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The theory developed by Ziman for the scattering of phonons by electrons is extended to high temperatures
using the formalism of Klemens and Callaway. The theory is applied to the experimental results recently
published by Dismujkes et al. on the efkct of doping on the thermal conductivity of Ge-Si alloys. After sub-
tracting the electronic contribution from the measured thermal conductivity, the resulting lattice con-
ductivity is analyzed. In describing the effect of doping, the deformation potential is the only free parameter;
its value is adjusted for each sample to obtain agreement with the experimental data at 500'K, which is close
to the Debye temperature. The theory then predicts the correct temperature dependence of the lattice ther-
mal conductivity. The deformation potentials, derived in this manner, are found to be higher for n-type than
for p-type material, and to increase with carrier concentration. For lightly doped p-type and n-type material,
values of 1.2 and 1.6 eV were obtained, respectively, which compare well with the available literature data.

lattice thermal conductivity of germanium with doping
to phonon-electron scattering. Experimental evidence
exists" that it is the free charge carriers rather than the
ionized impurities which are responsible for the ob-
served decrease in the lattice thermal conductivity of
Ge-Si alloys.

Ziman" developed a theory of scattering of phonons
by electrons at low temperatures. It is the purpose of
this paper to extend this theory to high temperatures
using the formalism of Klemens and Callaway. This
theory is then applied to the experimental results
recently published by Dismukes et a/. "on doped Ge-Si
alloys. Disordered alloys are of particular interest in
this respect because, unlike the situation in elemental'
or compound semiconductors, ' the additional point
defect scattering introduced by the doping is negligible.
Any change in thermal conductivity can therefore be
attributed to an interaction of phonons with free charge
carriers. It is shown in this paper that this effect
quantitatively accounts for the observed decrease in
lattice thermal conductivity of Ge-Si alloys with doping.

I. INTRODUCTION

l
'HE high-temperature lattice thermal conduc-

tivity of Nttdoped Ge-Si alloys has been studied
recently both experimentally and theoretically by
Abeles et a/. ,

' Abeles, ' and Parrott. ' It was possible to
explain the experimental results with the simple
phenomenological model developed by Klemens4 and
Callaway' by including the contribution of normal
processes to the thermal resistance as suggested by
Klemens '

This investigation is concerned with the eGects of
doping on the lattice thermal conductivity of Ge-Si
alloys at high temperatures. It is known that the addi-
tion of donor and acceptor impurities decreases the
lattice thermal conductivity of semiconductors. ' " It
was assumed" that this is the result of the scattering
of phonons by point defects, and it was believed,
according to Stratton, " that the effect of phonon
scattering by the conduction electrons is negligible.
Seers et a/. ' pointed out that the theory of Stratton is
in error due to incorrect combination of the relaxation
times. They attributed the observed change in the II. LATTICE THERMAL CONDUCTIVITY OF
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This treatment applies to semiconductor alloys con-
taining added doping impurities. It is based on an
isotropic Debye model for the lattice waves. The con-
tribution of the optical modes to the thermal resis-
tivity" is neglected. The assumption is made that the
lattice disorder due to alloying can be described by point
defect scattering. The following scattering mechanisms
are assumed to contribute to the thermal resistivity:

1. Phonon-Phonon Scattering

Only 3-phonon scattering is considered here. We
assume that normal (N) and umklapp (U) processes can
be characterized by the relaxation times v-N and 7-g

ter
on, "B.Abeles and R. Cohen, J. Appl. Phys. 35, 247 (1964).

