
P H YSI CAL REVIEW VOLUM E 136, NUM 8 ER 4A 16 NOVFM HER 1964

Derivation of the Dirac Vector Model for a Solid
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A cluster expansion derivation of the Dirac vector model, which has important applications in the theory of
ferromagnetic and antiferromagnetic materials, is given for the case of a solid with a wave function which is a
linear combination of Slater determinants, each corresponding to a diferent spin configuration. It is assumed
that the single-particle wave functions are nonorthogonal, with one particle per lattice site. It is shown that
there is no "nonorthogonality catastrophe" and that Carr's condition for the validity of the vector model
applies in this case, as he has conjectured. Expressions are given for the direct energy and exchange integral.

I. INTRODUCTION

M NE of the most useful techniques in the theory of
ferromagnetic and antiferromagnetic substances is

that of the Dirac vector model. In this formulation the
energy of the solid is given by finding the eigenvalues
of the effective spin Hamiltonian,

&s=Eo—Z 4,(&',")s.

The spin permutation operator for particles i and j is

(P;, ")s———',(1+u; uJ);

e; and e; are the Pauli spin matrices. The "direct"
energy Eo is the expectation value of the system Hamil-
tonian obtained without antisymmetrizing the wave
function; J;; is called the ".exchange" integral. The
eigenfunctions of Eq. (1) can be taken to be linear
combinations of products of single-particle spin func-
tions. (Spin-wave theory, for example, approximates
these eigenfunctions. )

If the number of particles S is a very large number,
and if the single-particle wave functions are not orthogo-
nal, there is difhculty involved in the justification of
Eq. (1). Analyses of this problem have been made by
Van Vleck, ' Carr, ' and Mizuno and Izuyama. ' In Sec. II
we will show that the energy is the ratio of two poly-
nomials in S.The resolution of the diKculty introduced

by this apparent breakdown of the energy expression,
the "nonorthogonality catastrophe, " rests on the fact
that these polynomials cancel one another in a way such
that the energy is actually of order X.Van Vleck was able
to demonstrate this in several special cases. Carr gave
conditions under which the energy took the vector model
form when the wave function was a single Slater deter-
minant. There is no apparent reason, as Carr argues,
why similar conditions should not hold for a sum of
Slater determinants. However, he did not show this
explicitly. We will use a cluster expansion technique to
demonstrate that Carr's conditions for the applicability
of the Dirac vector model do indeed hold for a wave

function which is a sum of Slater determinants. Mizuno
and Izuyama show that no "nonorthogonality catas-
trophe" occurs in the general case, but do not give an
explicit series development for the energy as we shall
do. This problem has also been treated in a different
way by Arai. '

II. ENERGY EXPECTATION VALUE

We consider a Hamiltonian of the form

&= Z & (V)+ Z &s(V,6)

The E particles described by this Hamiltonian may
be the electrons responsible for the magnetic behavior
of the solid, or they may be the nuclei which give
rise to a nuclear magnetism, as in the case of solid
He'. In either case each particle will be localized about
a lattice site with one particle per lattice site. If Eq. (2)
describes electrons, then Hr(y) and Hs(y, h) will each
contain a dependence on the lattice site positions be-
cause of nucleus-nucleus and electron-nucleus Coulomb
interactions.

A suitable trial wave function for the Hamiltonian (2)
is a linear combination of Slater determinants made up
of single particle spatial wave functions, p;(x ) (i.e.,
particle n is localized about lattice site i), and single-
particle spin functions $„,.(n), where p; is +1or —1 if the
spin of particle n is up or down, respectively. Let the
set p&, p&, p& be designated simply by p, with no
subscript, Then the wave function is

@=+A„C„(x),

where normalization requires P„~A„~ '= 1.The symbol
x stands for the X space and spin variables. We have

(4)

' J. H. Van Vleck, Phys. Rev. 49, 232 (1936).
~ W. J. Carr, Phys. Rev. 92, 28 (1953).' Y. Mizuno and T. Izuyama, Progr. Theoret. Phys. (Kyoto)

22, 344 (1959).

