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Theory of Sodium, Magnesium, and Aluminum
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A theory relating the electronic structure and the properties of metals has been described earlier. It was
based upon the self-consistent-field method and a perturbation solution of the energy-band calculation. This
theory is now applied explicitly to Na, Mg, and Al. The orthogonalized plane wave (OPW) form factors and
the energy-lattice wave-number characteristic were computed by machine and used to compute atomic
properties. The correct metallic structure was found to have lowest energy in each case: hcp, hcp, and fcc,
respectively. Computed c/o ratios for sodium and magnesium of 1.63 and 1.62, respectively, are close to
those observed. The elastic shear constant for axial distortions was computed for the hexagonal phase of each
metal; for magnesium the constant is known and the agreement excellent. The vibration spectrum for fcc
aluminum is computed and corresponds to errors in the elastic constants of the order of a factor of 2; this
sensitivity refiects strong cancellation (which greatly increases from sodium to aluminum) between electro-
static and band-structure contributions to the energy. Calculations of the total binding energy of aluminum
and the variation of energy with lattice parameter are quite inaccurate. Inclusion of a free-electron exchange
and correlation correction does not significantly improve the results and, in fact, makes the crystal unstable
against the formation of lattice distortions. Pressure dependence of the elastic constants was calculated for
aluminum and gave discrepancies of a factor of 2. It is concluded that the theory gives a rather good ac-
count of changes in energy due to ion rearrangement at constant volume, but not of changes in energy due to
changes in volume. A phenomenology is proposed in which the pseudopotential is adjusted to fit the ob-
served vibration spectrum. This phenomenology is applied to aluminum with a single adjustable parameter
Bnd the resulting energy-lattice wave-number characteristic given.

I. INTRODUCTION
' 'N two earlier papers' ' we developed a method for
~ - calculating most of the properties of simple metals
from first principles and this scheme was applied to zinc.
In essence this was a scheme for carrying out a band
calculation, but was carried out in a perturbation ap-
proximation which permitted the treatment of general
arrangements of the ions. Furthermore, because of the
perturbation treatment, it was possible to treat directly
many electronic properties and even to sum the total
energy as a function of the position of ions and' thereby
to treat atomic properties. Agreement with experiment
with respect to electronic properties was very good,
and we have subsequently obtained and published' the
characteristics which determine the electronic properties
for all nontransition metals with atomic number less
than that of zinc.

With respect to the atomic properties, the situation
was less clear. The energy-wave-number characteristic
which determines the atomic properties was obtained
for zinc by hand calculation and was clearly not accurate
enough to give a quantitative check on the theory; in
some cases reasonable agreement was obtained, in other
cases not. We have therefore embarked upon a machine
calculation to test the theory with respect to atomic
properties. A program was written which reads the
Hartree-Fock wave functions and parameters for the
core, and also reads the atomic volume. It then produces
the energy-wave-number characteristic, as well as other
interesting curves. The same program was applied to

' W. A. Harrison, Phys. Rev. 129, 2503 (1963).' W. A. Harrison, Phys. Rev. 129, 2512 (1963).
' W. A. Harrison, Phys. Rev. 131, 2433 (1963).

sodium, magnesium, and aluminum and a number of
properties treated. The present paper describes these
results.

The method used is essentially that given earlier, but
some improvements in the formulation and in the
numerical approximations have been made. In addition,
volume-dependent terms are included. It seems desirable
to outline the theory from the start rather than to list
all of the modifications which are made. This will also
enable us to illuminate the relation of the pseudo-
potential method to the orthogonalized plane wave

(0&W) method and the difference between different
pseudopotentials in what seems to the author as a lucid
way. This is certainly not the only manner in which such
comparisons may be made; Pick and Sarma4 as well as
Bassani and Celli, ' Austin, Heine and Sham, ' and Cohen
and Heine' have given general discussions of the pseudo-
potential method.

Three important physical approximations enter the
theory.

(1) The self-consistent-field approximation. We in-
clude exchange between conduction and core electrons
in a Slater' free-electron approximation though full
Hartree-Fock exchange could be used with little addi-
tional eGort. In the main body of the paper interactions
between conduction electrons were treated in the
Hartree approximation. Some calculations also were
carried out and reported in Sec. VI in which exchange

4 R. Pick and G. Sarma, Phys. Rev. 185, A1363 (1964).
s F. Bassani and V. Celli, Phys. Chem. Solids 20, 64 (1961).
s B. J. Austin, V. Heine, and L. J. Sham, Phys. Rev. 127, 276

(1962).
r M. H. Cohen and V. Heine, Phys. Rev. 122, 1821 (1961).
8 J. C. Slater, Phys. Rev. 81, 385 (j.951).
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and correlation were included in a free-electron approxi-
mation which is a straightforward extension of Slater'
free-electron exchange suggested by Brooks. ' A some-
what diferent correction for correlation and exchange
based upon Hubbard's" method has been used by
Sham" in treating the vibration spectrum of sodium.

(2) The cores are treated as small. This approxima-
tion enters in three different ways. First, overlap of
adjacent ions is neglected so that the only direct ion-ion
interaction is through the Coulomb fields. Second, the
variation over the core of the fields due to adjacent
ions and due to the conduction electrons is neglected.
Thus, the core wave functions (though clearly not the
core energies) are the same as in the isolated ion. The
validity of this assumption can be readily verified by
noting that the core functions are almost identical in the
ion and in the atom. Third, in the evaluation of integrals
of the products of core functions and various slowly
varying functions, the slowly varying functions are
evaluated at the nucleus and taken out of the integral.
For the metals we treat these approximations are very
good. However, this assumption is important in limiting
the metals which we may treat; in particular, the noble
and transition metals are ruled out.

(3) A perturbation method for solution of the OPW
method carried to second order. The perturbation ex-
pansion is by no means unique; we intend to clarify our
expansion early in the formulation. The expansion
appears reasonable on the gounds that the matrix ele-
rnents which enter are generally small (of the order of a
tenth) in comparison to the Ferini energy. A further
qualitative check on the expansion is made by com-
puting the valence-electron charge density in the atomic
cell. For the face-centered cubic structure the charge
density is found to be quite uniform, suggesting that
deviations from single-plane-wave behavior Inight rea-
sonably be treated as a perturbation. Of course part of
the purpose for our treatment of these metals is to see
from experiment to what extent this second-order theory
is adequate.

II. FORMULATION

We will restrict our treatment to the ca1culation of
energy eigenstates; in our earlier analysis' we formulated
also time-dependent calculations. Thus we will begin by
writing the time-independent Schrodinger equation
which is satisfied by the one-electron wave functions Pq,

Pgi, $T+ V(r))gi, =Eigi, . —— (1)

Here H is the Hamiltonian. T is the kinetic energy,—A2V'/2m, and V(r) is the self-consistent potential in-
cluding Slater free-electron exchange between con-
duction and core electrons.

VVe next distinguish between electronic core states

9 H. Brooks, Trans. AIME 22?, 546 (1963).
'0 J. Hubbard, Proc. Roy. Soc. (London) A243, 336 (1958)."L.J. Sham (to be pubHshed).

(subscript a) and conduction-band states (subscript k).
According to our second assumption above, the core
wave functions P, are the same as in the isolated ion,
though the core energies E will be diferent from that
in the ion.

&4 =&A . (2)

The subscript o. denotes the position of the ion in the
metal as well as the angular-momentum and energy
quantum numbers.