» J. M. Ziman, Phil. Mag. 1, 191 (1956); 2, 292 (1957).
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and D. S. Beers J. Appl. Phys. (to be published).
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given by4' "
T~ =Byco

~

expression

TU = 82M
—1 2 (2)

where co is the phonon frequency and 8& and 82 are
independent of co, but functions of temperature. The
ratio of X to U processes,

P=Br/Bs,

r=y(1—y)L(aM/M ) +,(a3/3) sg, (6)

~~=~S'—~G

where 0 is the Debye temperature. The disorder
parameter F, modified' for an alloy of two kinds of
atoms, differing in mass and atomic volume, is

is assumed to be temperature-independent. A justi6-
cation for the use of Eqs. (1) and (2) is given in Sec. lV. a11d

D5= 88;—8g„

M=yMsx+ (1—y)Mae.

r I D- '= (Pl'/47rs')cv', (4)

where 6 is the cube root of the atomic volume. The
sound velocity v is assumed to be given by the Debye

2. Point-Defect Scattering

The relaxation time rpD for point-defect scattering
due to lattice disorder in alloys is given by4

Here y is the fraction of silicon content, M is the mean
atomic weight, and e is' a number of the order 40.

3. Phonon-E1ectron Scattering

Ziman" derived the following expression for the
phonon relaxation time r~p due to phonon-electron
interaction with the electrons in a parabolic band:

8 fPs 'D kT Aco

TgP
4+6'd —,'m*~' kr

1+expL (-,'m*s' —EF)/k T+k'oP/8m*v'k T+ ha&/2k Tj—In
1+expL (-,'m~s' —Ep)/k T+k'oP/8m*v'k T—h(o/k T j (10)

where 8 is the electron-phonon interaction constant or
deformation potential, m* is the density-of-states
effective mass, d is the density, and EI: is the Fermi
energy. The question as to whether the shear or dila-
tational deformation potentials or combination of both
are to be used will be discussed in Sec. IV. This re-
laxation time T@p describes the iztravalley scattering.

It should be noted that in addition to the ietravalley
scattering, described by Eq. (10), there is also an
ietervalley interaction between electrons and phonons.
Experimental evidence exists, " however, that imtra-

valley scattering is dominant. This is particularly valid
for alloys since ietervalley scattering involves phonons
with large wave numbers and these phonons are already
efficiently scattered by point defects.

Also, it is known" " that doping changes the elastic
properties, and therefore changes the Debye tempera-
ture of a solid if measured at ultrasonic frequencies up
to 10' sec '. This effect originates in the change of the
Eermi level with strain due to the shift of a band or
valley with respect to one another. For thermal phonons
in silicon (cp=4X10" sec ') the condition &ur, ~))1 pre-
vails, since the intervalley electron scattering relaxation

&0 &N +&U +&PD +&EP ~

The formalism of Callaway' is used to calculate the
lattice thermal conductivity K~ (in cgs units).

K(= 4.67X 10- (e /3)(I, +Is /I, }
where

+2~2eax

7eX dSq
(enz 1)2

(12)

time r, & is 2X10 " sec for p-type silicon, " and only
slightly lower for e-type germanium. "Therefore, it is not
possible to establish equilibrium in the electron popu-
lation of the valleys, and the effect of doping on the
elastic constants is greatly reduced for the case con-
sidered here. Since the effect is small even at ultrasonic
frequencies, it is completely neglected in this work, and
the Debye temperature is assumed to be independent
of the carrier concentration. Evidence for this is given
by Dolling" from the measurement of the lattice
spectrum of silicon, which is affected less than 1% by
adding 3)&10"m-type carriers cm ' pure silicon.

The relaxation times given above are combined in
the usual manner.

'~ C. Herring, Phys. Rev. 95, 934 (1934)."W. P. Mason and T. B.Bateman, Phys. Rev. Letters 10, 151
(1963).

'7 W. R. Keyes, IBM J. Res. Develop. 5, 266 (1961); I.. J.
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Bryant and P. H. Keesom, Phys. Rev. 124, 698 (1961).

"N. 6. Einspruch and P. Csavinsky, Appl. Phys. Letters 2, 1
(1963)."P. Csavinsky and N. G. Einspruch, Phys. Rev. 132, 2434
(1963).
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Is=p —x' dx,
p rU (e-—1)'

pre) n'x'e-
Is =p —1— ix' d~.

p rU AU) (e*—1)'
"G. Dolling, Bull. Am. Phys. Soc. 8, 194 (1963).
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Tmz, E I. Properties of Ge-Si alloys used in this investigation.

