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In the presence of anisotropic interactions the spin-wave dispersion parameter S(T) acquires an aTsI de-
pendence in addition to the bT51 dependence due to isotropic exchange. We have used Van Vleck's anisotropic
exchange, and the largest effect consistent with the magnetocrystalline anisotropy of a cubic ferromagnet is
found to come from the pseudodipolar coup1ing. While the anisotropy appears only in the second order of
perturbation theory, there is a 6rst-order contribution to $(T) which varies as the third power of the mag-
netization, itself a function of temperature. Thus a =C(gPEXg /ksT, )'~, where C is the coeKcient in the
Bloch law, Hz is the pseudodipolar contribution to the anisotropy 6eld, and 1, is the Curie temperature.
The coefFicient a depends upon the direction of spin-wave propagation and averages to zero over a sphere. In
a erst approximation, then, there is no 1 term in the magnetization. In an experiment dealing with selected
propagation directions, such as spin-wave resonance or inelastic neutron scattering, since b =C/T„an effect
important when T/T, & (gPHz /kaT, )"is predicted.

I. INTRODUCTION

~

~

~

~

~

PIN-WAVE interactions are most conveniently
studied by measuring the temperature dependence

of the spin-wave energy. ' For long wavelengths this
energy varies quadratically with wave vector ir; the
cleparture at temperature T of the constant of pro-
portionality or exchange para, meter $(T) from its value
at T=O'K measures the average interaction of the
mode under study with the thermal population of
elementary excitations (magnons, phonons, conduction
electrons). The interpretation of experimental results
relies upon the existence of an inventory of behaviors
(dependences on temperature) predicted for various
models. The purpose of this paper is to call attention
to an item which should be included in this "catalog"
and to show that it might be very important.

The catalog of possible contributions to the tempera-
ture dependence of X)(T) is reviewed in the next section,
where particular attention is drawn to the occurrence
of terms proportional to T'12. At sufficiently low tem-

peratures such terms are the dominant ones, but in
that region the difference between X)(T) and. X)(0) is

often immeasurably small. This situation is illustrated

by consideration of the magnetocrystalline anisotropy,
whose influence is usually obscured unless kn T —12gPHg,
where Hz is the effective anisotropy field, k& is Boltz-
mann's constant, g the spectroscopic splitting factor and

P the Bohr magneton. In Sec. III we discuss K)(T) for a
model in which there is an underlying interaction
"inefFicient" in producing the magnetocrystalline aniso-

tropy; a cubic ferromagnet with anisotropic exchange as

*A report of this work was given at the meeting of the American
Physical Society, January 1964 LBull. Am. Phys. Soc. 9, 112
(1964)j.' Experimental techniques include spin-wave resonance; R. E.
Weber and P. E.Tannenwald, Phys. Chem. Solids 24, 1357 (1963),
inelastic neutron scattering; M. Hatherly, IC. Hirakowa, R. D.
Lowde, J. F. Mallett, M. W. Stringfellow, and B. H. Torrie,
J. Appl. Phys. 35, 892 (1964) and Proc. Phys. Soc. (London) (to
be published), parallel pumping; R. C. LeCraw and L. R. Walker,
J. Appl. Phys. 32, 167S (1961) and discussion by C. W. Haas,
Phys. Rev. 132, 228 (1963).
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a perturbation to the isotropic exchange. ' Here a T'1'
term arises in the temperature dependence of $(T)
which is important if T/T, —(t PH~D/hnT, )'~', where T,
is the Curie temperature and B~~ originates in the
pseudodipolar part of the perturbation. We conclude in
Sec. IV with the suggestion that the behavior predicted
by this model may be worth looking for whenever a T'I'
dependence of 50(T) is observed.