The conduction-band states are to be expanded in
orthogonalized plane waves; that is, plane waves which
have been orthogonalized to every core state on every
atom wherever that atom may lie. It is convenient to
abbreviate our notation by using the projection operator
P introduced by Pick and Sarma. 4 I' projects any func-
tion on the core wave functions; thus, an orthogonalized
plane wave may be written

e'"'r —p t( (r) p *(r')e'~'"dr'= (1—P)e—'~' (3)

It is convenient to normalize our plane waves in the
volume of the crystal Q. We write such normalized plane
waves and normalized core functions in the form,

(k)=Q '" expik r,
I~)=4-(r).

(4)

(5)

Thus we have defined a nonlocal pseudopotential g
which we treat as a perturbation. In a more straight-
forward OPW calculation we would have left all EI,
terms on the right-hand side and developed a secular
equation for evaluating the eigenvalue EA, . In the pseudo-
potential method the eigenvalue, at least at this stage,
appears also in the pseudopotential itself.

We may note at this point a peculiarity in the pseudo-
potential method. Cohen and Heine" and Bassani and

Using the notation of Eqs. (3), (4), and (5), we may
write explicitly the expansion of the wave function Pi, in
orthogonalized plane waves.

A=K. ~.( )(1—J') Ik+q)

We may substitute this form in the Schrodinger equa-
tion [Eq. (1)]and rearrange terms to obtain

E.~.(k)TIk+q)+Z. ~.(k)LV+(&~—JJ)J'jlk+q)
=E.2& ea(k) 1k+if) (7)

Simply by arranging terms in this way we have taken
the pseudopotential point of view. We note that Eq. (7)
has the form

&ps+ Wq4= &a)4

A=K, ~,(k) Ik+e)
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where f(r,n) is an arbitrary function of position and of
core index n, and Eq. (8) will have solutions of the same
eigenvalues Ei,. The arbitrariness in f(r,n) and in g~ is
the same; a particular f(r,n) leads to a unique Pi„, unless
W is taken with the specific form of Eq. (9), the latter
being vahd for all pi, . By selecting a particular set of
solutions gr, we may select a particular form for the
pseudopotential 8' and thereby eliminate the depend-
ence of 8"upon E~, this is done without approximation.
At the same time we may attempt to select a @z which
will optimize the. convergence of the perturbation ex-
pansion. Thus vre at once eliminate the ambiguity,
remove the dependence of l/t/' upon the eigenvalue, and
in some sense optimize the convergence.

It is convenient to develop the perturbation expansion
before specifying the form of 5'. We regard tt/' as a
erst-order quantity and in the standard way obtain the
first-order coefficients of the expansion of the wave
function and the energy to second order.

(I yqi Wil )
~s(k) = as(k)

(5'/2m) (k' —(k+q)-')
(12)

A'k'
E,=- +(ki Wik)

2m
(ki Wik+q)(k+qi Wil )

(13)
(fi'/2m) (k' —(k+q) ')

The first-order wave functions based upon Eq. (12) will

be used to compute the self-consistent screening field,

In order to select the form of the pseudopotential, we
may write the general pseudopotential of Eq. (11) as
applied to a plane wave ir). This is done by making a
Fourier expansion of f(r,n); the result may be written
in the form,

Wi )= Vi~)+P. f(~, ) [n)(ni~). (14)

For each choice of the arbitrary function f(x,n), we will
obtain a particular form for the pseudo wave function
@~. Whatever form we choose, we will use the single
plane i k) as the zero-order approximation to P~. Thus
a reasonable criterion might be based upon taking a
form such that pr: is as close as possible to a plane wave.
To obtain this in terms of a criterion for f(rc,n), we note
that W operating on any true pseudo wave function P&

must give Vgi, +Q (LI, E) in)(nifr). If
i k) is —to be

close to the true p~ corresponding to a given form of
Eq. (14), then f(k,n) must be close to Ei, E.We are—

Celli' have noted that any linear combination of core
wave functions may be added to Pz and it will remain a
solution of Eq. (8) and will lead to the same wave func-
tion Pk as derived by Eq. (6). Austin, Heine, and Sham'
have further pointed out that l/I/' may be replaced by a
general pseudopotential,

W@,= Vy, +P.(f(r,n)
I y~) I n),

therefore motivated to select the. best value of Ei, from

Eq. (13) short of requiring an iteration for the determi-
nation of 8" and we obtain the form

Wix)= Vier)

+g.(h'0'/2m+(ki Wik) —E ) in)(ni~). (15)

Replacing k by x in the right-hand side would also
be a possible choice, but would make lV non-Hermitian.
(Note added il Proof Suc. h a choice leads to the same
energies to second order. ) In these terms the pseudo-
potential of Bassani and Celli' corresponds to taking
f(ir,n) equa, l to A'k'/2m+(ki Vik) —E; that of Pick
and Sarma, ,

4 to taking f(x,n) equal to It'k'/2m —E;and
the simple plane-wave expansion of lt I„ to taking f (ir,n)
equal to zero. It should be mentioned again that all four
forms are valid pseudopotentials.

We may also show" that the form of Eq. (15), is

precisely the one that vre obtained earlier'" by follow-

ing the procedure given by Cohen and Heine~ for selecting
the @i, which is the smoothest; that is, the @I, having a
minimum (rFrk&, 'Prier)/(gl„rk~) This l.atter procedure is
certainly the better defined, and possibly the more con-
vincing argument supporting the particular pseudo-
potential which we use. We will not, however, repeat
that argument, but proceed with the form of Eq. (15).

The evaluation of matrix elements of W from Eq. (15)
is not straightforward. %'e have the considerable prob-
lem of sorting out the contributions to the self-consistent
potential V from the ions and the electrons, and also in
determining the values of E in the metal. A discussion
of these problems is relegated to the Appendix, where
vre develop explicit expressions for the matrix elements
of 8' an6 evaluate the total energy.

In the course of these calculations the matrix elements
of 8' and of I' are factored as in diffraction theory.
There is a form factor which is a matrix element for
a single ion and is independent of the positions of the
ions; these form factors are written (k+qiwik) and

(k+qi pik) and enter directly in calculations of elec-

tronic properties. "There is also a geometrical structure
factor S(q) given by

S(q) = (1/N)g, exp( iq r;),— (16)

E„=g, S( )*S(q)E(~), (17)

n This is most readily done by noting that (k'kr/2~ & ) Ill
X(o i k l = ( ol(o (

T Fl i k l = —P V ( kl. —
ra W. A. Harrison, Phys. Rev. 126, 497 (1962).

where the sum is over all X ion positions r;. This is
precisely the structure factor vrhich enters diffraction
theory.

The energy is finally divided into three terms. First
is a free-electron energy E~,f, which depends upon the
atomic volume but is otherwise independent of the
arrangements of the ions. Second is a band-structure
energy given by
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FIG. 1. Matrix elements of the pseudopotential for aluminum,
k is taken to lie on the Fermi surface; for forward scattering q lies
parallel to k; for back scattering q lies antiparallel to k; the form
factor gives matrix elements for k+q lying on the Fermi surface.

where E(q) is called the energy —wave-number character-
istic; it depends upon the atomic volume and the local
potentials but is independent of the detailed ion posi-
tions. E(q) may be thought of as the change in energy
due to the introduction of a Brillouin-zone plane corre-
sponding to a lattice —wave-number q. The prime on the
sum indicates that the q=0 term is excluded. Finally
there is an electrostatic energy which is the energy of
point ions of effective valence

Z*=Z(1+(EZ)-' Qs(k~ p ~
k)) (18)

embedded in a uniform compensating background. This
effective charge is the same as that given by Pick and
Sarma' and differs from that we used earlier due to a
slightly diBerent decomposition of the total energy.