Speci- Composition
men (at. '%%u~ Si)

68 73.8
41 66.8

163 70.2
162 71.3

1834 79.5
1975 86.8

7 72.0
42 69.3

1941 71.7
1970 72,0

82 71.0

Impurity

As
As
P
P
P
P
8
8
8
8
8

Carrier
concen-

tration
(cm ')

2X1P1s
2.3X10"
6.7X10'9
1.5X10"
1.4X 10'0
2.7X10'0
3 4X10'9
8.9X10'9
1.8X10'0
2.4X 1020

3.5X10»

Debye
temp.
('K)

532
510
521
524
553
581
527
518
526
527
524

Reduced
Fermi level

at 500'K

—3.88—1.41—0.16
0.96
0.99
2.30
0.28
1.15
2.51
3.02
4.01

&total
(W/cm deg)

at 500'K

0.055
0.052
0.048
0.044
0.046
0.050
0.053
0.050
0.050
0.051
0.053

&e1

(W/cm deg)
at 500'K

0.0003
0.002
0.004
0.008
0.007
0.011
0.002
0.004
0.008
0.011
0.015

(W/cm deg)
at 500'K

0.055
0.050
0.044
0.036
0.039
0.039
0.051
0.046
0.042
0.040
0.038

Deform-

ationn
potential

(eV)

~ ~ ~

1.6
2.8
44,
4.9
6.7
1.3
1.8
2.5
2.8
3.1

Here a=0/T and @=co/ton, where teD is the Debye
frequency. The contribution of the second term in Eq.
(12) to at in alloys is of the order of a few percent.

The relaxation time rg contains the parameter 82
which must be determined. Leibfried and Schloemann"
used the variational method to calculate the lattice
thermal conductivity for 3-phonon processes at high
temperatures and obtained (see Ref. 10 for the modifi-
cation of their formula by a factor 4)

k 3me
(16)

where E is Avogadro's number and y is the anhar-
monicity parameter. A similar formula, different only
in the numerical factor, was derived by Dugdale and
McDonald" from a dimensional argument.

The parameter 82 in Eq. (2) can be expressed' in
terms of the anharmonicity parameter p by assuming
that the lattice thermal resistivity caused by pure
3-phonon scattering is the same as derived by Leibfried
and Schloemann. After inserting numerical values for
the physical constants in Eqs. (1), (2), (4), and (10),
and using the reduced temperature 0, and the reduced
frequency x, the following expressions result for the
relaxation times (in cgs units):

where
Z = 6.76X 10 6(m*/m)'P/M

y =3.72 && 10'(m*/m) PB

D= 1.68 && 10 "/(m*/m) 6'8,

(21)

(22)

(23)

where X denotes the number of valleys and g the reduced
Fermi energy.

III. Ge-Si ALLOYS

Dismukes et al." measured the thermal resistivity
1/It, the absolute Seebeck coefficient Q and the electrical
resistivity p between 300 and 1300'K of a number of
p- and tt-type Ge-Si alloys of different composition as a
function of doping. The analysis of these thermal con-
ductivity data in terms of phonon-electron scattering
is presented in this paper. Table I summarizes the
pertinent properties of the specimens investigated. The
carrier concentration listed is defined as n=1 /eR~,

where R~ is the Hall coefficient. The Debye tempera-
tures 0 were computed from the elastic constants. For
further details the reader is referred to Ref. 14.

In order to compare the theory given above with the
experimental data, first the electronic contribution has
to be subtracted from the total measured thermal con-
ductivity. The electronic thermal conductivity ~,& of a
semiconductor is given by the expression"

rm '=Prv ', -

-x',
1+P MPn

rg D '=6.17)&10"GFx',

-1+(5/9)~- ~'
rU ' ——3.264)&10 '

(17)

(19)

+
Kol=

I

tT

e$

epb Egr
+ +& +&n

(eh+ p)' kT
(24)

ah'2
rzp '=X ln

1 +e ay+ad Daxn+ ,'ag--
1+e ay+ad Daze )ax-— —(20)

"G. Leibfried and E. Schloemann, Nachr. Akad. Wiss. Got-
.tingen, II Math. -Phyaik Kl. 4, 71 (1954)."J.S. Dugdale and D. K. C. MacDonald, Phys. Rev. 98, 1751
(1955).