Thus, the sum over p is a sum over all spin configurations.

4 T. Arai, Phys. Rev. 126, 4"11 (1962); 134, A824 (1964).
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We can also write (4) as a sum of permutat&ons,

where

C' (x)=III'(x)4;(i).

nates. Thus we have

Q(—1)& Q A„*A„C~o*(x)H(P,C„o(x))dx
IF PoP

Q(—1) ~ Q A„*A„C„o(x)(P„C„.o(x))dx
I

Y PoP

s the article states, ~.e.,The operator P„ interchanges . p
p t'1' d' . It can be written as a pro ucuctofas aia

permutation operator an a spin
P . The sum over v is a sum over a possi eoperator

s bein the "parity" ofpermu armutations of the X states, p„emg
the vth permutation.

The energy expectation value is

4*(x)H@(x)dx @*(x)+(x)dx.

~ dx .The integration also impliesWe have let dx= dx& ~ xs. '
g

a summation overt er all spin coordinates. Using q.

g A„*A„C„*(x)HC„(x)dx
P~P

P A„~A„C„*(x)C„(x)dx

we can show that

E(—1)"" A'(P.

ohio)dx(P.

s)
V

ve se arated P„ into spatial and spsn parts
d P ) is the expectation

erator i.e.,value of the spin permutation opera

P s = 2 L(E A. TI 4;(i)}*P.s(Z A. II 4; (i)}3
SP1Q P

. q6& it can be seen that E is the ratio of two
iV. This is clear rompolynomials in )V.

'
1

ider the following:

h'h h t oft

es of two other particles are exc ange; an
kd f the energy expres-on. It as t is app

d h hIzuyama, an r
'

d A ai have discussed, an w ic
mentioned in Sec. I.

C„*(x)C„.(x)dx W! C „o*(x)C „(x)dx

C „*(x)HC„(x)dx 1V! C „o*(x)HC„.(x)dx
III. THE CLUSTER EXPANSION

e follow the procedure of IwamoI;ooI;o and Yamada'
1' ed normalization integral, "and introduce a "genera ize

which we de6ne by

IN(P = — "
o)=z.(—1)& y *ss"(P.ohio)dx&P„s),

h ofin Ref. 2, this follows because each

since B is assumed symmetric in the particle coor i-

E= (8/BP) lnI~(p) I s o.
))

D th "subnormalization ~ntegrals,Be ne e s

le= (V I f(1)f(2)g(»2) ( Iii) —
I ii) &(P'~")s)},

)&(

—like) &(P"' .; ").)+ I »)&(P'.'"')s)+ l»i) &(P';"")s)},
~ ~ ~

I' -'.=2(—1)""(i~" i.
l f 1(1) f(~) II g(v, ~)P.o l4 i.)&P.s),

i k — ik P; '~")s) I kj i) ((Pa ")s)—I;;a= (ijk I f(1)f(2)f(3)g(1,2)g(2,3)g(3,1)( liyk) —
I gi

(1)= exp(PH~(1)), g(1,2) = exp(PHo(1, 2)),

o. K oto) 17, 543 (1957); 18, 345 (1957).d M Y mada Progr. Theoret. Phys. (Kyoto'F. Iwamoto and M. ama a,
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3,Dd, fol example,

(ijl f(1)f(2)g(1,2)f lij) I ji)((P'i'*')s&}= P (1)P; (2)f(i)f(2)g(1,2)&P;(1)g,(2)—P, (1)P;(2)&(P;,")s&}dx,dx, .