III. CALCULATIONS AND RESULTS

The procedure described in the last section and in the
Appendix was programmed for a GE 225 computer for
elements in the third row of the periodic table. The
program reads the atomic volume, the valence, the
Hartree-Fock wave functions for the 1s, 2s, and 2p
functions in the isolated ions and their corresponding
Hartree-Fock energies. It then computes E(q), and
other interesting curves.

The many integrals to be performed are carried out
numerically, generally using Simpson's rule. For real-
space integrals the interval was given by that for the
tabulated wave function. Reciprocal-space integrals
were based upon intervals in wave-number space of
0.1kp. Additional care was taken where principal values
of integrals were required. Integrals over the Fermi
sphere showed cylindrical symmetry, so the numerical
volume integration involved sums over circles; over 200
circles in the Fermi sphere were used, these being packed
more closely where the circles were longer.

Hartree-Fock cores were taken for sodium from
Hartree and Hartree, '4 for magnesium from Yost,"and

Tanr. E I. OPW form factor (4+9
~
w

~
k) in rydbergs.

Sodium Magnesium Aluminum

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1 ' 1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0

~ ~ ~

—0,1464—0.1458—0.1392—0.1333—0.1293—0.1229—0.1134—0.1041—0.0954—0.0852—0.0731—0.0615—0.0495—0.0379—0.0272—0.0162—0.0060
+0.0038

0.0130

~ ~ ~

—0.3424—0.3320—0.3094—0.2858—0.2632—0.2361
—0.2043—0.1732—0.1439—0.1137—0.0828—0.0546—0.0280—0.0041
+0.0162

0.0346
0.0500
0.0626
0.0728

—0.5551—0.5'524
—0.5272—0.4837—0.4369—0.3901—0.3378—0.2810—0.2265
-0.1763—0.1274—0.0805—0.0393—0.0024
+0.0288

0.0543
0.0755
0.0915
0.1031
0.1107

for aluminum from Froese. "The atomic volumes used
were those observed and are 267, 154, and 111.4 a. u. (or
Bohr radii cubed) for Na, Mg, and Al, respectively.

In the course of the E(q) calculation, the form factors
(k+ti

~

to
~
k) of the matrix elements are computed; these

are the matrix elements of the pseudopotential associ-
ated with a single ion. Figure 1 shows a set of such
matrix elements for ahtminum for k lying on the Fermi
surface and for q parallel to and antiparallel to k. If the
pseudopotential could be replaced by a local potential,
these curves would be identical. As we found earlier for
zinc, ' these curves di6er greatly, particularly in the
important region q=1.5k' to q=2kp. The use of the
true nonlocal pseudopotential would appear to be quite
important in aluminum as well as zinc. Similar curves
for sodium and magnesium indicate the same variations.

Also shown on Fig. jl is the OPW form factor for
aluminum; this is the matrix element between two states
both of which lie on the Fermi surface. This is the curve
which determines many electronic properties, as we
found earlier. "In Table I we have tabulated the OPW
form factors for sodium, magnesium, and aluminum.
These differ by less than 0.02 Ry from the cruder curves
we obtained earlier' by hand.

The main result of our calculations is the energy
lattice —wave-number characteristic, E(q), which deter-
mines the band-structure energy according to Eq. (17).
These are tabulated for the observed atomic volume in
Table II along with the parameter

(k~ p~k),.=(lVZ) —'pg(k~ p~k),

which determines the effective valence of Eq. (18) deter-
mining the electrostatic energy. The final column will be
discussed in Sec. VII. The E(q) curves of Table II are
displayed in Fig. 2. The peak near 2k p arises because of

'4D. R. Hartree and W. Hartree Proc. Roy. Soc. (London)
A193) 299 (1948).

"W. J. Yost, Phys. Rev. 58, 557 (1940). "C.J. Froese, Proc. Camb. Phil. Soc. SS, 210 (1957).
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TAnLE II. Energy —wave-number characteristic E(q) in rydbergs l&er electron.
The etlective valence for electrostatic energy is Z*=Z(1+(k p ~

k), ).

elk~

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
4.0
4.1
4.2
4.3
4,4
4.5
4.6
4.7
48

5.0

Sodium
(k i p i k), =0.0750

—2.1'?8X10
—5.371—2.332—1.266—7.724X10 '
—5.038X10 '
—3.416X10 '
—2.362X10 '
—1.646X10 '
—1.144X10 '
—7.853X10~
—5.256X10~—3.399X10-2
—2 091X10~—1.200X 10~
—6 217X10 '
—2 724X10 3

—9.053X10 4

—2.003X10-4
—1.474X 10-4
—3.564X10 4

—6.605X10 4

—9.580X10 4

—1.202X10 '
—1.378X10 '
—1.484X10 '
—1.529X 10-3
-1.524X 10-3
—1.481X10-3
—1.410X10-'
—1.322X10 '
—1.223X10 '
—1.120X10 '
—1016X10 '
—9 164X10 4

—8.207X10 4

—7.311X10 4

—6.481X10 4

—5.721X10 4

—5 030X10 4

—4.404X10 '
—3.842X 10-4
—3.338X10 4

—2 889X10 4

—2.490X10 4

—2 ~ 137X10 4

—1.827X10 '
—1.556X10 4

—1.319X10 '
—1.114X10-4

Magnesium
(kipik), =00850

—3.572X10—8.648—3.641—1.894—1.093—6.671X10 '
—4.176x10-~
—2.629X10 '
—1.639X10-~
—9.999X10 '
—5.857X10 '
—3.218X10~—1.608X10~
—6.930X10 '
—2.353X10 '
—6.270X 10-4
—5.448X10 '
—1.241X10 '
—2.067X10 '
—2.483X10 '
—2.504X10 '
—2.514X10 '
—2.432X10 '
—2.279X10 '
—2.080X10 '
—1.861X10 '
—1.638X10 '
—1.421X10 3

—1.220X10 3

—1.037X10 3

—8.752X10 '
—7.331X10 '
—6.103X10 4

—5.050X10-4
—4.155X10 4

—3.399X10 4

—2.764X10 4

—2.233X10 '
—1.792X10 4

—1.428X10 4

—1.130X10 '
—8.876X10-~
—6.920X10 '
—5358X10 '
—4.123X10 '
—3.158X10 '
—2.412X10 '
—1.843X10 '
—1.412X10 '
—1.091X10 5

Aluminum
(k[pik), =0.0790

—4.515X10—1.081X10—4.4'?0
—2.267—1.267—7.425X10 '
—4430X10 '
—2.633X10 '
—1.533X10 '
—8.597X10~
—4.529X10 '
—2.160X10 '
—8.782X10 '
—2.746X 10-3
—6.996X10 4

—7.744X10 '
—1.759X10 '
—2.887X10 '
—3.657X10 '
—3.655X10 '
—3.222X10 '
—2.907X10 '
—2.57'? X10 '
—2.244X10 '
—1.920X10 '
—1.620X10 '
—1.350X10 '
—1.112X10 '
—9.067X 10-4
—7.322X10 4

—5.863X10 4

—4.658X10 '
—3.6/4X10 4

—2.879X10 '
—2.243X10 4

—1.738X10 '
—1.341X10 4

—1.031X10 4

—/. 903X10 '
—6.045X10 '
—4.621X10 '
—3.536X10 '
—2.716X10 5

—2.101X10 '
—1.642X10 '
—1.303X10 '
—1.054X 10-'
—8.729X10 '
—7.404X10 '
—6.436X10 '