Q. TEMPERATURE DEPENDENCES OF THE
EXCHANGE PARAMETER

In a pair of classic papers Dyson' proved that the
interaction between spin waves in an ideal three-
dimensional Heisenberg ferromagnet has an extremely
small effect on the low-temperature thermodynamic
behavior. Long-wavelength magnons pass almost un-
disturbed through the thermal excited spin system, and
the interaction yields a correction to the Bloch law for
the magnetization, M (0)—M (T) =CM (0)T' ', Iwhose

leading term is proportional to T4. Equivalently, the
exchange parameter decreases with increasing tempera-
ture as T'1' because of the interaction. A clear physical
interpretation of Dyson's result has been presented by
Keffer and Loudon, ' who explained that for an isotropic
nearest-neighbor exchange coupling the spin-wave

energy depends on the average angle between neighbor-
ing spins rather than on the average angle between the
spins and the magnetization. The latter dependence is
the interprets, tion of the spurious T' term )equivalent
to $(T) ~ Ts~'] obtained by many authors. 's

Mattis and Horwitz' have, on the other hand, re-
cently shown that the excitation of spin waves shields
the eGects of the transverse components of the spin
vectors beyond a temperature-dependent "Debye
length" Rs(T) (cc T 'I'). Thus Dyson's result must be

'This is a well-known special case of the anisotropic exchange
introduced by J. H. Van Vleck, Phys. Rev. 52, 1178 (1937).

s F. J. Dyson, Phys. Rev. 102, 1217, 1230 (1956).
~ F. Keffer and R. Loudon, J. Appl. Phys. 32, 2S (1961).
~ See preceding references and references cited therein.
6 See D. C. Mattis and L. P. Horwitz, Phys. Rev. Letters 10, 511

(1963) and references therein.
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modified if there is appreciable exchange between
distant spins. For the long-range part of the exchange,
a T'~' dependence of the spin-wave energy obtains,
because it depends on the average angle between the
spins and the magnetization.

But if attention is restricted to short-range exchange,
a T'~' dependence of the spin-wave energy will still exist
because of the magnetocrystalline anisotropy energy,
which is sensitive to the average angle between the
spins and the magnetization. It has been noted' ~ that
this is the nature of the power-law dependence of aniso-

tropy on magnetization which may be written'

where E„ is the anisotropy coefFicient associated with
spherical harmonics of degree e. The result expressed
by Eq. (1) deals only with the k-irIdependeet part of the
spin-wave energy which originates in the anisotropic
part of the Hamiltonian. Of course, it is only the
k-dependent part of this energy which can be regarded
as modifying X)(T). A relation like Eq. (1) may be
expected to be valid for this part too, and, at least for
the case treated here, this is so (see the Appendix).
Perhaps it is appropriate to emphasize here that the
k-independent part competes only with the internal
magnetic field and that this competition is part of our
everyday experience with magnetic materials. On the
other hand, the k-dependent part of the anisotropy
energy is surely eclipsed by the exchange and only be-
cause its temperature dependence is expected to be more
important than that of the exchange energy is it treated
here.

To be complete, the temperature dependence of
R(T) due to interaction of spin waves with phonons and
with conduction electrons should be mentioned. These
were recently discussed by Izuyama and Kubo, ' who
found that K)(T) has a term proportional to T' as the
leading effect of the conduction electrons and one
proportional to T4 as the leading effect of the phonons.
If no T'~' term arises from magnon-magnon interactions,
then the magnon-electron interactions should dominate
in metals at low temperatures.

III. ANISOTROPIC EXCHANGE IN A
CUBIC CRYSTAL

The model which we discuss is that of anisotropic
exchange introduced by Van Vleck. ' He showed that
such anisotropic interactions as arise in a multipole
expansion of the coupling between local spins could be
responsible for the directional dependence of the energy,

' T. Oguchi and A. Honma, J. Phys. Soe. Japan 16, 79 (1961).
C. Zener, Phys. Rev. 96, 1335 (1954); J. H. Van Vleck, J.