where o. is the electrical conductivity, tt and p are the
electron and hole concentrations, respectively, b the
mobility ratio, and E,~ the band gap at the temperature
T. The numbers A„,„and B„,„are determined by the

"See, e.g. , J. R. Drabble and H. J. Goldsmid, Thermal Cog-
dlcHoe ie Semiconductors (Pergamon Press, Inc. , gear York,
1961)s p. 117
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0.07—

I I I thermal conductivity which is analyzed in the following
manner:

0.06,

663Si& n- TYPE

68 2.2 x IO cm ~

4I 2.3 x IO cm ~19

l63 6.7 xlO cm ~

0 I62 I 5xIO cm
THEORETICAL

50.05t

0.04(

0.03

scattering mechanism described by a parameter q and
the reduced Fermi level p. The quantities q and p were
calculated by Amith'4 for the Ge-Si alloys samples
given in Table I, from the room-temperature Hall co-
efficient and the absolute Seebeck coefficient Q(T). By
Ineans of the tables of Amith, the Lorenz numbers,
A „~and B„„,were then determined and the electronic
thermal conductivity computed using Eq. (24).

The energy band gap was assumed to be (in eV)

Eg~= 1.07—4.3&10 4T.

for GeQ. 3 and LiQ 7 al1oys.
This was derived from the results of Sraunstein et al.""

at 296'K, using the same temperature coefficient for
the band gap as found for pure silicon by Morin and
Maita. "The density-of-states effective masses m* were
taken from Busch and Vogt'7; m„*=1.0m was used for
the holes and m„*=0.427m for the one-valley effective
mass of the electrons of GeQ. SSiQ.7 The mobility ratio
b=1.5 was assumed; this is the ratio of the electron
mobility in n-type to the hole mobility in p-type
Ge-Si. '4

The values calculated for the electronic thermal
conductivity are given in Table I. The experimental
points in Figs. 1, 2, and 3 represent the resulting lattice

'4 A. Amith, International Conference on the Physics of Semi-
conductors, Paris, 1964 (to be published)."R. Braunstein, A. R. Moore, and F. Herman, Phys. Rev. 109,
695 (1958)."F.J. Morin and J. P. Maita, Phys. Rev. 96, 28 (1954).

'r G. Busch and O. Vogt, Helv. Phys. Acta BB, 889 (1960).

.. i I I I

300 400 500 600, 700 800 900 1000 I IOO I 200
T( X)

FIG. 1. Experimental and theoretical values of the lattice
thermal conductivity of e-type Ge0.3Si0 7 alloys as a function of
the absolute temperature and carrier concentration. The theo-
retical curves were fitted a,t 500'K (=8); this determines the
deformation potentials I 8I.

,0.06

IS
x 7 3.4xlO crn

42 8.9 x IO cm
20 -3

Isfl94l I.8x IO cm

cII97O 2.4 x IO cm

Ge~ SI 7
P- TYPE

E 0.0

0.04

0.0

I I

300 4 00 500 GOQ 700 800 900 I 000 I IOO l 200
T ('V)

I'zG. 2. Experimental and theoretical values of the lattice
thermal conductivity of p-type Ge0.3Si0 7 alloys as a function of
the absolute temperature and carrier concentration. The theo-
retical curves were fitted at 500'K (=e); this determines the
deformation. potentials [ 8 I