Aluminum
(Phe nome nological)
(ki peak), =0.0790

—4.509X10—1.075x 10—4.418—2.220—1.224
—7.O57X 10-I
—4119X10 '
—2.378x 10-I
—1.331X10 '
—7.066X10 '
—3.428X 1O-2
—1.430X10~
—4.546X 10-3
—9.3O9X 1O-
—'/. 001X10 4

—2.057X10 3

—3.839X10 '
—5.352X10 '
—6.159X10 '
—5.849X10-~
—5.011X10 '
—4.405X10 '
—3.826X10 '
—3.277X10 '
—2.769X10 '
—2.314X10-3
—1.914X10 '
—1.568X10 '
—1.273X10 '
—1.026X10 '
—8-212X10 4

—6.528X10 4

-5.158X1o-4
—4.054X10 '
—3.170X10 4

—2.469X10 '
—1.916X10 '
—1.482X10 '
—1.144X1O-4
-8.826X 10-~
—6.803X10 '
-5.250X 10-~
—4.064X10 5

—3.163X10 '
—2.484X10 '
—1.974x10 '
—1.593X10 '
—1.310X10 '
—1.099X10 '
—9.428X10 6

the matrix elements going through zero in this region,
as indicated by the form factors in Table I. As in the
case of zinc, the logarithmic singularity in E(q) at
exactly 2k p is not visible on the scale to which the plot
is made. Finally, it is noted that the decay at large q is
Inore rapid for aluminum than for magnesium and
sodium. The decay has been followed out to 9k+ in
aluminum and shows an add. itional decrease in E(q) of
a factor of 40 below that at 5k'. In the calculations of
properties we have made, the convergence of the sums
to large q has been quite rapid. Had we not separated
the electrostatic energy, but included its effect in E(q),
the decay would have been only as 1/q', and the con-
vergence very bad.

As we did for zinc, ' we may add the band-structure
and electrostatic energy and Fourier transform to obtain
the effective two-body central force interaction between
ions. This has been done for aluminum and the result
shown in Fig. 3.There is some drift in the curve at large
r arising from slight inaccuracy in E(q) at small q. The
drift was much worse for magnesium and sodium and
these curves are not shown. Pick." has compared the
amplitude and frequency of these oscillations and finds

they are very close to the asymptotic oscillations which
arise from the logarithmic singularity in E(q) at q= 2k'.
This is rather surprising, since the singularity itself is

» R. Pick (private communication).



%ALTER A. HARRISON

0

I-
w -I—
lad

~rs
COIle

p2

lsl e3

FIG. 2. The computed energy-wave-number characteristics
E(g) for sodium, magnesium, and aluminum, each at the observed
atomic volume.

C

not visible; however, it suggests that the associated dis-
tortions of E(q) in this region are the source of the oscil-
lations rather than the peak which comes from the
vanishing of matrix elements. In any case, for the com-
putation of properties we have found it much more
convenient to use the E(q) curves of Table II directly.

YVe should perhaps also mention, in connection with
Fig. 3, that the existence of this central-force interaction
does cot imply that the elastic constants will satisfy the
Cauchy relations, because there is an additional volume-
dependent term. Thus, the ions are not in equilibrium
positions with respect to the central-force interaction by
itself, a condition which is required for the derivation
of the Cauchy relations.
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face-centered cubic, body-centered cubic, and hexagonal
close-packed, the latter being carried out as a function
of the axial ratio. In all cases the calculations were
carried out at the observed atomic volume. The calcula-
tions are straightforward; we construct the reciprocal
lattice, evaluate the structure factor 5(tl) and the ap-
propriate L'(q) for each and sum over the reciprocal
lattice to obtain the band-structure energy. It is interest-
ing to note that it is necessary to sum over a rather
large number of reciprocal lattice vectors before the
sum settles down. I'igure 4 shows the sum for body-
centered and hexagonal close-packed structures in com-
parison to the sum for face-centered cubic as reciprocal
lattice vectors within a larger and larger sphere are
included. A large portion of the oscillation arises because
of a diBerent total number of reciprocal lattice vectors
within a given sphere for the different structures. This
means that to distinguish the energies of the diferent

Iv. COMPUTATION OF PROPERTIES

The first use of the E(q) curves we make is the com-
parison of the energy of diITerent crystal structures. We
have done this for the three simple metallic structures—

FIG. 4. Convergence of the energy summation in aluminum. The
curves represent the difference in band-structure energy between
hexagonal-close-packed (solid line) or body-centered-cubic
(dashed line) and that for face-centered-cubic as a function of the
volume of wave number space over which we had summed. The
limiting values shown are for summation over several hundred
reciprocal lattice vectors.
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structures, a very complete description of the electronic
states is needed —in fact, one involving well over 50
orthogonalized plane waves. In our calculations we sum
over several hundred reciprocal lattice vectors and note
that fluctuations are smaller than a part in a thousand.
In these calculations, E(q) was interpolated by fitting a
cubic equation to values at the four nearest q's given
in Table II.

The electrostatic energy for each structure appears in
the literature. ' These values have been obtained by
Ewald sum methods. However, a value for the hex-
agonal-close-packed structure appears only for the ideal
axial ratio. In our treatment of zinc we used Hunting-
ton's" computation of a shear constant to estimate the

FIG. 3. The efI'ective interaction between ions in aluminum.
Also shown is the distribution of neighbors as a function of
distance in the face-centered-cubic structure.

18 Q7 J. Carr, Jr., Phys. Rev. 122, 1437 (1961).
"H. B. Huntington, in Solid State Physics, edited by F. Seitz

and D. Turnbull (Academic Press Inc., New York, 1958), Vol. 7,
p. 213.
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TpuLE lIl. Electrostatic energy. The energy per ion is given by
Z*'o/ro rydbergs where Z* is the effective valence, ro is the atomic
sphere radius in atomic units, and n is

fcc
bcc
hcp
axial ratio

1.633
1.5
1.6
1.7
1.8
1.9
2.0

—1.79172a-1.79186

—1.79168"—1.78998—1.79156—1.79129—1.78909—1.78497—1.77892

a K. Fuchs, Proc. Roy. Soc. (London) A151, 585 (1935).
b W. Kohn and D. Schechter (unpublished). Result quoted by Carr

(Ref. 18).

values for other axial ratios. Here we evaluate them
accurately. We write the energy as the sum over recipro-
cal space for general axial ratio and formally perform
the summations in a way to give an exponentially con-
vergent sum over reciprocal lattice vectors in the basal
plane. There remains an undetermined constant term
which may be evaluated by fitting the energy obtained
by Kohn and Schechter" at the idea, l axial ratio. The
results of this calculation are given in Table III.

Thus we obtain the energy for each metal for the
various crystal structures. Table IV gives these values;
for the hexagonal structure we give the axial ratio at
which the minimum energy occurs and that energy. The
electrostatic energy used is the difference between the
computed electrostatic energy and that for a point ion
in an atomic sphere Lcorresponding to a value of n (see
Table III) of —1.81.The correct structure is obtained in
each case, though it must be admitted that the difference
in energy found between hexagonal and face-centered-
cubic sodium is perhaps too small to be regarded as
significant. The computed axial ratios, also, are very
close to those observed in sodium and magnesium and

Face-centered cubic
Band structure
Electrostatic

Total
Body-centered cubic

Band structure
Electrostatic

Total
Hexagonal close packed

Band structure
Electrostatic

Total
c/o
c/o (observed)

—0.03797
+0.00240

—0.03557

—0.03759
+0.00236

—0.03523

—0.03802
+0.00241

—0.03561
1.629
1.634~

—0.11412
+0.01172

—0.10240

—0.11192
+0.01152

—0.10040

—0.11650
+0.01182

—0.10468
1.619
1.630

—0.22275
+0.02907

—0.19368

—0.20835
+0.02859

—0.17976

—0.22725
+0.03729

—0.18996
1.793

a C. S. Barrett, Acta Cryst. 9, 671 (1956).