Phys. Radium 20, 124 (1959); H. B. Callen and E. R. Callen,
Phys. Chem. Solids 16, 310 (1960).' T. Isuyama and R. Kuho, J. Appl. Phys. 35, 1074 (1964).

i.e., magnetocrystalline anisotropy, in a cubic crystal.
The various terms in such an expansion are named
pseudodipolar, pseudoquadrupolar, and so on, with
obvious reference to their form. These are treated as
perturbatious to the isotropic exchange. The range of
interaction is, as for the isotropic exchange, commonly
limited to nearest neighbors, and the strength of the
interaction is essentially left to be determined by com-
parison of the calculated and experimental values of the
E . The model suffers in a number of respects when
confronted with the properties of real metals. " It never-
theless survives because it could apply to some non-
metallic materials and also as a mathematical model
whose properties have been subject to considerable
theoretical investigation in order to enhance our
understanding of the behavior of real materials.

The complete Hamiltonian is

&F.x+&z+-&a+&q+

The exchange energy is given by

BEx=—J g " S,'S;,i'
where 2J is the exchange integral, S; is the spin vector
attached to site i, and the sum is restricted to nearest-
neighbor pairs (n.n.). The energy associated with the
applied field H is

ez= —MPH P;S;.
Only the 6rst two anisotropic terms of Van Vleck's
multipole expansion have been explicitly included, the
dipolar term

Bg)=s Q D„.(S"SJ—rg (r"S')(rv'St)), (5)

and the quadrupolar term

1Q Pn.n. r. .—4(r, S,)s(r.t, S.)s

Here r;j is the vector connecting sites i and j. The
coeKcient in the dipolar term is

(7)

where I is the nearest-neighbor distance. The r ' de-
pendence of D;; is the contribution of the magnetic
dipolar coupling. The anisotropic exchange between
nearest-neighbor spins is measured by the pseudodipolar
and pseudoquadrupolar coupling constants D and Q.

The calculation of the low-lying states of this
Hamiltonian is most conveniently made by first neglect-
ing the long-range magnetic coupling. The spin-wave
energy levels, to first order in the quadrupolar and
second order in the dipolar coupling constants, may be

' F. Keffer and T. Oguchi, Phys. Rev. 117, 718 (1960); R. J.
Joenk, Phys. Rsv. 130, 932 (1963).
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expressed as

E=F(H)+ VEi(0) I'4+Qg isgei-, (T), (8)

where F(II) is a fie1d-dependent ground-state energy, V
is the sample volume, Ei(0) is the first cubic anisotropy
constant with contributions proportional to Q and D'/J,
e~ is the number of spin waves excited of wave vector
k, and eq(T) is the energy per spin wave, in whose tem-
perature dependence may be embodied the eRects of
spin-wave interactions. The anisotropy constant multi-
plies a function of the direction cosines of the magnet-
ization with respect to the crystal axes;

I i=rri Q!s +res mrs +crs Crt —s.
Inclusion of the magnetic dipolar coupling modihes

these results in a way first discussed by Holstein and
PrimakoR. " In particular, the spin-wave energy be-
comes, at T=O'K,

eq'(0) = (e~(0)—gPN. M(0)7
X (1—(gP4irM(0)/feq(0) —gPN, M(0) 7}sin'eq)'i',

(10)

where E, is the demagnetizing factor of the sample and
Hq is the angle between the direction of M (z) and k. For
k&T))gP4irM, Eq. (10) is also valid at finite tempera-
tures with M(0) replaced by M(T).7 Hereinafter, the
eRect of the magnetic dipolar coupling in the radical
will be disregarded. It is to be noted, on the one hand,
that it has a calculable effect and, on the other hand,
that it should be unimportant in the present context for
kii T))gP4rrM.

The quantities appearing in Eq. (8) have been
evaluated by various authors, " and, including the
surface demagnetizing energy, they are, at T=O'K,

F(II)=F, gPNSPB N.M(0—)7 NJZS—s, —

is just a constant, Z is the coordination number of the
lattice,

ya —=Z-' Q i cos k I,

where the I's are the nearest-neighbor vectors and

& = —i%1—3(l./I)'7.

