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Nonlinear Interaction of Light in a Plasma
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The elastic scattering of light o6 light in the presence of a plasma is investigated. The cross section for this
process is expressed in terms of matrix elements of the charge-density operator between exact eigenstates of
the many-body system (plasma). The cross section is evaluated to the lowest order in the plasma param-
eter r, =(n/ass) ' As.tudy of the dependence of the diiferential cross section on momentum and energy
transferred in the scattering will allow one to measure the plasma dielectric functions. Although the cross
sections are small, the development of intense light sources (lasers) makes a measurement feasible.

I. INTRODUCTION

%0 electromagnetic waves incident on an electron-
ion plasma will interact with one another and

scatter. The plasma may be regarded as a polarizable
continuum. Electrons may be virtually excited from the
equilibrium distribution by the absorption of radiation
to form excited pairs. The pairs in turn annihilate them-
selves giving rise to the scattered radiation.

It is clear that the nonlinear interaction between elec-
tromagnetic 6elds in a plasma depends in an essential
way on the local screening properties of the plasma. We
will show that, to a good approximation, a measurement
of the differential elastic-scattering cross section of two
light beams as a function of the energy and momentum
transferred in the scattering is a direct measure of the
plasma dielectric function. The elastic-scattering ex-
periments discussed here, in principle, allow one to
measure the behavior of the screening function over a
region of the energy-momentum plane.

Recently there has been considerable theoretical and
experimental interest in the incoherent scattering of
optical or microwave beams from plasmas. ' ' The ex-
periments are dificult because the cross sections (re-
lated to the Thomson cross section —5X10 "cm') are
small. Since the elastic scattering of light off light is a
higher order process (of order e'), the cross section is
expected to be even smaller than that for incoherent
scattering. In spite of this fact, we will show that under
suitable conditions the light-o6-light scattering experi-
ment offers certain advantages over single-beam scat-
tering, so much so that the counting rate in the light-off-
light scattering experiment can exceed the rate in the

single-beam scattering. The salient features of these
results were reported earlier. '

We will compute the cross section for light-off-light
scattering in an electron-gas plasma. This cross section
will be expressed in terms of matrix elements of the
charge-density operator between exact eigenstates of
the many-body system. The cross section will be
evaluated to lowest order in the plasma parameter,
r,= (n/qq') ' —where zs is the electron density and qq the
Debye wave number. 4

H= H„+Hz+H„. „, , (1a)

H„=P dxP,'(x) (—V'/2rzz~)11;(x)

1
+-' dxdx'p(x) — p(x'), (lb)

Ix—x'I

H =— (Ks+Hs)dx,
Sm

(1c)

g2

Hz — dxj(x) A(x)——+P—dxp;(x)A'(x), (1d)
i 2m;

where

p'(x) =4' (x)lt'(x); p(x) =2 e;p,(x), (le)

II. COMPUTATION

Consider a system of electrons and ions interacting
with one another through an instantaneous Coulomb
potential and simultaneously with an external applied
transverse electromagnetic field. The Hamiltonian de-
scribing such a system is of the form

'W. K. Gordon, Proc. IRE 46, 1824 (1955); E. E. Salpeter,
Phys. Rev. 120, 1528 (1960);M. N. Rostoker and N. Rosenbluth,
Phys. Fluids 5, 776 (1962); A, Ron, J. Dawson, and C. Oberman,
Phys. Rev. 132, 497 (1963); D. F. Dubois and V. Gilinsky, ibid.
133, A1308, A1317 (1964) (the 6rst of these two papers will
heretofore be referred to as DG).

2 K. W. Bowles, Phys. Rev. Letters 1, 454 (1958);V. C. Pineo,
L. G. Craft, and H. W. Briscoe, J. Geophys. Res. 65, 2629 (1960);
G. Fiocco and K. Thompson, Phys. Rev. Letters 10, 89 (1963).

A

j(x)=Z(e'/~') I:lt "(x)f V4;(x) }—{Vlf t(x) ip;(x)j
—=2 i'(x)

3 P. M. Platzman, S. J. Buchsbaum, and N. Tzoar, Phys. Rev.
Letters 12, 531 (1964).' For a nondegenerate plasma qq'=4wae P, where P= 1/k7'. For
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Fn. 1. The general Feynman
diagram for the light-oG-light
scattering amplitude.