~ W. Kohn and D. Schechter (unpublished), quoted in Ref. 18.

TABLE IV. Energy of the crystal structures in rydbergs per ion.

Al

TABLE V. A shear constant in the hexagonal phase
C»+C&s+2Caq —4Ciz in units of 10" dyn/cms.

Sand structure
Electrostatic

Total
Experimental

—0.79
+3.55

2.76

—17.8
+30.0

12.2
12.3.

Al

—106.2
+117.6

a R. E. Schmunk and C. S. Smith, Phys. Chem. Solids, 9, 100 (1959).

to the ideal value of 1.633. It is striking that the axial
ratio for hexagonal aluminum is somewhat higher.

The computed difference in energy between body-
centered and hexagonal sodium (SX10 ' eV/atom) is
somewhat higher than the experimental estimate given
by Martin" (0.15X10 ' eV/atom). Such a discrepancy
might arise partly from our calculation being at constant
volume, while experimentally there is an appreciable
change in volume during the transition. In addition, it
is very difficult experimentally to obtain parameters for
a system which only partially transforms and for which
the degree of transformation is not directly measurable.
We therefore do not feel that this comparison gives a
real measure of our error. The fact that the face-centered
energy lies between the other two is not unreasonable.
Presumably it is just the body-centered lattice which is
soft and which therefore has a rapidly increasing entropy
with temperature such that the free energy soon be-
comes lower than that for the hexagonal structure. We
note that in magnesium the energy difference is an order
of magnitude bigger and the transformation is therefore
suppressed.

In computing the energy as a function of axial ratio,
we also obtain directly the elastic shear constant associ-
ated with this distortion. The values so obtained are
given in Table V. The agreement with experiment for
magnesium is even closer than the precision of our
calculations. Though the elastic constant for sodium is
not known, we ma, y expect our computed value is rather
close since it is close to the electrostatic value (which
would be 3.1X10"dyn/cm' for a unit effective charge).
The electrostatic energy is known to give a good account
of the elastic constants in body-centered sodium. "The
striking thing about the aluminum result is the ex-
tremely strong cancellation between electrostatic and
band-structure contributions. The result that the cancel-
lation between electrostatic and band-structure terms
grows rapidly from sodium to aluminum could havebeen
reached by considering just the electrostatic and. experi-
mental elastic constants. For testing our theory it is an
important fact to keep in mind; comparisons with
sodium do not provide a very stringent test, but any
errors in our band-structure calculation for aluminum
can be greatly magnified in the results. It is aluminum
which provides the most sensitive test.

st D. L. Martin, Proc. Roy. Soc. (London) A254, 433 (1960).
~ Reference 19, p. 288.
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For this reason, it is of particular interest to consider
the more complete set of distortions in aluminum repre-
sented by the vibration spectrum. The dispersion curves
have been computed for face-centered cubic aluminum
for propagation along the $100) and L110j directions;
the results are plotted in Fig. 5 along with the experi-
mental results. This could scarcely be called good
quantitative agreement with experiment. However, we
should keep in mind first that except for the use of the
observed atomic volume, no experimental parameters
enter the calcula, tion, and there is no opportunity to
include successive terms until agreement is reached.
Second, aluminum provides a very sensitive test because
of the strong cancellation. The comparison with experi-
ment represents rather good agreement for the band-
structure energy, as may be seen from comparison of the
elastic constants derived from Fig. 5 with those based
solely on electrostatic energy and with those obtained
from experiment. This comparison is made in Table VI.
The error. for the fundamental shear constant c44 is a
factor of 2, but because of the strong cancellation
this represents an error in the band-structure contribu-
tion to the energy of less than 10'%%uq. The error in the
small band-structure energy contribution for the other
shear constant is greater than a factor of 3; it is
interesting to note that in this one case, we find the band
structure effects increasing the stiffness, as we should.

Although this calculation is restricted to constant
total volume, we obtain a value for the bulk modulus.

note that the bulk modulus derived from our com-

U) .8 .0 A .II O .2 A .I .8 I,O I.R' IA

$0/g T

Fzo. 5. Computed vibration spectrum of aluminum compared
with the experimental spectrum determined by J. L. Yarnell,
J. L. Warren, and S. H. Koenig, Proceedings of the International
{onference on Lattice Dynamics, Copenhagen, August 1963
(published in Phys. Chem. Solids).

puted vibration spectrum is in error by a factor of 5,
which is partially responsible for the errors in the longi-
tudinal elastic constants. We may also note that this
error in the bulk modulus gives rise to a negative value
of c», contrary to experiment. We cannot compare the
longitudinal constants with electrostatic values, since
the latter diverge; however, we can compare them with
the Bohm-Staver" value for both longitudinal con-
stants, which is 23 for aluminum based upon an effective
charge of three.

We have made a further calculation which provides a
check upon the internal consistency of the theory; this
is the calculation of the conduction-electron density in
the crystal. Since it was necessary to compute the first-
order screening field in the course of our calculation, we
may also readily compute the 6rst-order conduction-
electron charge density. This has been computed for
face-centered-cubic aluminum and added to a uniform
density, with the result shown in Fig. 6. The density
plotted includes the increase outside the core due to
renormalization after orthogonalization, but not the
orthogooalization charge itself; thus, a more complete
calculation would give a further lowering in density at
the cores. The decrease in density at the cores is over-
estimated in any case, since we find negative electron
densities at those points. Except at the cores, the charge
density is found to be rather uniform, varying from 0.63
to 1.38 times the average. This supports our treatment
of the first-order terms in the wave functions as small
and therefore supports, to some extent, our use of
perturbation theory. Similar calculations for aluminum
and silicon'4 in a diamond structure show strong non-
uniformity and therefore appreciable unreliability of the
perturbation expansion.

V. VOLUME-DEPENDENT PROPERTIES

We proceed next to the variation of energy with
volume and therefore the inclusion of the free-electron
energy E~,. We have computed the energy —lattice-
wave-number characteristic as well as the free-electron

TAaxz VI. Elastic constants in aluminum
in units of 10"dyn/cm'.

Shear Longitudinal Bulk
c44 (c11—c12)/2 c11 (c11+c12+2c44)/2 (cll+2c12)/3

Electrostatic
Total
Experimental&

17.2
1.5
2.8

1.8
3.4
2.3

~ ~ ~

6.0
10.7

4.1
11.2

1.5
7.6

ts R. E. Schmunk and C. S. Smith. Phys. Chem. Solids 9. 100 (1959).

Fro. 6. Conduction electron density on a (110) plane in alu-
minum. This is a projection of a three-dimensional plot; if viewed
from above, the lines would form a square grid.

~ D. Bohm and T. Staver, Phys. Rev. 84, 836 (1950).
s4 W. A. Harrison (to be published).
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Tmx, z VII. Total binding energy computed for aluminum
in rydbergs per ion.