(15)

(16)

We hasten to point out that the term involving I'» in
eq has actually been calculated for k&0 in the quad-
rupolar case only. It is the k-independent part of this
term which has been used in proving the application of
Eq. (1) to these anisotropies (v=4). For the pseudo-
dipolar case we have estimated that the k-dependent
part will be approximately the same as in the quad-
rupolar case and since only the order of magnitude is
significant, we have assumed. that result in Eq. (13).

Because of the cubic symmetry

Pi Bi=0,

so that the last term in Eq. (13) contributes only to the
k-dependent spin-wave energy. In the long-wavelength
approximation, with a the lattice constant,

Z(1—yi,)=k'a'

The spin-wave exchange energy becomes

e~~+(0) =2SJk'a'—= $(0)k'.

2Ei(0)
IIg (0)= Ei(0)=

gPNS M(0)
(20)

Compared with this term, the other k-dependent spin-
wave energies are commonly neglected. Defining the
anisotropy Geld

15 SSD'
VEi (0)= NS4QS'(S '—)' S4—-—

15 16 ZJ

e!,(0)=gPLH —N,M (0)7+2SJZ(1—yq)

V
Ei(0)t 10—4(1—y!,)71'4

XS

(12) the total spin-wave energy for ka«1 is

e!,(0)=gPLB—N,M (0)—SII~ (0)I'47

gPII (o)
+$(0) 1+ I'4 k' —Spilt(k I)'. (2l)

ZJS

+2S Q i F.t cos k l. (13)

Here, E is the total number of atoms in the sample, each
with spin S,

S4= 6/5, 16/15, 3/5 (14)

for the simple cubic (sc), body-centered cubic (bcc),
and face-centered cubic (fcc) lattices, respectively, Fe

"T.Holstein and H. Primakoil, Phys. Rev. 58, 1098 (1940).
Also see C. Herring and C. Kittel, ibid 81, 869 (1951)..' See Ref. 10 and references therein; also an excellent review of
the entire subject of spin waves which has been prepared by F.
Kefter for publication in the FXamdbuch der Physik, edited by
S. Fliigge (Springer-Verlag, Berlin, to be published).

In the last term, cos k I has been expanded to 1——.
', (k 1)'

and Eq. (17) invoked. At finite temperatures, but with
constant volume, eq(T) is given by Eq. (21) and M(0)
replaced by

V /kiiT, ) si' T
M(T)=M(0) 1—0.306 i i

—,(22)
Nsl'k ZJS j T.

K)(0) replaced. by

v u r. ~~2 r '~'-
n(T) = n(0) 1—0.234 —,(23)

ESP ZJS T',
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and. H~(0) replaced by

H~(T) =Hg(0) LM(T)/M(0)1'

S. H. CHA RAP

q
i/2

(kr» T,)gPHgn (0)
-20~ S»( S+1

—S P) E)(k 1)'= 8

V I~T, 3t2 T 3I2-

=Bg(0) 1—9X0.30» ( ) (
—

)
(24)

X (3 cos'8~ —1)k'a' (31)

where the radical has the sign of D and we have used
Eq. (25) to define T,. By analogy with the k-inde-
pendent terms, it may be expected that the temperature
dependence of this energy is as the third power of the
magnetization since its angular dependence is that of
the spherical harmonic of second degree. That this is
indeed so is shown in the Appendix. %e now multiply
Eq. (31) by

where T, may conveniently be defined by the molecular
field result

(25)kgT,/J= ', ZS(S-+1).

t M(T)/M(0)]'

V kggT 3~' T @'
= 1—3&(0.306 —— — . 32

Comparing the temperature dependence of this energy
with that of the exchange, we 6nd for the ratio of the
T'I' to the T'~' terms

I»t (S/5+1)ks T,gpHgo j'I'
8(3 cos'81,—1) (33)

kaT

Surely, gPH~(0)/ZJS((1. Still the temperature de-
pendence of the coefficient of k' in Eq. (21) will be
dominated by that of H~ if ki»T=12gPH~(0), which
usually occurs for temperatures below a few degrees
Kelvin. This is a rather insignificant effect.