We have used the Coulomb gauge divA =0 and chosen
our units such, the h=c=1. The operators f, are the
usual second quantized 6eld operators for the particles,
and A is the corresponding operator for the electro-
magnetic field. E and H are the electric and magnetic
6elds, respectively. The sum on i corresponds to a sum
over species with species 1 being the electrons and
species 2 the ions.

In order to calculate the transition rate we make use
of the familiar golden rule,

(2)

where

The g,' is an appropriate average over initial states.
The states q; and yf are, respectively, the initial and
6nal states of the uncoupled system: transverse elec-
tromagnetic field and the complete interacting (via the
Coulomb interaction) many-body system. The small
positive imaginary ie in the denominator of Eq. (3)
produces the outgoing wave boundary condition on the
scattered radiation.

Since we will be interested in the problem of two
photons going to two photons (Fig. 1) we should con-
sider Eq. (2) to fourth order in the interaction Hamil-
tonian, Eq. (1d). Usually one ma, kes the argument that
the j A terms are relativistic terms which may be ne-
glected in computing the low-frequency scattering of
light off a nonrelativistic system such as a plasma. This
argument is in general false since, for example, the j A

terms are the dominant terms in the incoherent scat-
tering of light from a simple atomic system which is
nonrelativistic. They also contribute terms of order one
(in the ratio v/c) to the dissipative part of the conduc-
tivity of an electron-ion plasma. ' For the Compton
scattering of light-off free electrons the j A terms are
negligible and the A2 term gives the correct Thompson
cross section. In order to determine when the j A terms
can be neglected relative to the A' term we must com-
pare the matrix element of j.A taken twice with the
matrix element of a single A' term. We do this compari-
son in the Appendix. Our conclusions are summarized
here.

For a given process the scattering amplitude may be

a degenerate plasma at zero degrees, we define gq as the inverse
Fermi Thomas screening length, i.e., qd'=4&me'/5:I, where FI is
the Fermi energy.

5 A. Ron and N. Tzoar, Phys. Rev. 131, 12 {1963).

A(x) —p (2ir/~) 1/xLo elk x+.ii te—ik xje

where al„a~~ are the photon annihilation and creation
operators and ck is the polarization vector. With this
normalization the density of final states for the photons
is dk/(2ir)' per unit volume. Then,

4(2ir) 'e4

n, m, o, p nCOmN uCOy)
~ 1/2

(e„e.)(e e )

XE&flPk„+k. l &)

x&tlok+k li)/(8, +co +co ht+ie). —(3)

The quantities p& are the Fourier transforms of the
electron density,

pk —— Pi'(x) tt, (x)e*k'*dx,

and h is the energy and
I j) the wave function of the

interacting many-body system. The integers ii, m, o, p
range from 1 to 4. Terms in the sum include those
combinations of ii, m, o, and p which are all different.

expanded as a power series in the plasma parameter r, .
The lowest order terms may be computed neglecting
the j A term as long as Aa&,«mc' (where ~e, is the fre-
quency of the external field). If one is interested in cor-
rections to this amplitude (i.e., the higher order terms
in r,), then there are a number of different cases which
must be distinguished. Suppose one considers a quan-
tum plasma at T=o. If the A' term gives a nonzero
contribution to the amplitude to this order, then as
long as L~'r&&Acu„ the j A terms may be neglected. In
practice, Ep))her, so that the j A term must be included.

For a classical plasma the conclusions are modified.
If the A' term gives a nonzero contribution to the ampli-
tude to order r„ then as long as (A&v/&u, )«1, the j.A
terms may be neglected. The quantity Ace is the fre-
quency transferred to the medium by a two-photon
event (one in and one out). Typically, A~a &u„. For the
conductivity the A' term produces no terms of order r,
so that the entire part proportional to r, comes from
the j A term. '

%e will be interested in computing the differential
scattering cross section of light by light (see Fig. 1) to
toioest order in the ptusma pctrameter. Consequently, we
will neglect the (j A) term in Hr. Photons 1 and 2 are the
incoming photons with wave vectors ki and ki, and
photons 3 and 4 are the outgoing photons (sca,ttered)
with wave vectors ki and ki.