Tmx.z VIII. The energy of bcc and hcp structures minus that
of the fcc structure in Al in rydbergs per ion.

ky
jv~

&es

Compressed

1.0200
4.513—0.319—7.408

Observed
density

0.9273
3.453—0.223—6.370

Expanded

0.8346
2.597—0.201—5.479

ky (a.u.)
bcc
hcp
Axial ratio

Compressed

1.0200
0.00738
0.00242
1.684

Observed
density

0.9273
0.00464
0.00124
1.793

Expanded

0.8346
0.00204—0.001

+2.3

Total
Exch. and corr.
Total

—3.214—1.692—4.906

—3.140
'—1.522—4.662

—3.083—1.355—4.438

energy and the electrostatic eriergy for aluminum for
higher density, such that kr was increased by 10%, and
lower density, such that kr was decreased by 10%, as
well as at the observed density. The total binding
energies (energy of the metal minus the energy of iso-
lated ions and isolated electrons) obtained from these
calculations for face-centered-cubic aluminum are given
in Table VII. The final numbers, which include correc-
tion for exchange and correlation, will be discussed in
the following section.

The agreement with the observed binding energy of
4.16 Ry per ion is certainly not good though we will see
that it is improved by the addition of the correction for
exchange and correlation. Furthermore, the energy con-
tinues to drop as the volume drops rather than showing
a minimum at the observed density. This difficulty will

not be ameliorated by the inclusion of an exchange and
correlation correction.

These results look particularly unsatisfactory when

compared with the computations by Brooks on the
cohesive energy and lattice distance of a number of
metals. He found a discrepancy of only about 0.01 Ry
for aluminum and good agreement with the lattice
distance. Two particular differences in the approaches
may explain the differences in results. First, Brooks was

able to deal directly with the small cohesive energy
(0.24 Ry) rather than the total binding energy. Second,
he used the quantum defect method to obtain the inter-
action of the electrons with the ions, and thereby used
an experimental interaction rather than one computed
from first principles. In any case, the approach used by
Brooks appears much more informative with respect to
the total energy and its change with volume, and we

conclude that our computation of the free-electron

energy is not accurate enough to be useful.

We may, however, consider two volume-dependent
effects which do not depend upon our computation of
the free-electron energy. These are the variation in the
energy digereece for the different metallic structures and
the variation of the vibration spectrum with volume.
Both of these are directly obtainable from the energy-
lattice —wave-number characteristics which we computed
for aluminum at the three volumes. The energy diff erence
between structures is given in Table VIII. The axial

VI. FREE-ELECTRON EXCHANGE AND CORRELATION

Our treatment of exchange and correlation is that
proposed by Brooks' and is simply a generalization of
Slater's' free-electron exchange. Gell-Mann and Brueck-
ner'-' have given the energy of a free-electron gas as a
function of electron density in the high-density limit.
We may formally write this result as a density-depend-
ent (uniform) self-consistent potential equal to twice
the Gell-Mann —Brueckner expression. When we com-
pute the total energy we subtract the electron-electron
interaction including this self-consistent potential, which
has been counted twice, to obtain the correct result. This
is generalized to nonuniform electron densities simply
by letting the self-consistent potential depend upon
position through the dependence of the density upon
position. The necessity of the factor of 2 is made clear
physically by considering a variational argument; as we

TmLz IX. Pressure derivatives of the elastic constants,
dcid lnr, in aluminum in 10"dyn/cm2.

(cu —egg)/2 (cg|+2cgm)/3

Theoret. —90
Exptl. —50.4

—70—35.3
—100—114

& R. E. Schmunk and C. S. Smith, Phys. Chem. Solids 9, 100 (l959).

"M. Gell-Mann and K. A. Brueckner, Phys. Rev. 106, 364
(1957).

ratio for the hexagonal close-packed structure wa. s
carried out only to 2.3, so the numbers given for the
expanded lattice are quite crude. Such a high ratio in the
expanded aluminum would suggest that some other, and
probably nonmetallic, structure would have lower
energy. We note also the tendency of the fcc structure
to become more stable at high pressure.

The vibration spectrum was computed at all three
densities. In the expanded face-centered-cubic lattice,
the crystal was unstable against the formation of almost
all phonons propagating in the two directions computed,
again reHecting the instability we found above. In the
compressed lattice, the frequencies of all modes were
roughly doubled. We may use these changes in frequency
to estimate the pressure derivatives of the elastic con-
stants; that is, we approximate dC/d lnr by r06C/oro.
The results are given in Table IX along with the experi-
mental values from Schmunk and Smith.
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change the position of a single electron, the energy of the
entire system changes because of the change in energy
of that electron and because of the change in energy of
the electrons it interacts with. These changes are equal
and add.

In our calculation of the free-electron energy, only
the uniform potential enters and we may use the Gell-

Mann —Brueckner expression directly. In computing the
band-structure energy we treat the first-order Quctua-

tions in charge density as small. Thus in going from the
Hartree treatment to that including free-electron ex-

change and correlation, we simply replace the Poisson
equation (which enters the calculation of the self-con-
sistent field) relating a Fourier component of the
interaction potential v,"to a Fourier component of the
electron density p, by the equation

v "=L47re'/q'+2(dE'+'/dp) jp„(~9)
where

P'+&= —Q.916/y, +Q.Q622 lny, —Q.Q96

and
p= 3/(4« ')

poisson's equation is given by Eq. (19) with the term
in E'+' dropped.

This treatment is equivalent by definition to the high-

density expression for treating the uniform component
of the charge density and should be good also for long
wavelengths. It becomes quite suspect, however, for
wavelengths of the order of r, . In treating perfect crystals
the smallest wave numbers which enter correspond to
reciprocal lattice vectors, where this condition is already
reached. Thus, at best, it is a very crude method for
including exchange and correlation in the calculation of

E(q). One might well expect Hubbard's method" as
used by Sham" to be preferable for large wave numbers.

In Table VII we showed the eRect of adding free-

electron correlation and exchange to the free-electron

energy as a function of volume. "This brings the binding

energy into better agreement with experiment (4.16

Ry/ion), but does not bring the minimum energy any
closer to the observed spacing.

The inclusion of free-electron exchange and correla-

tion in the band-structure energy does not seem to
improve the situation. This has been done only at the
observed volume and was found to lower the energy by
another tenth of a rydberg per ion, worsening the agree-
ment with experiment.

Finally, we computed the vibration spectrum from
the E(q) curve which included. free-electron exchange
and correlation. It was found that the lattice became
unstable against the formation of almost all phonons
considered (those shown in Fig. 5).

Ke can only conclude that the inclusion of this simple
correction for exchange and correlation worsens our

~8 Here the density used was the electron density between ions;
that is, the renormalized density. The average density would

perhaps be more appropriate but the difterence is small.

agreement with experiment. Only in the total energy are
the results improved, and these are very inaccurate in
any case.

[iOO 000 &la &la 0 IIO]
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Pro. 7. Vibration spectrum of aluminum from the phenomeno-
logical calculation based upon a single adjustable parameter. Com-
parison is made with the measurements of J. L. Yarnell, J. L.
Warren, and S. H. Koenig, Proceedings of the International
Conference on Lattice Dynamics, Copenhagen, August 1963
(published in Phys. Chem. Solids).

VII. A PHENOMENOLOGY BASED UPON THE THEORY

Our discussion up to this point has concerned an
attempt to compute known properties of metals from
first principles. Physical and mathematical approxima-
tion have been used, but no experimental parameters
have been introduced. We noted that there was an
arbitrariness in the pseudopotential which is rejected in
the arbitrary function f(x,n), which we removed by
attempting to optimize the convergence of the perturba-
tion expansion. We could instead adjust f(x,n) to obtain
agreement with some experimental findings and thereby
obtain a phenomenological E(q) which hopefully would
describe other experiments.