&(P;;&')s), is the expectation value of the spin permutation operator for particles i and j.
Using the subnormalization integrals, we define the cluster integrals,

X;=I;, Xg I@ ——X;X—;, X;;s=Igs X;;X—s X;sX—:, X;sX—; X~g—Xs, etc.
We find

x'= (il f(1) I i)

X' = (ijl f(1)f(2)k(1,2) lij) —(ijl f(1)f(2)k(I») I ji)&(P'~''*') s&
—(ijI f(I&f(2) I ji)((Po")s&

X;;g,——(ijk I f(1)f(2)f(3)k(1,2)k(2,3)k(3,1)
I
ijk)

+(ijk I f(1)f(2)f(3)Lk(1,2)k(3,1)+k(1,2)k(2,3)+k(2,3)k(3)1)]I
ijk)

(ijk—
I f(1)f(2)f(3)g(1&2)Lk(2,3)k(3,1)+k(2,3)+k(3,1)]I jik) &(P,,")s)

—(ijk If(I)f(2)f(3)g(»3)Lk(1 2)k(3»)+k(I»)+k(3 1)]likj)&(Pis")s&
—(ijk I f(1)f(2)f(3)g(3,1)Lh(1,2)h(2 3)+k(1,2)+k(2 3)]I

k ji)&(P;ss') s&

+(ijk I f(1)f(2)f(3)g(»2)g(2 3)g(3 1)
I jki)&(P "s' ') s&

+(ijk I f(1)f(2)f(3)g(»2)g(2 3)g(3 1) lkij)((Pvss")s&, (ri)

where
kb, 3)=g(7,~)-1.

We note that terms containing more than one factor of h(y, 8) =exp(pPs(y, 8))—1 will not contribute to the final

result whose derivation will involve taking the p derivative of each term followed by setting p=0. Thus, we keep
only terms which are zeroth and first order in P, and we have

Xv.= —(ijk I f(1)f(2)f(3)Lk(2, 3)+k(3,1)]I jik) &(P ~")s)—(ijk I f(1)f(2)f(3)Lk(1,2)+k(3,1)]Iik j)&(P;s"')s&
—(ijk I f(1)f(2)f(3)L'k(1,2)+h(2, 3)]I

k ji)((Pa")s)
+(ijk I f(1)f(2)f(3)LI+k(ii 2)+k(2,3)+k(3,1)]I jki) &(Pgk"') s&

+(ijk I f(1)f(2)f(3)Li+k(1,2)+k(2,3)+k(3,1)]I
k ji)&(Pgs ")s& (10)

Note that Eq. (10) contains no direct energy terms.
Indeed, we can prove a theorem stating that a general
n-index cluster integral X.;,...;„(e)2) contains only
terms which are eth and (e—1)th order in the "overlap
integral" S;,=J'g, *(1)P,(1)dxi if we consider only terms
of zeroth and first order in P. We will also show that the
terms which are (e—1)th order in S;;are also first order
in P. If the wave functions g;(x ) are sufFiciently local-
ized, the overlap integral S@will be small (iA j) and the
cluster integrals will form a converging sequence. We
will use this theorem in the remainder of this section,
but delay proof of it until Sec. IV.

Iwamoto and Yamada, ' and also Wu, ' show that

1~(p) =g X;e',

G=-' p ~"—x p x"s—x g *;x,
(~.j) (~,j) (~,j,&)

1
+-'. Z *;;s+—Z ~;;si+ . , (12)

(~.~,&) 24 (s,~'. &.&)

and x;;=X;;/X;X;, etc. The parentheses on the sum-

' F. Y. Wu, J. Math. Phys. 4, 1438 (1963).

mation indices in Eq. (12) mean omit those terms froni
the sums for which two or more indices are equal. To
find the order of magnitude of the terms in this series
we must demonstrate two points: (a) All indices in a
term of the cluster expansion (12) are "linked" or "con-
nected" to one another. This "connectedness" means
that the sums over the indices of an expansion term are
not independent of one another. When summed over all
indices the term will then be of order X, and there will

be no "nonorthogonality catastrophe. " In the next
section, while demonstrating the theorem mentioned
above, we will prove a lemma which states that all
indices of a given cluster integral X, or equivalently, of
an x, are connected either by exchanges or by an k(p, 5).
However, many terms in the cluster expansion are
products of a number of x's. Wu' has shown that the
indices of these product terms are connected by having
indices in common, as the index j is common to both x's
in x;;x,s. (b) From the derivation of Iwamoto and
Yamada (or of Wu) it is evident that succeeding groups
of terms in the expansion (12) have increasing numbers

of indices. Hence, they are of increasingly higher order
in the overlap integral S. For example, x;, has a term of
order S (which is also first order in P) and terms of
order S'; x;, which is considered to have four indices,
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has terms of order S' and 54 (dropping terms in Pz);
x;;~ has terms of order S' and S', etc, In general, then,
using our theorem, a term having n indices is of order
5" ' or higher (dropping noncontributing terms of order
p' or higher).