We normalize A so that there is a unit probability per
cubic centimeter of finding a photon. That is to say
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Two terms diRering in the interchange of o and p, or tt

and ns are not counted twice. The factor four in Eq.
(5) takes these symmetric terms into account. The sign
of k„and &u„ is plus or minus depending on. whether the
photon is incoming (1,2) or outgoing (3,4).

We will only be interested in elastic scattering, i.e.,
there is no energy transferred to the system. Thus the
over-all conservation of energy, the delta function in
Eq. (2), becomes a conservation requirement on the
photons. Since the system is translationally invariant
transitions occur only for kt+ks ——ks+k4. The six terms
in the sum for Mr;, Eq. (5), are conveniently broken up
into three sets of two, corresponding to a crossed and an
uncrossed diagram (see Fig. 2). A typical term in
Mf; is

Mt, s(k)-(et es)(es e4)

(fl p-"l~&&~lp" Ii&

Si Sl+M12+Ze

FIG. 3. Diagram showing the
kinematics and polarizations
for the light-oB-light scatter-
ing. All the light beams are in
the X-F plane (the scattering
plane); The scattering angle
is measured in this plane.
Seams one and three are
polarized in the scattering
plane. Seams two and four
are polarized perpendicular to
the scattering plane,

all final states is.

4(2s.) 'e4

[(e, e,)(e, e4)&f1~, , li&
M IGOoM3M4

+(et es)(es e4)&'fl&tsli&,

+(et e4)(es es)&flRt, 4li&]; (11)
where

&f1~'. I')=(—i)

X s '"' '&fl T(pa;, (~) p-~;;(0)] li& (»)

where

k12 k1+k2 and ~12 ~1+to2

M&, 2 may be written as the Fourier transform of a time-
ordered product.

Mt, s(k)-(e, es)(es e4)(—i)

X«s ""'&fl T[p.(t),p-.(o)]li&, (9)

where

p (t) SRHpfp S OHpE

and T is the usual time ordering operator.
In deriving Eq. (9) from Eq. (7) we have used the fact

that h;= hf. The total matrix element which still has
to be averaged over all initial states and summed over

4(2n-) 'e' 1
Mf —— —(et es),&fl~t. sli&

((oto)sa sts4)'" its

In general, all three terms in the polarization sum will
contribute to the scattering matrix element Mf;.

Consider for the sake of definiteness, the scattering
when the two beams are incident head on (see Fig. 3).
Each beam has two independent polarization directions,
in the plane of scattering +, and perpendicular to the
plane of scattering —.It is easy to see that there are, as
in the scattering of light in a vacuum, ' only eight
independent amplitudes, (M++++, M, M++
Mp+, M+ +., M ~+, M p+, M g+ ). Ifwe
polarize our initial beams with beam 1 in the + direc-
tion, 2 in the —direction and measure 3 in the + direc-
tion, we get only one term from the eight possible arnpli-
tudes M+ + . Our matrix element 3f then reduces to

K
Kp

3, K3

4, K4

,K3

4, K4

If we now substitute Mf, into the expression for the
transition rate and divide by the Aux per cc, which is 2
in these units, we find the differential cross section for
scattering photon number 3 into a solid angle d03 with
its polarization vector perpendicular to the scattering
plane.

do'/dQg= Q Q d&ds5(GDt+cos Q)3 cd4)
'b

where
ti = (Sar'es(us/(ota s(o4) (cos'0) . (15)

FIG. 2. The crossed and uncrossed Feynman diagrams corre-
sponding to the term M1, 2 in Eq. (7).The wiggly lines are photons,
the heavy solid line is the many-body system (the plasma).

6 J. McKenna and P. M. Platzman, Phys. Rev. 129, 2354
(1963).
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dtdt'dt"e'~'e '" '

&(T{—(1+1') (1 ))T( (~), —(0))) (16)

where co—=co» and q=k». The bracket symbol is the
usual thermal ensemble average

(O) Tr (e+P (0+ttN H)0)— (17)

Ke are only interested in that part of the average
which is proportional to a delta function, i.e., is infinite
like T (the time interval in the integration). This infinity
just cancels the Cko3 to give terms of order unity in the
differential scattering cross section. It is possible to
show that only products of the form

(q [,(1'), ,(0)])(T[,(1), ,(0)]) (1S)

give terms proportional to T. The net result is that we
only have to consider the expectation value of two
Heisenberg density operators (the two-point density
correlation function). If we wanted to go to higher order
in the plasma parameter, the j.A terms in Hr would
contribute to the scattering cross section and the 6nal
answer could not simply be expressed in terms of the
two-point density correlation function.