No calculation of the temperature dependence of the
last term in Eq. (21) has been given. We notice first
that, if averaged over an isotropic distribution of k
directions, this energy vanishes. This means that, to a
first approximation, it has no thermodynamic con-
sequences. It also follows, then, that this energy can be
positive or negative depending on the direction of k.
However, since the sign of D is unknown, we cannot
predict for what directions the energy is, say, positive.
On the other hand, a means for determining the sign of
D is, in principle, available here. Vje ddine

(E')=ni2kx'+uPk-r'+u 'kz' (26)

where X, 7, and Z are the crystal axes. Then we
calculate,

1.95Z
p, =— -- -= 3.4 bcc

(2ofs, [) & .6.8 fcc.

(34)

—Sgi Ei(k I)'

2(3(E')—k'), sc
SD

a'&&~ 4(k, '—(E')), bcc

.-', (6k.'—k' —3(E')), fcc,

If the Curie temperature is a few hundred degrees and
H~ is a few ki)ooersted, then this ratio can be of the
order of unity for T=50'K'. Finally, when the ratio in

(27) Eq. (33) is much larger than unity, the T'I' term is
negligible and the k-dependent part of the spin-wave
energy may be described by X)(T)k', where

which depends on both the directions of k and M. It is
more convenient to discuss Eq. (27) as evaluated for
the magnetization along an easy axis of the anisotropy
((001) or (111)).Then

—S Qi E)(k}1)2=$(SD/4) (3 cos~8g —1)k2o2 (2g)

&(T)= &(0)LM(T)/M(o)3"

2S(S+1)gPH~o (0)"'I'
p=0.63@8(3 cos'8 —1)—

3 kgTc

(35)

(36)

with
(001) (111) IV. CONCLUSION

sc
bcc
fcc.

If we define the pseudodipolar contribution Lsee Eqs.
(12), (20)$ as

ESD' 2EP (0)
EP(0)=———,",S»- and H~n(0)=, (30)vs M(o)

The pseudodipolar coupling is "ineKcient" in pro-
ducing magnetocrystalline anisotropy in a cubic crystal,
the second order of perturbation being required. The
spin-wave energy resulting from this coupling in first
order is therefore measured by the geometric mean of
the pseudodipolar anisotropy and the exchange. This
unusual magnitude combines with a comparatively
fast temperature dependence (it varies as the third
power of the magnetization) to produce the dominant
variation with temperature of the curvature of the spin-
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vrave dispersion over a sufhcient range of temperatures
that it can be experimentally significant.

As an example we may discuss nickel. The expansion
of the anisotropic exchange for 5= 2 contains only the
dipolar term so that the anisotropy is entirely dipolar in
origin on this model Lsee Eq. (12)]. The lattice is
fcc with the easy axis along (111). Relevant param-
eters are" M(0)=508 6, Ki(0)= —7.5X10' ergs/cc,
g=-2. 19, JS=187kg, and the coefFicient in the Bloch
T'I law, C= 7.5X10 ' deg '~' The radical in Eq. (36)
is then 1X10 ', and therefore

Hamiltonian (5) may be written"

HD=Hs+H+++H +H++H
where

(A1)

Z Ei(SR'SRi+i 3SR' SR'+i ) (A2)

is the only term which does not change the total S, and,
therefore, contributes a first-order energy. To go over to
the spin-wave representation and obtain the correct
result for the interaction due to the isotropic coupling,
the Maleev transformation' is used:

py; =0.043 (3 cos'eg —1) (37) 5;,=5—b;*b;,

for M in an easy direction, and assuming D)0. Finally, S,p= 2S(1 b,eb—;/2S) b;,

5; =2Sb;*,
(A3)

SN;(T) = SN;(0)(1—3.2(3 cos'8~ —1)
X10 'T'I' —4.1X10 'T"i (38)

where

5;g ——5;,+i5;y and P.A*]=4.
where the coeKcient of the T'~'- term has been calculated
from Eq. (23). Notice that the Tsl' term is larger than
the T'~' term up to =150'K for ei, ——0. Also, up to
=80'K the S(T) increases with increasing temperature
for t)&

——rr/2. For a thermodynamic property, such as the
magnetization, the T"I' term in $(T) leads to a T'
dependence. The T'I' term has no eBect however, since
it averages to zero over the isotropic distribution of
k directions.