From (a) and (b) it is clear that when summed over
all values of the indices, an e-index term will be at least
of order ÃZ~Z2" 'S" ', where Z~ is the number of
particles in the range of Hz(y, b),and Zz is the number
of neighboring wave functions which have appreciable
overlap with a given single-particle wave function.
There is only one factor of X because the sums over the
indices are not independent. There is only one factor of
Zi because Iz(y, 8) is first order in P so each expansion
term can contain at most a single h(y, 8), or, equiva-
lently, a single Hz(y, (}).The factor Zz" '5" ' is a result
of the discussion in (b). If ZzS(1, the expansion for G,
and hence for E, will converge. If Z25((1, then the
vector model (1) is valid. These are essentially the con-
ditions of Ref. 2.

An expression for the exchange integral j;; can be
gotten from Eqs. (7), (11), and (12). Denoting differ-

(a) (}If(l) I}}

(bj (ijl f(I) f(2) h(1, 2) Iij) jO---- -OJ

(c) (ij I f(l) f(2)I ji)
FrG. j.. Examples

(dj(lj I f(l) f(2) h(I, 2}l ji)

trix elements.

(e) {ijkjf{l)f(2) f(s) I jki}

lf ~ nJ

(fj (i}k}If(i)f(2) f(5) h(2, 3)I jilk)
~J

gc)

(gj ((jkj f(l) f(2) f(s) Ijik) *jok

+6 p *pi'+ jp 0.

If we keep terms of order no higher than S',

entiation with respect to p by a prime we have

~=L&(ilHi(1) li)+ P (ij[H (1,2) [ij)7+(P S;;S;;(i)~Hi(1) li)((P,, ")&)

—p 5;;(i[Hi(1) [ j)((P; ')s) —i~ p 5;,5;;(zg[Hz(1,2) Izj)(Te'")8)—2 (zZIHz(1») I jz)((~'f")8)
(~ i) (& i) (~.i)

+ p 5;&5&;(zj)Hz(1,2) (zj)((~;~"')8)—Z 5;;(z&)H2(1 2)
~
j~)((~ j )$)g ~ (13)

(& i &) (i,j., I )

The first term in square brackets is the direct energy Eo,
the second is —Q;(, J;,((P;Jf')s). This result, which is
valid for any linear combination of Slater determinants,
is identical with Carr's result for a single determinant
LRef. 2, Eq. (29)j. In comparing the two results note
that our definition of H&(y, (}) divers by a factor of 2

from Carr's.

IV. PROOF OF THE THEOREM OF SEC. III

In Sec. III we used the following theorem: a general
fz-index cluster integral X;,...;„(fz&2) contains only
terms which are fzth and (fz —1)th order in the overlap
integral 5@=1'g,*(1)p;(1)dxi, if we consider only terms
of zeroth and first order in P. Furthermore, the terms
(fz —1)th order in 5 are also first order in p.

The proof of this theorem is facilitated by intro-
duction of a graphical representation of the terms in the
cluster integrals. Those indices of a matrix element
connected by exchange, as i and j in (i~ f(1) ~ j), will be
joined by a sohd line; indices connected by an h(&,B), as
i and j in (ij~ f(1)f(2)h(1,2) ~ij), will be joined by a
dashed line. The number of solid lines in a graph is the
order of the matrix element in the overlap integral S.
Examples of matrix elements and the graphs represent-
ing them are shown in Fig. j..

Note that in matrix element (f) of Fig. 1 there is
ambiguity as to whether it is indices j and k or i and l
which are joined by }z(2,3). We define, as being joined
by an h, those indices which were joined previous to
the permutations.