Abeles' has demonstrated that it is possible to de-
scribe the experimental results for Nedoped Ge-Si alloys
by means of the phenomenological Eqs. (12) to (19)
over the whole system and at all temperatures by ad-
justing the two parameters p and y. This step is re-
peated in this work, since the assumptions" on the
specific heat at high temperatures had brought about
some changes in the experimental data used by Abeles.
Moreover, it was decided to fit these parameters at the
Debye temperature of the materials rather than at room
temperature. The anharmonicity parameter y was
Gtted to the experimental results for unalloyed silicon'
and germanium' at their Debye temperatures of 648
and 374'K, respectively; the isotope scattering was
taken into account. For both silicon and germanium, a
value of y=0.91 was obtained (Abeles had used 7=0.89
or, in his notation, pi ——1.77). Adjusting the parameter
P to undoped material is difficult because the true lattice
thermal conductivity of an undoped sample is not
measurable. A sample with a carrier concentration of
10" to 10" cm ' (e.g. , D 171 of Ref. 9) is partially
transparent for blackbody radiation and, therefore,
exhibits a photon effect. ' The thermal conductivity of
a sample with 2.2&(10is cm—' (e.g. , sample 68) is already
lowered by the doping effect. Therefore, the parameter
P was adjusted at 500'K (which is close to the Debye
temperature of Gee &Sip r), so that Ki=0.056 W/cm deg.
This value is slightly higher than that measured on
sample 68 by the estimated amount of the doping effect,
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For the strain term in the expression (6) for the disorder
parameter the value ~=39 was used, which was esti-
mated' for the Ge-Si alloys assuming the impurity
model of Klemens. This strain term, however, con-
tributes less than 7% to the disorder parameter. The
value resulting for the ratio of X to U processes is
P=2.0 (Abeles had used P=2.5).

Based on these values of the parameters 7 and P
which describe the undoped material, we have computed
the theoretical lattice thermal conductivity values for
the doped Ge-Si alloys by using Eqs. (12) to (23). The
calculations were based on a one-band model, using the
density-of-states eGective masses given above. The
Inultivalley structure of the conduction band was taken
into account by using X=6 for m-type material. The
values'4 of the reduced Fermi level q used here are those
used for calculating the electronic thermal conductivity.
Figures 1 and 2 show the resulting theoretical curves,
which were evaluated by means of a computer, for
different samples of p- and cs-type Geo sSis r. Figure 3
shows the same for e-type Geo sSio.s and Geo. csSio.ss.
The curves were fitted at 500'K (=6) to the experi-
mental value of each sample by adjusting the defor-
mation potentials 81. As is seen in Figs. 1, 2, and 3, the
theoretical curves exhibit the correct temperature de-
pendence of the lattice thermal conductivity. The small
deviations for the lightly doped specimens at very high
temperatures are probably due to the errors in calcu-
lating the large bipolar contribution to the electronic
thermal conductivity fEq. (24)]; it is very likely that

a) 5-PHQNON

4
3
P 3 Si~

MPLE 162

5eV

Eq. (25), which was established at low temperatures,
is inadequate at high temperatures. Some minor devi-
ations occurring in the most heavily doped p-type
specimens (1970and 82 in Fig. 2) at high temperatures
are believed to be caus d by the inhuence of the split-
off band at these high doping levels (see discussion
below).

The values of 1St required for each sample to fit the
experimental points are given in Table I. It is found
that

1 h1 increases with the carrier concentration, and
is higher for cs- than for p-type material of the same
carrier concentration.

0 O.l 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
M/(do

FIG. 4. The quantity rex' which determines the lattice thermal
conductivity LEq. (12)j, as a function of the reduced phonon
frequency x for diGerent scattering mechanisms and their
combinations.

0.05

o0.04
Geissi&5 n-TYPE

0.03

0.05

2 Si B fl- T YP E

I I I + I I I I

300 400 500 600 700 800 900 1000 1100 1200
~ ('K)

FxG. 3. Experimental and theoretical values of the lattice
thermal conductivity of n-type Ge0, 2Si0.8 and Ge0. »Si0.85 alloys
as a function of the absolute temperature. The theoretical curves
were fitted at 500'K (=8); this determines the deformation
potentials [ s1.