The success we have had in treating a number of
properties would suggest that the f(x,u) which we have
obtained from the theory is rather close to the best one
and would suggest that we proceed by adding experi-
rnental corrections to our computed f(x,n). The simplest.
such correction is the addition of a constant. We have
sought to optimize the agreement with the vibration
spectrum in aluminum with the addition of a constant.
The result is shown in Fig. I based upon an E(q) [the
phenomenological L'(q) given in Table IIj which was
calculated by adding Q.64 Ry to the f(x,n) from the
theory. The agreement is perhaps not remarkable, but
one should keep in mind that only a single adjustable
parameter has been introduced. It should also be noted
that this calculation also corresponds to a correct pseudo-
potential in the sense that exact solution of the pseudo-
potential equation should lead to exactly the same
energy bands as with the other pseudopotential or with
our starting Hamiltonian. It might finally be noted that
the addition of this constant raises the value of the
form factors of Table I by roughly 0.02 Ry.

The important consideration concerning the develop-
ment of a phenomenology is that the results of calcula-
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tions will depend upon the pa, rticular formulation. A

complete knowledge of the vibration spectrum does not
contain sufficient information for computing all prop-
erties. This is most clearly seen in terms of the effective
ion-ion interaction of I'ig. 3; this is the Fourier trans-
form of E(q) (plus a simple Coulomb term). The vibra-
tion spectrum is determined entirely by the 6rst and
second derivatives of this curve evaluated Owly at the
observed interatomic spacings. Thus any curve which
fits these derivatives fits the vibration spectrum but
each will lead to different results for other properties.
The missing information must be supplied by the form
of the phenomenology. It is therefore important to base
the phenomenology upon a theory which gives a good
account of a range of properties of the material in its
own right.

APPENDIX

We will proceed with the evaluation of the matrix
elements of W, which we obtain from Eq. (15),

wlk)= Vlk)
+2-9'&'/2m+&klWlk) —E-) I~)&~lk), (A1)

and will finally evaluate the total energy. We first
eliminate the appearance of lV upon the right-hand side

by multiplying on. the left by &k I, solving for (k I
W

I k),
and substituting back into Eq. (A1) to obtain

&kl Ulk)Elk&
Wlk)= Ulk)+ (A2)

1—&klrlk)
where

U
I k) = v

I
k)+p (fl'k'/2m —E ) I Q) (n I

k) . (A3)

We may note that U is a Grst-order quantity; but,
since fi'k'/2m is a zero-order quantity, Eq. (A3) indi-
cates that P must also be regarded as first order. This
is satisfactory since (k I

E
I
k) is of the order of 0.1; how-

ever, it means that our use of W in the form of Eq. (A1)
will mean that selected higher order terms will appear
in our "second-order" energy of Eq. (13).This need not
worry us, but we may note that the use of the potential
of Pick and Sarma' (their pseudopotential is simply U)
could be justified as retaining only true second-order
terms.

The potential V entering our pseudopotential is to be
the self-consistent potential and therefore includes the
potential due to the conduction electrons. This latter
contribution includes a zero-order term coming from
plane-wave electrons, a first-order term (because
&klI' Ik) is first order) from orthogonalization and re-
normalization, and a first-order term from the use of
first-order terms in the wave function with coefficients
given by Eq. (12).This final term is the screening field;
in computing it we may again treat the orthogonalized
plane waves as plane waves to obtain the first-order
result. Second-order terms in V could only enter a
second-order energy calculation through &kl Vlk), but

there is no screening of the diagonal terms. The 6rst-
order screening terms are obtained by summing over
occupied electron states in just the way we will sum over
states to obtain the total energy.

The only remaining ambiguity is in the evaluation of
E . In our treatment of a series of metals' and in Sham's
treatment of the sodium vibration spectrum, "E was
taken equal to the eigenvalue of the free ion. This is
again an allowed pseudopotential, but in line with our
attempt to make f(x,n) as close to Ei, Eas —possible
(and also to give the optimized pseudopotential men-
tioned earlier) we wish to take E to be the core eigen-
value in the metal. We distinguish between the evalua-
tion of the diagonal element (klWlk) and the off-
diagonal elements entering the second-order sum.

The diagonal term is given by

(klwlk)=&kl Ulk)/(1 —&klPlk))

= &kl vl k)

(@'k'/2m+&kl Vlk) —E.)(kla)&nlk)+p.
1-&kl~lk)

(A4)

appears multiplied by (kl&lk); thus we need E to
first order. To first order it is given by the eigenvalue in
the isolated ion plus the potential evaluated at the
nucleus due to (a) the tails of the ion potentials from
other ions, plus the field due to their orthogonalization
charges (that is, the charge induced at each ion by
orthogonalizing the plane waves to the core states on
that ion); (b) the potential due to a uniform compen-
sating negative background; (c) the potential due to the
orthogonalization charge at the ion in question; and
(d) the screening field due to the use of first-order wave
functions for the conduction electrons. The terms (a)
and (b) combine naturally with &k I

V
I k) and with the

direct electrostatic interaction between the ions to give
a modified eAective charge for the electrostatic energy.
The term (c) is the same for all ions and may be evalu-
ated at the beginning; it is of the order of a rydberg in
the metals we treat. The term (d) combines naturally
with the band-structure energy when we compute the
total energy.

The off-diagonal matrix elements of S' may be con-
veniently obtained by combining Eqs. (A2) and (A3)
and writing the result in the form,

&k+glwlk)=&k+ql vlk)

+P. (k+ql (A'k'/2m)+&kl vlk)
A2k2—E-l~)&~lk)+2- &kl +&kl vlk)

&elk)&k+qlPlk)
(AS)

1—
&I Izlk)
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Again we consider the four corrections to the value of
for the isolated ion which we listed in the previous

paragraph. The contributons (a) and (b) may be com-
bined with terms in (k[ V[k) to give an energy closely
related again to the electrostatic energy of point ions in
a uniform negative background. Since this electrostatic
energy is almost exactly equal to that obtained by re-
placing each atomic cell by a uniform isolated sphere
with volume equal to the atomic volume, and since we
require a value averaged over all ions, we evaluate these
terms by making tha, t replacement. The term (c) is
evaluated as for the diagonal terms, and the term (d) is
dropped. This term (d) is a second-order term in N~

which in fact depends upon the arrangement of the ions;
a numerical examination of this correction in aluminum
indicated that it is in fact tiny in comparison to the
other corrections. We obtain finally a value for
(k[ V[k)—E given by

3 "o 3Ze'
(k [ V[k)—L =— ii'(r)r'dr —e ——i—,i,„. (A6)

ro p IOrp

Here ro is the radius of a, sphere containing an atomic
volume, ~'(r) is the potential within an isolated ion
(including the Slater exchange potential), and e„, . is the
potential at an ion due to the orthogonalization charge
at that ion; & is the Hartree-Fock energy parameter for
the core level in question in the isolated ion.

%e have now written all of the needed expressions in
explicit forms which may be evaluated directly in terms
of the potentials for isolated ions. We may proceed in
the manner used earlI. er' to obtain the total energy.

We first decompose the index o. into an index j
specifying the ion and an index t specifying the core level
in that ion. The total volume 0 is also factored into the
number of ions ~It times the atomic volume 00. We may
then factor the matrix elements of I'.

where the Fourier transform of the potential has also
been factored

(k+q I V[k& =- S(q)i, . (A14)

This factorization of the matrix elements will enable
us to carry out the various integrations before specifying
the arrangement of the ions and will thereby give us the
total energy as a function of ion positions.