Experimentally, the temperature dependence of spin-
wave energies has been as thoroughly investigated for
nickel as for any other ferromagnet. In spin-wave
resonance, a T'I' term two orders of magnitude larger
than that calculated here was observed. " It has been
argued that the result is due to inhomogeneous mag-
netization and is not a measure of the "intrinsic"
temperature dependence. "In inelastic neutron scatter-
ing" only a T'" term has so far been measured, the
coeKcient of which is an order of magnitude larger than
that appearing in Eq. (28) above. The experimental
situation is by no means conclusive. We have already
pointed out that the anisotropic exchange model is not
to be taken literally for metals. In future work we
nevertheless suggest that, if a T"' dependence of the
spin-wave energy is observed, it should be checked for
a directional dependence such as is derived here.

APPENDIX

Our task is to show that the first order of the pseudo-
dipolar coupling energy varies, due to spin-wave
interactions, as LM (T)/M (0)]'. The pseudodipolar

"B.E. Argyle, S. H. Charap and E. W. Pugh, Phys. Rev. 132,
2051 (1963)."T.G. Phillips and H. M. Rosenberg, Phys. Rev. Letters 11,
198 (1963)."P. E. Wigen, M. R. Shanaberger, and C. I'. Kool, Phys.
Letters 7, 109 (1963).

's R. D. Lowde (private communication).

By a straightforward. calculation involving introduction
of the Fourier transforms bi„bi,*,

the result

b =N "P.fbi, exp( —ik R~),

b,*=N 'I 'gg -by*-exp(ik. R,),
(A4)

Ep ———EJZS',

$q
——2SJZ(1—yq)+2S Pi Ei cos k 1,

(A6)

(A7)

I'q, ,
t„"=(2N) ' Pt(J+2Ei) exp(ik 1)

XL1—exp(iki 1)]L1—exp( —iks 1)]
+3(2N) 'Pi Ei exp(ik l)

X Lexp(ikt. l)+exp( —ik, 1)]. (AS)

Equation (AS) is the strength of the spin-wave inter-
action to this order in the pseudodipolar perturbation.
The first term of (AS) originates in the isotropic spin
coupling, vanishes if k, or k. is zero, a,nd leads to the T'~'

dependence of the spin-wave energies. It is the source
of Eq. (23) of our text and is now dropped from this
discussion. The second term of (AS) comes from the
Ising term of H' and vanishes only if k, ki, and ks
vanish simultaneously. In first order there is a contribu-
tion from this term only if k= 0 or k= ks —ki (note that

'r S. V. Maleev, Zh. Eksperim. i Teor. Fiz. 33, 1010 (1957)
[English transl. : Soviet Phys. —JETP 6, 776 (1958)j; R. A.
Tahir-Kheli and D. Ter Haar, Phys. Rev. 127, 95 (i962). It should
be emphasized that, except for S=-,', this transformation is not a
true representation of the spin operators. The Holstein-Primakoff
representation" would serve as well. However, it does not yield, in
as simple a way, the correct spin-wave interaction term resulting
from isotropic exchange. See T. Oguchi, Phys. Rev. 117, 117
(1960).