We can then write the cross section as'.

f der too 1 Ss.' e'Q(q, to)q'

~dQ;t co4 (k, ks) m' q' 4rre'Q(q, to)—

Q(q )=J « '"'(&( .(1) —.))

(1)—&iHPt~ c t'rrot

(20)

(21)

where Ho is the free electron Hamiltonian and I)o its
eigenfunctions, which obey

(22)

The quantity ro is the classical radius of the electron,
cos8 is the scattering angle (see Fig. 3), and

1—(4s s'/q') Q(q, co) —= e(q, to), (23)

where e(q, to) is the so-called "causal" dielectric function.
The causal dielectric function differs from the usual re-
tarded dielectric function because it has a different

7This result was independently obtained by D. F. Dubois
and V. Gilinsky, Phys. Rev. 135, A985 (1964).

We have specified an average over an initial canonical
ensemble for the many-body system at temperature
t(l =1/kT. The sum is only over final states of the many-
body system which conserve energy. By setting &oi+&o&

=tos+co4 and putting in the 8 function as an additional
time integration the sum over 6nal states can be for-
mally performed. However, we still must evaluate an
expression of the form

III. EVALUATION OF CROSS SECTION AND
DISCUSSION OF RESULTS

Typically, too/co4=1, q'/k, k&=1 (if we are away from
the forward direction). For light sources operating in
the visible at a frequency fz~, =2 eV, the quantity
qh/mc is of the order of 10 '. For these values of the
parameters Eq. (25) may be written as

.(q,~)—1 '
= 10—" cm'/sr.

e(q, co)
(26)

When e(q, to)&0, the ratio inside the absolute value
sign in Eq. (26) is less than or equal to one. Near a zero
of «(q, oo), there is a resonance in the scattering cross
section. This simply means that the intermediate state
to which the many-body system was excited in our
fourth-order process could have been a real state. Of
course, these states have a finite lifetime, i.e., e(q, to) has
an imaginary part. The total cross sections are not
in6nite but just large.

Away from a resonance the ratio involving the di-
electric function in Eq. (26) is of the order of unity. To
see if an experiment is feasible, consider two cw lasers
each capable of emitting 10" photons/sec or approxi-
mately 20 W. Now suppose that the output of each
laser is focused cown to an approximately parallel beam
which is 10 ' cm' in cross-sectional area. If we allow
these two beams to scatter along the length of a plasma
column 30 cm long, then there would be a total of ten
photons/sec scattered into 4s. solid angle. This would be
an extremely dificult experiment to perform.

Suppose instead we used two pulsed lasers each
capable of emitting twenty joules per pulse in the same
experimental set up. If we assume that the pulse lasers
have a pulse width of 10 sec, then the total number of
scattered photons per pulse would be increased to 10'
photons in 4' solid angle. This is an appreciable number
of photons. The main problem in such an experiment
would be the problem of eliminating unwanted back-
ground. This would come mainly from incoherent scat-
tering of the single beams and from light emitted from
the plasma itself. If the two lasers used in the experiment
were at different frequencies' photon 3 would be at a

ttA. J. Glick and R. A. Ferrell, Ann. Phys. (N. Y.) 11, 339
(1960).

'D. F. Dubois, V. Gilinsky, and M. Kivelson, Phys. Rev. 129,
23/6 (1963) Lsee Eq. (26) and Fig. 11$.

imaginary part

Im[e(q, to)]-'= coth(J3(o/2) Im[e~(q, to)]
—', (24)

where e~(q, to) is the usual Lindhard dielectric function.
Equation (19) may then be rewritten as (replacing all
A's and c's)

&o

(butts)

q qi&) 1 e(q, to)
cos'0. (25)

tfQs 2 (M4) kiks mci I e(q&oo)
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frequency co3 determined by the scattering angle 8.

oui(1 —cos8)+%2(1+cosa)
(27)