We proceed by summing the second-order energies of
Eq. (13) over all states within the Fermi sphere. The
difference between the suln over the unperturbed sphere
and the true distorted Fermi surface is third order in 8'
and therefore negligible. From this we subtract an
energy equal to the Coulomb self-energy of the conduc-
tion electrons, which is counted twice in the Hartree
approximation, and add the direct Coulomb interaction
between the ions to obtain the total energy. The treat-
ment of these electron self-energy terms and their com-
bination with the contribution from the diagonal terms
(k[W[k) is tedious but straightforward, and no addi-
tional approximations are necessary. Finally we de-
compose the energy into three parts. The free-electron
energy per electron is given by

(ei+-', i., —A'0'/2m)&k It&&i lk&

1-(k[p[k)

+-
1—(k[ plk)„

(v'(r) —Ze'/r) —(A15)
00

and depends only upon the density of ions, not on their
detailed arrangement. The band-structure energy per
electron is written, taking advantage of the factorization
of the matrix elements, in the form

(A16)
where

&k+ql 2'Ik&= s(q) &k+ql p[k&

S(q) =E ' g, e '"'&

&k+ql plk&=Z«k+ql &&«lk&,

(A7)

(A8)

(A9)

1 I(k+q[w[k) I'
~'(v) =—Z. —

XZ (A'/2m)(k' —(k+q)')
g~QO

(A17)
SxZt, '

(I+q[~&=fl -'" e-'"+" V (r)dr

~e may also define an operator ep such that

&k+q[ep[k&=P, & +q[P'u'/2~)
+&k[ VI» —~-l~&«lk&, (A»)

with &k[ V[k)—E. given by Eq (A6)
diagonal elements of tF may also be factored in the form

(k+q[TVIIr&=S(q)&k+q[w[k) (A12)
vrith

(k+q[w[k)=e, +&k+q[ep[k)
+& Ieplk&(k+ql plk&/(1 —(kl plk&), (»3)

Here v,"is the contributio~ of the first-order screening
field to v, . Finally, the electrostatic energy is equal to
the electrostatic energy of point ions with a number of
electronic charges equal to the effective valence,

Z*=Z(1+ (ATZ)-' p (k I p I k)) (A18)

embedded in a uniform compensating background.
In addition to a slightly different form of the matrix

elements of zv from the one we had in our previous treat-
ment, ' there is a difference in the decomposition of the
energy into these three terms. In our earlier treatment,
an additional term in E(q) appeared which was propor-
tional to w and to p. Pick and Sarma' have shown that
the application of the closure relation to this term puts
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it in a form in which it can be naturally included partly
in the free-electron energy and partly in the electrostatic
energy. That term never appears explicitly in the present
treatment because of our choice of a Hermitian m in
Kq. (15).Thus, we now have a different effective charge
for the electrostatic energy, which is equal to the charge

on the ion plus the orthogonalization charge at each ion.
In addition, the free-electron energy is simpler in form.
The separation given here, which is the same as that
used by Pick and Sarma, 4 seems much more natural
than the one that we used earlier, though the total
energy is the same in either case.
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Knight Shifts and Susceptibilities of Transition Metals: PaHadiurn*

J. A. SEITcHIK, A. C. GossARD) AND P. JAccARINQ

Bel/ Telephone Laboratories, Murray Hill, Rem Jersey
{Received 17 June 1964)

The nuclear magnetic resonance (NMR) of Pd' ' has been observed for the first time. The temperature de-
pendence of the Pd"' NMR in palladium metal was studied in the region 1.4 to 300'K. The relatively large
linewidth {bH=9%2 Oe) at all temperatures necessitated the use of continuous averaging techniques to ob-
tain the requisite sensitivity. The field for resonance, at a fixed frequency, was found to have a maximum in
the vicinity of 85 K, as does the susceptibility y {T).From an analysis of the temperature dependence of the
Knight shift K(T) and of x {T)it was deduced that: (1) d-spin paramagnetism is responsible for the observed
behavior of E{T) and y(T), {2) the principle contribution to IC in Pd arises from d-spin-induced core
polarization and (3) the core-polarization hyperfine field H,p= —689~20kOe/spin. From a partitioning of
the various contributions to E, x, and the specific heat, an estimated value of I/Ti O.gT sec ' 'K is ob-
tained for the nuclear spin-lattice relaxation rate at low temperatures. It is shown that the "knee" in x (T) is
not associated with a static antiferromagnetic ordering; an upper limit of 10 ' pg per Pd atom for the spon-
taneous moment at low temperatures is obtained. A diamagnetically uncorrected value of the Pd'0~ nuclear
moment pm' = —0.639%0.003 nm was determined.

1. INTRODUCTION

HE 1arge electronic specific heat C, and suscepti-
bility p of palladium metal has been a subject of

some interest for many years. ' 5 From AgPd alloying
studies it has been advanced that the 4d band is shy
0.4 to 0.6 of an electron of being completely filled. The
relatively large observed values of the electronic
specific heat and the susceptibility have been associated
with the combined effects of a large value of the density
of states at the Fermi level in the d band ¹(Es)and
a sizeable intraband exchange interaction.

Of particular interest is the behavior of the tempera-
ture dependence of x, for it is found' that x(T) exhibits
a pronounced maximum in the vicinity of 85'K. This,
and the fact that magnetic impurity studies have

*A preliminary report of portions of this work has been given
previously, A. C. Gossard and V. Jaccarino, Bull. Am. Phys. Soc.
7, 556 (1962).

'N. F. Mott and H. Jones, The Theory of the Properties of
Metals and Alloys {Clarendon Press, Oxford, England, 1936};

'F. E. Hoare and J. C. Matthews, Proc. Roy. Soc. (London)
A212, 137 (1952); D. Budworth, F. Hoare, and J. Preston, ibid.
A251, 250 {1960).

'A. J. Manuel and J. M. P. St. Quinton, Proc. Roy. Soc.
(London) A273, 412 (1963).

4 E. W. Elcock, P. Rhodes, and A. Teviotdale, Proc. Roy. Soc.
(London) A221, 53 (1954).

5 M. Shimizu, J. Phys. Soc. Japan 16, 1114 (1961).References
to other theoretical work are given in this article.

shown' 8 Pd to be an extremely potarizable metal have
quite naturally led to the belief' that an ordered anti-
ferromagnetic spin state occurs below 85 K. Alterna-
tively it has been suggested4 that the anomalous peak
in x (T) could be obtained from an unusual shape to the
density-of-states curves in the region of the Fermi level.
Recent precise calorimetric measurements' have shown
there is no measurable specific-heat anomaly at the
temperature corresponding to the maximum in 7((T)
as would be expected from a second-order transition.
In addition neutron diffraction measurements" have
established that at low temperatures the spontaneous
moment per Pd atom must be less than 0.03 Bohr
magnetons. Observations of the nuclear magnetic reso-
nance (NMR) of Pd'"' in Pd metal at low temperatures
indicated that the upper limit on the magnetic moment
per atom must be several orders of magnitude smaller
than that which is deduced from the neutron experi-
ments. (We will discuss the meaning of the latter two
experiments later on.) Thus it appears there is little to
support the conjecture of antiferromagnetism in Pd
metal.

e F. W. Constant, Phys. Rev. 36, 1654 {1930).
7 D. Gerstenberg, Ann. Physik 2, 236 (195g).
s J. Crangle, Phil. Mag. 5, 335 (1960).
s A. B. Lidiard, Proc. Roy. Soc. (London) A224, 161 (1954).
0 J. Crangle and T. P. Smith, Phys. Rev. Letters 9, 86 (1962).
"S,C. Abrahams, Phys. Chem. Solids 24, 589 (1963).