IV. MSCUSSION

In order to determine which phonons contribute
dominantly to the thermal conductivity, it is useful to
plot the quantity rex' against the reduced phonon
frequency x; the contribution of the second term in
Eq. (12) is small. This is shown in Fig. 4for the different
scattering mechanisms involved and their combinations.
The lattice thermal conductivities are, according to
Eq. (12), proportional to the areas under the curves.
It is seen that the addition of phonon-electron scattering
to phonon-phonon and point-defect scattering reduces
the area by an appreciable amount. Point-defect scat-
tering cuts out the high-frequency phonons, while
phonon-electron scattering reduces the mean free path
of the low-frequency phonons. Most of the heat is
carried, therefore, by phonons of frequency co=0.1S+D.
This provides some justification for the use of a Debye
spectrum. Herring" has pointed out that the longi-
tudinal phonons undergo much less scattering by other
phonons than transverse phonons in the long-wave-
length limit, and that for the E processes, Eq. (1) is
valid. If this limit still applies in our case, then the heat
is predominantly carried by the long-wavelength
phonons and the use of Eq. (1) is justified. Moreover,
since the combination of phonon-electron and phonon—
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TABLE II. Information on deformation potentials.

Type

dEg/d In V

Material

Gep, 3Sip.p

Si
Si
Si
Si
Si
Si
Si
Si

Gep 3Slp, v

Si
Si
Si

Gep 3Sip 7

Si
Si

sg (eV)

~1.6.
—1.80b

~ ~ ~

—3.9'
1 7k

1 2I
—2.09

&0.4 or 2.8
+0.3
+1.5

8& (eV)

~ ~ ~

9.57
8.3&0.3
8.7

11.3&1.3
8—11
+11

~ ~ ~

3.74/4. 92
2.04/2. 68

&5

Method

Thermal conductivity
Theory'
Piezoresistance, piezo-Hall eGect'
Piezoresistance'
Piezobirefringence'
Older valuesg
Elastic constantsh
Mobility~
Mobility anisotropy"

Thermal conductivity
Theory'
Piezo-cyclotron resonancem
Elastic constants"

Thermal conductivity
Theory'
Optical absorption'

a For the most lightly doped sample n =2.3 )&10» cm '.
b Calculated for the symmetry point X, not for 6,.
e Reference 31.
~ Reference 33.
e M. Asche and W. Mohling, Phys. Stat. Sol. 3, K225 (1963).
& K. J. Schmidt-Tiedemann, Proceedings of the International Conference

on the Physics of Semiconductors, Exeter (The Institute of Physics and the
Physical Society, London, 1962), p. 191.

g References given in Ref. 33.

h Reference 18.
I Assuming F2 =8.3 ev and using Fig. 6 top of Ref. 29 {1957).
& Reference 32.
& Assuming Fg =8.3 ev and using Fig. 6 bottom of Ref. 29 (1957).
1 Extrapolated for a lightly doped sample of n =2.3 )&10'9 cm g.
m J. C. Hensel and G. Feher, Phys. Rev. 129, 1041 (1963).
& Reference 19.
o Reference 34.

point-defect scattering dominate at all frequencies the
results are not sensitive to the assumptions made for
T+ and 7+.

It is attempted now to determine the physical mean-

ing of the deformation potential as deduced from the
thermal conductivity measurements. In a cubic crystal
the deformation potential tensor has two independent
components": 81, the dilatation deformation potential,
governing longitudinal mode scattering and h2, the
shear deformation potential, governing transverse mode
scattering. Electrons interact both with longitudinal
and transverse phonons. " If, however, as indicated
above, the phonons with the longest mean free path are
the longitudinal phonons, then it is sufhcient to use
Ziman's" expression for the phonon-electron relaxation
time, which was derived for the case of longitudinal
mode interaction only, and the deformation potential
given in Table I is the dilatation deformation potential

Information about the deformation potentials in
Ge-Si alloys is not available. Since we are dealing with
alloys high in silicon content, and since the band
structure of these alloys is very similar" '0 to the band
structure of silicon, a comparison is made in Table II
with the available deformation potentials for silicon.
The agreement among the different literature values
given for 82 is excellent; the elastic constant measure-
ments"" result in slightly higher values. Less reliable

~ H. Brooks, in Advances in E/ectronics and I'lectron Physics,
edited by L. Marton (Academic Press Inc. , Net York, 1955),
Vol. 7, p. 153.

~ C. Herring and E. Vogt, Phys. Rev. 101, 944 (1956); 105,
1933 (1957).