(u„r„) '= ln—PC, ((u~)/Phco~g
12v2m'n

(29)

is the part due to electron-ion collisions and

(~ r ) 1—L~1l2(q 3/q3)e qg2iq (30)

is the part due to Landau damping. The quantity
C, (co~) is a definite integral which has been evaluated
numerically in Ref. 8. Both parts have been calculated
in the long-wavelength limit, i.e., q((q&. The collisional

part, Eq. (29), will vary as q'/qz' as one moves away
from the origin in q space. At resonance then Eq. (25)
may be written as

do ro t'&u3) q ) t'qh)
II
—

I
(~.r)' cos'~

dn, 2 (~,i h,h, i kmci
(31)

In an actual experiment near the plasma resonance
one would like to maximize the total cross section at
resonance

I Eq. (31)j. In a fully ionized plasma at high

temperatures (hT=10' eV, n=5&(10i2) the collisional

part in the Ime+ is extremely small of the order of 10 '.
In these types of plasmas, light in the visible part of the
spectrum has a k of the order of qd. Therefore, unless q

To lowest order in the difference frequency 4~'=—co2—co&,

co3—co& =Ace' cos8. The difference frequency for the
scattered photon, by going to angles other than —,'x,
will be approximately equal to the difference frequency
between the two incident beams. A ruby laser and a
neodinium laser, the erst operating in the visible and
the second operating in the infrared, could be used to
produce frequency shifts in the infrared. A spectrom-
eter could be used as a means for discriminating
against unwanted background. In addition, coinci-
dence counters could be used to further discriminate
against background.

Although the cross section is small away from reso-
nance and would not be easy to measure, an experi-
ment using pulsed lasers is not out of the question.
However, near resonance, i.e., a zero of e(q, ~d), the cross
section is increased by many orders of magnitude and
an experiment is a definite possibility.

To determine how large the cross section can be
at a resonance, let us a'ssume that a fully ionized
nondegenerate high-temperature plasma acts as the
scattering medium. At resonance, io"-~a&~'+q'(v'),

Ree+(q, a&) =0, and ImI e+(u&, q) j~~o„r where r represents
the lifetime of the intermediate state of the many-body
system. The lifetime ~ is determined either by Landau
damping or by collisions, whichever leads to shorter 7,

(~,r) '=(~.ri) '+(~. )r', (28)
where

is made appreciably smaller than k by measuring the
scattered light in the nearly forward direction, Landau
damping will dominate the collisional damping and
IIm(1/e+) I' will be severely decreased. However, by
going to the forward direction the factor q4 in Eq. (25)
tends to reduce cross section. In an actual case one
should maximize the quantity q'IImI 1/ey(q, &u)jI' to
6nd the optimum conditions for doing an experiment.

At resonance the elastic light-off-light scattering ex-
periment gives the same information about the plasma
as the incoherent scattering. The light-off-light scatter-
ing may be thought of as incoherent scattering squared.
VVe have previously compared the total counting rates
in the light-oR-light scattering experiment with that in
the single-beam scattering, ' and have shown that it is
possible to make the counting rate in the light-off-light
scattering larger than in the single-beam experiment.
The physical reason for this is as follows. One of the
beams in the light-off-light scattering excites a large
density of plasma oscillations in a very small energy
interval. The other beam then scatters from this
"nonequilibrium plasma. " The result is an enhance-
ment of the counting rate.
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Pote added in proof. Recently there has appeared a
paper by N. Kroll, A. Ron, and N. Rostoker (KRR)
I Phys. Rev. Letters 13, 83 (1964)j in which the non-
linear interaction of light in a plasma is considered.
ERR calculated a counting rate for a particular non-
linear process using a classical approach but neglecting
thermal Quctuations.

Ke would like to point out that the cross section as
calculated here and in Ref. 3 may be used to determine
the counting rates in a variety of different experimental
arrangements, in particular, the arrangement consid-
ered by ERR. The ERR arrangement corresponds to
putting in energy in beam (1) and in beam (3), and
looking at the scattering of hearn (2) into beam (4).
The total scattering rate into beam (4) would then be
proportional to n, in2n3 (i.e. , Ei'E2'E3') in the standard
way. I See for example, J. M. Jauch and F. Rohrlich,
Theory of Photons and Electrons (Addison-Wesley Pub-
lishing Company, Inc. , Reading, Massachusetts, 1955),
Chap. 8j.

