1 —(a/F. )' (79)

[~r/~r ]/( "/p) =g(ql)
for pl&(1,

—& 3x/4qi for ql))1, (80)

[1—(ql) ' tan '(ql)][1+66'/(F q'vol)]

1—[(ql)-' —2A'/(F, q~ p)] tan —'(ql)

—+ 1 for q/((1 and for ql))1. (81)
(74)

so that
which is Pippard's" formula for the longitudinal
attenuation constant. and

This comparison enables us to see a relatively simple
interpretation of Eqs. (66) and (70). We can interpret
y(&u) as q times an effective frequency-dependent mean
free pa, th. Then Eq. (66) is identical to Pippa, rd's
result for the longitudinal case, except for the factor
[1—c(a&)), which is just a typical superconducting
coherence factor. Our results in the transverse case are [«/«]/(p /p)
essentially different from Pippard's because the trans-
verse electromagnetic response is qualitatively larger
in the superconductor. In the transverse case, the
normal attenuation constant as given by Pippard" is

where g(ql) is given by Eq. (52).
There are several relatively tractable cases in which

Eqs. (66) and (70) may be evaluated analytically. For
example, when F ))F, and F„))A, x(~) =y(cu) =ql. In
this situation, "

cu, =6[1—(F,/6)'~']3~'. (82)

Just above the energy gap,

On the other hand, when (6/F, )&1, there is a gap
in the energy spectrum in the range —~~(or&or„
where

where

~i/«" = (p "/p),

ar/nz = (p /p)g(ql),

(75)

(76)

c(~)=1—
3 ((o—(ug)F, 2t'cog —»3,

y(~) = yo
——qual/[F„—F,+26(F,/5)'~']

x((o) =qnp/[F„—F,],
(83)

(77) so that

can be viewed as the proportion of "normal electrons"
eHectively acting in this attenuation process. Notice
that this proportion is independent of q. [Pote added in
proof. V. Ambegaokar and A. GriKn have independently
derived Eq. (75) and numerically evaluated p~/p. This
work is reported in the Proceedings of the Ninth I.ow-

Temperature Physics Conference (to be published).
We would like to thank these authors for pointing out
several errors in the preprint of our work. ]

'~ A. B. Pippard, Phil. Mag. 46, 1104 (1955).
"The extra factor of g(ql) which appears in the transverse

attenuation in Eq. (76) results from the greatly enhanced elimina-
tion of magnetic fields in the superconductor. L. T. Claiborne
(Ref. 7) found this factor both experimentally and theoretically
for the superconductor with nonmagnetic impurities. This type of
eAect was qualitatively predicted by R. W. Morse in Progress in
Cryogenics (Heywood and Company, Ltd. , London, 1959),Vol. 1,
and Bardeen and Schrieffer, in Progress in Joe Temperaklre
Physics, edited by C. J. Gorter (North-Holland Publishing
Company, Amsterdam, 1961), Vol. llI, p. 170.

3'o 'L1 —a(yo)1
(~r/~r")/(p"/p) = g(ql)

(ql) 'Ll —a(ql)]

F +F,
F —I',+26 (F,/6) 'I'

p'p« &, gl«1,

Finally,
for ql))1. (84)

for yp&)1.

(«/«") F.+F.
for yp((1 and q/((1,

(p /p) F„—F,+2Z(F,/g) ~
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(f, , ;/N)Z= —F;,„
so that (A1) becomes

cl' Z —
dj (r, t)

M—y(r, t)= —— m +V r(r, t) '

Bt2 E df

(A3)

or, if P(r, t) varies as

APPENDIX: DERIVATION OF FORMULA FOR
ATTENUATION COEFFICIENT

Let2i P(r, t) be the displacement for ions in the
neighborhood of r, t. If the wavelength of the sound is
much greater than the interatomic spacing, then P is
perfectly well defined. Then, F=ma for the ions is,
for longitudinal fields,

M(B'/Bt')P(r, t) =+ZeE(r, t)+F...(r,t), (A1)

where K is the total electric field, Ze is the ionic charge,
and F;,, is any other force produced by the electrons
which act on the ions.

For the electrons

(m(dj/dt) (r,t)+V r(r, t))= —NeE(r, t)+f...(r,t), (A2)

where f, , ; represents the residual force produced by the
electrons on the ions. Newton's law, action=reaction
implies that

explicit change, we find'

( i—smj;(r, t)+V,r;;(r,t))f

s'm—Ny; (r,t)+ q; qi yi, (r,t)(r;,)
+qzqA' (r t)( *)+qzqA' (r t)( )

+(ism j;(r,t)+V,r,;(r,t)) ...„„ (AS)

h;(r, t) = [q;r,, (r, t)/s] mj, (r,—t) . (A10)

We substitute (A9) into the right-hand side of (A5),
drop the first term in (A9) because it is of relative
order Zm/M, and find

p'-s'~'(q») —(2q'[q e(q,s)]+A,(q, s)}(m» '/5)

+([h',h;])(q, )"~;(q, ) =0. (A»)

where all repeated indices are to be taken as variables
for summation.