'0 F. Bassani and D. Brust, Phys. Rev. 131, 1524 (1963);H. R.
Braunstein ibid. 130, 869 (1963).

values are available, however, for b1, due to the diK-
culty of direct experimental determination of this
quantity. In view of this, the agreement of our values
with the theory, " and with the values derived from
Tnobility" and mobility anisotropy" by using the curves
given by Herring and Vogt" and assuming" 82= 8.3 eV,
is satisfactory. It is, of course, not possible to determine
the sign of 81.

By combining the dilatation deformation potentials
of n- and p-type material, the volume dependence of
the energy gap,

dEg/d lnV= hr„—Sr~, (26)

3' I. GoroG and L. Kleinmann, Phys. Rev. 132, 1080 (1963).
"R.A. Logan and A. J. Peters, J. Appl. Phys. 31, 122 (1960).
~ J. E. Aubrey, W. Gubler, T. Henningson, and S. H. Koenig,

Phys. Rev. 130, 1667 (1963).
34 W. Paul, J. Appl. Phys. Suppl. 32, 2082 (1961).

can be obtained. This quantity is accessible from optical
measurements; the value determined by PauP4 is com-

pared in Table II with the values derived by combining
81„and h1„given in Table II.

The advantage in the use of alloys over that of
elemental or compound semiconductors has to be
stressed. The strong point-defect scattering of short-
wave phonons in the alloys reduces the problem to the
long-wavelength limit. This has very desirable conse-
quences: A number of assumptions are better fulfilled

LDebye spectrum, the use of Eq. (1)g, the additional
point-defect scattering introduced by the dopant can
be neglected, and finally, it is possiMe to determine the
dilatation deformation potential 81.

The increase of the deformation potential with doping
is shown in Fig. 5. It is seen that

~ h~ increases as ns 4
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and m" for p-type and n-type alloys, respectively. The
slope seems to be independent of alloy composition;
the result for Gep. 2Sip. 8 and Gep, ~~Sip.85 follow quite
closely the curve for Geo. 3Sio i. No values of

~
8~ can be

obtained for carrier concentrations smaller than 2)&10"
cm ', but it is expected that in this region

~
h

~

is inde-
pendent of n. An indication of the carrier concentration
dependence of

~

h
~

shown in Fig. 5 can also be found in
the analysis'4 of the change in mobility with doping.
Furthermore, a similar effect with a similar power of n
was observed by Csavinszky and Einspruch" for the
shear deformation potential in p-type silicon from
measurements of the elastic constants. The explanation
offered by these authors is likely to apply also for the
dilatation deformation potential, namely: (a) warping
of the bands and (b) change in the band structure with

doping. An additional possibility (c) is the dependence
of the deformation potential on wave vector; this means
that the deformation potential approximation, which
assumes all states of a particular band to shift by the
same amount under strain, is not valid any more for
high-carrier concentrations.

The effective masses used for the calculation in this

paper are based on the single-band model for the valence
band, and no attempt was made to include the change
of m* with doping. This, however, does not affect
seriously the observed increase of

~
h~ with doping

(Fig. 5). In the n-type material estimates were made on
the sensitivity of the results on m*. It turns out that the
changes of m* with doping" are not able by far to
account for the observed effect. The same probably
holds for p-type material. Csavinszky and Einspruch"
have allowed for a 3-band model in p-type silicon and
have modified the effective masses to take into account
the nonparabolicity of the bands. However, this did not

' M. Cardona, W. Paul, and H. Brooks, Helv. Phys. Acta 33,
329 {1960};I. K. Howarth and J. F. Gilbert, J. Appl. Phys. 34,
236 (1963).

n-TYPE Ge3SI7
&- TYPE GepSIS
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change significantly the apparent dependence of
~

B~

on n. It seems that at least in n-type material the de-
pendence of the deformation potential on wave vector
(c) is the dominant mechanism for the observed effect,
because of the weak dependence of m* on doping. "A
breakdown of the deformation potential approximation
should also show up in the measurements of physical
properties under applied strain. Further studies in this
direction are in progress.
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FIG. 5. The deformation potential required to 6t the theoretical
curves in Figs. 1, 2, and 3, as a function of the carrier
concentration.