We note that every index must have zero or two solid
lines ending on it. This rule occurs because permutations
never occur singly; for example, i —+ j ahvays requires
j—+ (some index/ j).

Except for that of matrix element (g) of Fig. 1, all
graphs shown are said to be "connected. " That is, it
is possible to get from an index to any other index by
following either solid or dashed lines. The graph of
matrix element (g) in Fig. 1 is "disconnected. "

We now show the following lemma which was men-
tioned in Sec. III: the &z-index cluster integral X;,...;„
contains all matrix elements of m indices whose graphs
are connected, and only those matrix elements. The
lemma is true for X;, X;;, and X;;& by inspection of
Eqs. (9). We proceed by induction. Assume the lemma
is true for all m-index cluster integrals with m(m. We
form cluster integrals according to the formula

tj, '» ~tg ifj ~ ~ ~tgX-

X;,...;„X, +,...„X;+,...;„. (14)
Sl f y z

e ~ e q ~( g
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jn "——mj

l

~k l~ ~k lI: ~k

pro. 3. Examples of four-index connected graphs which violate the
rule that zero or two solid lines must end on every index.

fg&

'k
+ p I ~

I'"n. 2. The graphical
representation of Eq.
(&5).

All terms in

i&y&5~&n 1~&y&5 ~&n

If we use g(y, 5) =h(y, 8)+1 and write

II g(v, ~) =1+ 2 hb, t')
1&~&5&n

+Q h(y, b)h(ii, i)+
in Eq. (8), we see that I;,...;„contains all diagrams, both
connected and disconnected, of e indices. Since a cluster
integral X;,...;„, (es&ii) is assumed to contain all the
m, -index connected diagrams and no more, then the sum

Q X;,...,„. X;, ,...;„ in Eq. (14) contains all possible
n-index disconnected diagrams, and no more. Thus, on
the right-hand side of Eq. (13), only the n-index con-
nected diagrams do not cancel. Since the lemma holds
for the one-, two-, and three-index cluster integrals by
induction, it holds for the general one.

which are signified by the dots, are at least second order
in P and will not contribute to the final result. They can
then be dropped. However, the only kinds of connected
diagrams of e indices (e)2) which have only a 1 or a
single h(y, b) in them, and which satisfy the rule that
only zero or two solid lines end on an index, are of order
fl or e—1 in the overlap integral. For e) 2, they are
one of the following forms: (1) e indices connected by
yz solid lines only —of order n in the overlap integral;
(2) e indices connected by e solid lines with a single pair
of them also connected by a dotted line —of order n in
the overlap integral; (3) m, indices all connected by m
solid lines, I—m indices all connected by n—m solid
lines, with the two sets connected together by only a
dashed line —of order e in the overlap integral; (4) g—1
indices all connected by e—1 solid lines, one index con-
nected to the rest by only a dashed line —of order e—1
in overlap integral and first order in P. This completes
the proof.

As an illustration we consider X;;I,~. The theorem gives

X,;i i= (ijhi
~
f(1)f(2)f(3)f(4) (jhei)((I'„7 i'"') 8)+ +(i jhow~ f(1)f(2)f(3)f(4)h(1,2)

Ijhei)((~ iw'"")s)+
+(ijhl

~
f(1)f(2)f(3)f(4)h(1,3)

~
jiN)((P;, &i&'")&)+

+(ijhflf(1)f(2)f(3)f(4)h(1, 4)
l j»i)((&*; '"') )+", (»)

where the dots represent other terms of the same type
as preceded them. The graphical representation of X;;~~
is shown in Fig. 2. In Fig. 3 we illustrate some four index
connected graphs which are not present because they
violate our rule that zero or two solid lines must end on
every index.

The one- and two-index cluster integrals are special
cases for which the theorem does not hold; the one-index

integral has only a term of order 5', and the two-index
integral has terms of order 5' (which is also first order
in P) and 5'. We have taken this into account in the
discussion of Sec. III.
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