The first four terms on the right-hand side of (AS)
are already of first order in p. Therefore, they can, be
calculated to zeroth order in Xz. The last term in (AS)
vanishes when BCI —&0. Therefore, it should be taken
to 6rst order in GCz. Thus, we find that the right-hand
sid.e of (AS) is

s'mNy—;(r,t)+ f 2q;[q y(r t)7+q'y;(r, t)) (Nmpp'/5)

+([h;,h;])(q,s)s'y, (r,t), (A9)
where

(A1) becomes
S(r,t) = S(q;)e"' (A4) In the longitudinal ease, @; is parallel to q. We take

these both to point in the z direction and then find, from
(A11), the sound-wave dispersion relation

—Ms'y(r, t) = —(Z/N)([ —imsj(r, t)+V r(r, t)]). (AS)

BC =BCo+BCz, (A6)

Following Tsuneto, ' we compute the right-hand side
of (AS) by going into a coordinate system which moves
with the ions. Then, in this system, we have an effective
Hamiltonian for the electrons

p;..s'= 5Nmvz'q'+([hzz, hzz'])(q, s)s', (A12)

hz (r, t) = (q/s)r„(r, t) —(ms/q)zz(r, t). (A13)

[In writing (A13), we applied the number conservation
law &rz/&t+V j=0 and dropped a term of relative
order m/M. ] From (A12), it follows at once that the
longitudinal attenuation constant is

where Xo includes all electron-electron interactions
including the Coulomb interaction. BC' is the effective
Hamiltonian which is produced by the transition into
the moving system:

zz

([his, hz~]) (q, s) .
pion&s

(A 14)

d'ry(r, t). [ismj(r, t) —iq r(r, t)]. (A7)

Expression (A5) includes no electromagnetic interac-
tions since these all appear in Xo. No electromagnetic
fields are directly produced by the transition into the
moving system since this transition maintains average
charge neutrality.

The transition into the moving system affects the
right-hand side of (A5) in two ways: First there is the
explicit change in the meaning of j and v-. From this

"The results of this Appendix grew out of many discussions
that we have had with Dr. G. Baym. The calculational methods
used here are very similar to ones which he derived, although our

specific calculation is somewhat different.

The correlation functions in (A14) are honest
electronic correlation functions including all effects of
electron-electron Coulomb interactions. Now, we pro-
ceed to calculate in a more explicit fashion the effects of
the Coulomb interactions.

With this aim in view, we notice that all our correla-
tion functions may be viewed as variational derivatives,
e.g.,

([r»r&&])(q s) [~(r z)/~~&&] '(q, s), (A15)

where the expectation value is computed in a system
with Coulomb interactions.

In order to state our problem in its most general
form, we consider (A(1))zz, z and (A(1))'zz, z, which are,
respectively, expectation values of the same operator
A(r, t) in systems with and without Coulomb interac-
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(L~,~j)'(q, z)
(A22)

1—4s e'q —
'&Le,

tran&'(q,

z)
(L~s,~j)(q,z) =-

MC= drI U(r, t) rt(r, t)+ V(r, t)8(r, t)j, (A16)
which is a familiar R.P.A. result. By substituting
(A22) into (A21), we find

where V(r, t) is a c-number function of space and time
and B(r,t) is an operator.

In our calculations, we employ a generalization of
the random phase approximation (R.P.A.)," in which
we say that the total effect of introducing the long-
ranged part of the Coulomb interaction can be taken
into account by making the replacement

&L~,N))'(q, s)
&P,~3)(q, ) =

1—4s.e'q-'&Le, ef&'(q, z)
(A23)

Now, consider

8&2)
&L~,Bj&(q,z) = (q, z)U(r, t) —+ U, tr(r, t) 68

-5&x&.

e2

(A17)= U(r, t)+ d'r' e((r', t)&
Ir—r'I

(q,z)

tions. In each case, the expectation value is to be When A=@, (A21) reduces to
computed in the presence of a forcing term in the
Hamiltonian

wherever U appears in the theory without the long-
range interactions. We use a prime to denote correla-
tion functions in the Qctitious system. Because of
(A16)

~(w)'
&I:~ ~j&'(q, z) =— (q,z),

6V U

— 'nI~ - Ueff

—~&a)-
+ (qz)

-~Ueff- V

~Ueff
(q, z)

6V

~(w)'
(L~,~j&'(q,.) =

v

&I:~,~3&'(q,z) = (q,z),
5U y

s&~)'
&L~,&j&'(q,z) = (q,z).

8U

(A18)

4Xe2

+&L~, l)'(q, ) &L,B]&(, ). (A24)
g2

If we apply (A24) to the special case A =e, we find

&L~,~)&'(q, s)
&L,~j&(q, ) =

1—4s.e'q '&Le,e]&'(q,z)

so that (A24) becomes

&LA, ~tj)'(q, z)4vre'q
—

'&Lrt, Bj)'(q, z)
(A26)s&w) s(w)'

(q,s)= (q,z)=&I:~,~j)'(q, z) (A»)
~Ueff v ~U Y

1—4se'q '&Ln, ~j)'(q, z)

To derive Eq. (3) of the text, we substitute (A26)
into (A14).s' In the text, we have implicitly assumed
that all correlation functions are to be evaluated in the
system without long-range correlations. Hence all
primes are left out in the text.

and
s&w)'

(q,z) = =&L~,Itj&'(q, z).
bU U

bA
(A20)

Ueff
Also,

|(A)
(q, z) =&L~,~l&(q, z)

bU ACKNOWLEDGMENTS

Now consider the system with Coulomb interactions.
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appear through U, ff implies that

is given by

5(A) 8U, rt

&I ~,~j)(q,s) = (q, z) (q,z)
bo, ff 8U'

5A 4m2
(q,.) 1+ &I~,~)&(q,z) . (A21)
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