H'= Es+Zs bs*bsks
—Qi, , g, , g, I'i„,g, "bg,+g*bg, g*bg,bg, (AS)

is obtained. If the isotropic exchange )Eq. (3)] is
included,
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I"q, , q, ~' "'=I't„,q,o=I't„,q,o). The diagonal part of EP is proximation for both k and k', and making use of
therefore Eq. (17),

&a.s'=&o+Qt nt —2 Z~, ,t, nt,nt, l't, , ~,', (A9)

and the average energy associated with the excitation of
a spin wave is then"

where ( ) denotes a thermal average and to this order
the (nt, ) are uncorrelated. In the long-wavelength ap-

"See, for example, M. Bloch, Phys. Rev. Letters 9, 286 (1962).

&&= &t,
—(6/X)P (nz )Qt Et cos k I, (A11)

or, using Eq. (A7),

h= 2SJZ(1—yg)
+2S P~ E~ cosk 1[1—(3/NS)gt, (nt, )]. (A12)

Noting that [M(2')/M(0)]"=[I —(n/XS)gg (ni.-)],
we have shown that the first-order pseudodipolar
coupling energy varies as [3II(T)/M(0)]'.
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Ultrasonic Attenuation in Metals in the Fluid-Dynamic Approximation*

L. H. HAr. L

Unioersity of California, Santa Barbara, Cagfornia
(Received 29 June 1964)

Ultrasonic attenuation in metals has been discussed from diverse points of view, and for the most part the
derived attenuation formulas reduce in the first-order low-frequency limit to the viscous dissipative expres-
sion originally proposed by Mason. Ke undertake here a treatment for the low-frequency range which makes
immediate contact with the transport-theory formalism of classical gases. "Fluid"-dynamic equations for the
metal are formulated. For the electron-gas component a complete set of transport coeKcients, including the
several diffusion coeAicients, is derived in a unified way on the simplifying assumption of a constant relaxa-
tion time. The acoustic attenuation coefFicient for a longitudinal wave is deduced; the dominant term is of
course the shear viscous one, but thermal and diffusion effects are also explicit.

INTRODUCTION

OTIVATED by the problem of ultrasonic attenu-
ation, we develop "Quid"-dynamic equations for

a metal in a manner parallel to that employed for a
mixture of classical gases. ' We take as a two-component
model a free-electron gas coupled to an elastic ion con-
tinuum by an electromagnetic field and by collision.
From the Boltzmann transport equation, Quid-dynamic
equations and a complete set of transport coeKcients
are derived for the electron gas in a unified way; thus
the various diffusion coefFicients are included. For the
present purpose a constant-rate relaxation term suffices
for the collision integral, and we are content simply to
postulate isotropic continuum equations for the ions.
The equations for the two components are combined
into a simplified set for the system as a whole. This, in
conjunction with the equation for the relative motion of
the electrons and the Maxwell equations for the associ-
ated electromagnetic 6eld, determines the behavior of

*Part of this work was performed at The University of Cali-
fornia, Los Angeles, with support by the U. S. Once of Naval
Research Contract N6 onr 233 (48), Project NR014-302.' J. O. Hirschfelder, C. F. Curtiss, R. B.Bird, Molecular Theory
of Gases and Liquids (John Wiley R Sons, New York, 1954),
Chap. t|; S. Chapnan and T. G. Cowling, The Mathematical
Theory of Eon uniform Gases (C-ambridge University Press,
Cambridge, F.ngland, 1952).

the model. Finally, we consider the propagation of a
longitudinal-plane acoustic wave and compute the
attenuation coeKcient.

FORMULATION OF MACROSCOPIC EQUATIONS

The electron-distribution function f(r,v, t) obeys the
Boltzmann transport equation

-8 cl F 8- r)f
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where symbols have their common meanings. When dis-
tinction is needed, indices 1 and 2 will be used to denote
electrons and ions, respectively. Let f(v) be a particle
property which is a function of velocity. According to
standard transport theory, ' (1) is multiplied by P(v)
and integrated over velocity to obtain the equation of
change for the mean value (ib):
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Here n& is the electron-particle density. We assume the
electron and ion densities are equal. A,(f) is the rate of
change of P per unit volume due to collisions; F has been