H one normalizes all electromagnetic 6elds to a
single photon per unit volume, then the ERR results,
Eqs. (6) and (1) in their paper may be compared with
our result, Eq. (1), Ref. 3, or Eq. (19) of this paper.
At resonance, i.e. , near zero of e(q,oi), this comparison
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shows that the cross sections are identical except that
the two dielectric functions which appear in the de-
nominator are different. The two functions, at reso-
nance, and in the high temperature limit, differ by a
factor (k T/Ace~)2 Thi.s factor is the square of the number
of plasmons in thermal equilibrium. It arises from the
macroscopic occupation of the plasmon states. Ke
believe that had ERR included thermal Quctuations
in their analysis, they too would have found a factor
corresponding to our (k T/A~~)' multiplying their
cross section.

M; g=(j, A.)(j,.A)/DF,

Mp =e'(A'p~)/m,

(A1)

(A2)

Mj.g
R=———

3EA~

1 (pg A)(pi A)

maz (A p, )
(A3)

In Eqs. (A1)—(A3) the matrix elements are to be
taken between eigenstates of H„, Eq. (1b). The energy
denominator d A' is a sum or difference of an excitation
energy of the many-body system and a typical photon
energy and m&=m mass of the electron. For a plasma
the light couples to the electrons alone. The electro-
magnetic coupling to the ions is reduced by a factor
(m, /m2 ——m/M = 1/2000). Since the total momentum of
the electron-ion system is a conserved quantity for the
Hamiltonian H„, we assume that it is zero, i.e., that the
system carries no total current. If we neglect collisions
between electrons and ions (these collisions are of
higher order in the plasma parameter, and will be con-
sidered shortly), the total momenta of both electrons
and ions are separately constants of the motion. They
are both independently zero. Kith the neglect of col-
lisions then, it is clear that to all orders in the electron-
electron interaction the (p~ A)(p~ A) term is of the
order k.2(A'p). The only momentum available for the
p~. A term to couple to is the recoil momentum picked
up from the light itself. In this case k, is the wave vector
of the incident or scattered light beams. Thus,

R=kg/mghE.

It remains to estimate hE. It is easy to show that as

APPENDIX A

In this appendix we make a qualitative comparison
between the matrix element of j A taken twice with the
matrix element of A'. Schematically then;

long as e/c«1 (where e is a typical particle velocity)
hE co„ the frequency of the light. The energy differ-
ence of the recoiling many-body system is negligible
compared with cu, . Putting AE=&v, into Eq. (A3), and
replacing c and A we find

R (Ace,/mc'-') . (A5)

The ratio is completely negligible for the usual experi-
ment so we conclude that the A' term in this case gives
the entire amplitude.

Suppose we go to the next order in the electron-ion
interaction (i.e., we include electron ion collisions), then
R is not small and cannot be neglected. Since the elec-
trons collide with the ions, only the total momentum
P= P~+P~ commutes with B'„.The quantities P~ and
P2 are not zero separately. In fact, both P~ and P2 in
general will be of order I'p where I'p is typical momen-
tum, the Fermi momentum for a degenerate plasma and
a thermal momentum for a classical plasma. In this
case then

R=Pg2/2myAu, , (A6)

(A7)R= (S(o/a&.) .

Typically, Ace is of the order of &u~ so that R=cu„/cv,
which is small compared to one.

In the classical case our conclusion then is that the
term j A can always be neglected as long as ~„/~,&&1.

which can and is usually larger than one so that the
P& A term is dominant not the A' term. Another way of
sa,ying this is to remark that collisions with ions are
equivalent to allowing the electrons in the plasma to in-
teract with external Coulomb 6elds which have rela-
tively high Fourier components. The Coulomb fields
bring in wave numbers of the order of kg producing a
recoiling electron system with momentum of the order
of Ip.

For quantum plasmas the preceding discussion is a
valid one. For classical plasmas the situation is not so
clear, since the ratio R should not depend on A. The
extra factor of A arises from the identification of the
momentum and energy of the electromagnetic wave
with its wave number k, and frequency cv, . Detailed
calculations of a few diagrams show that an additional
statistical weighting factor A coth(PAE&v/2) (where 2
is a number of the order of unity) appears as a multipli-
cative factor in the ratio E. In the quantum zero tem-
perature limit P ~~, coth(Phd, &u/2) ~ 1, and R is un-
changed. In the classical limit P —+ 0, coth(APE~/2) —+

1/P(h&u) A and


