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Statistical Mechanics and Field-Induced Phase Transitions of the
Heisenberg Antiferromagnet*
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The spin-Qop and Qop-para phase transitions of a simple uniaxial antiferromagnet are analyzed by a
Green-function analysis. The temperature dependence of the Geld for antiferromagnetic resonance, the paral-
lel and perpendicular susceptibilities, and the sublattice magnetizations are also computed. It is shown that
these eff'ects are sensitive to the temperature-dependent renormalization of spin-wave energies, and this ef-
fect is analyzed in some detail. Results are in good semiquantitative agreement with antiferromagnetic
resonance in MnF2 and Cr203, with the phase transition boundaries in MnBr2 4H20, and with the perpendic-
ular susceptibility of MnF2.
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FIG. 1. Phase diagram for MnBr2 4H20, from Schelleng and
Friedberg (Refs. 4, 5). The symbol indicates a specific-heat
anomaly observed by Schelleng, the Q represents measurements
by Tsujikawa and Kanda (points without error bars —Ref. 6) and
by Bolger (point with error bar—Ref. 7), by optical absorption.
The solid curves are schematic, being computed by molecular Geld
theory scaled to the experimental points.

~ Supported by the U. S, Once of Naval Research.
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1. INTRODUCTION
' "N this paper we discuss the statistical mechanics of a
~ - simple uniaxial Heisenberg antiferromagnet, with
special emphasis on the nature and temperature de-
pendence of the several phase transition boundaries and
of antiferromagnetic resonance (AFMR). We also con-
sider such thermodynamic properties as the sublattice
magnetizations and the parallel and perpendicular sus-
ceptibilities. The types of materials motivating the
investigation are RbMnF2, Mnp~, and Cr~O3, which
have been studied in the antiferromagnetic phase by
AFMR and other methods, and MnBr2 4H20, an anti-
ferromagnet with small exchange field and low Keel
temperature, for which the entire phase diagram has
been studied by a variety of experimental methods. The
conceptual background of the problem and the heuristic
significance of the results are discussed respectively in
this Introduction and in the final section of the paper,
both of which are self-contained.

The mathematical model which forms the basis of

discussion consists of a simple cubic or a body-centered
cubic' array of magnetic ions of spin S, interacting by a
negative nearest-neighbor exchange interaction. In addi-
tion, we assume the presence of a uniaxial anisotropy'"
and an external magnetic field, each coaxial with the
crystalline s axis,

At a given temperature below the Keel temperature,
and at su%ciently small held, the individual spins are
aligned parallel or antiparallel to the field (with, of
course, random thermal fluctuations around these aver-
age directions). As the field increases a phase transition
occurs, the spins "Bopping" to a generally transverse
orientation. ' As the held increases further, the spins
increasingly tilt toward the field direction. At a particu-
lar value of the field the average direction of each spin
then becomes parallel to the field direction, thereby
defining a second phase transition to the paramagnetic
phase, as illustrated in Fig. 1 (taken from the measure-
ments of Schelleng' and Friedberg' on Mn3r~ 4H2O and
of optical absorption measurements'r). lVe shall be
concerned primarily with the antiferromagnetic (low-
field) and the paramagnetic (high-field) phases, and
with the curves bounding the regions of stability of
these phases.

The theoretical interest in the phase transitions
centers in the direct relationship of the transitions to the
"renormalization" of the spin-wave energies through
spin-wave interactions. The role of the renormalization
eBect is most clearly evident when we consider the Qop-

'These structures have the convenient property of being re-
solvable into two sublattices such that the nearest neighbors of an
ion on one sublattice lie only on the other sublattice.

'For a discussion of this model, of the role of the uniaxial
anisotropy in establishing a unique ground state, and of the re-
concilliation of the uniaxial anisotropy with the otherwise cubic
crystal symmetry, see J. Van Kranendonk and J. H. Van Vleck,
Rev. Mod. Phys. 30, 1 (1958).

'As is very well known the spin-Qop transition occurs because
the susceptibility is greater in the transverse con6guration, and
the energy ——',XJ-H' overcomes the anisotropy energy which tends
to keep the spins along the axis of the 6eld.

4 J.H. Schelleng, Ph. D. thesis, Carnegie Institute of Technology,
1963 (unpublished).' J. H. Schelleng and S. Friedberg (to be published).'I. Tsujikawa and J. Kanda, J. Phys. Radium 20, 352 (1959).' B. Bolger, Communications, Conference de Physique Des
Basses Temperatures (1955},p. 244 (unpublished).
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FIG. 2. Spin-wave spectrum in paramagnetic
phase at low temperature.

yH, = 2SzJR(T) . (1.3)

Thus the temperature depeudertce of the critical field curve
directly reft ects the temperature dependence of the spi e-wove
renormalisatioN.

s F. J. Dyson, Phys. Rev. 102, 1217, 1250 (1956).
z The bracketed expression in Eq. (1.1) is simply

zJ(1——,
' cosk, a—xz cosk„a xcosk,a5-

for a simple-cubic nearest-neighbor model, where s is the number
of nearest neighbors.' A good discussion of the renormalization eGects is given by
F. KeGer and R. London, J. Appl. Phys. 52, 25 (1961).

para transition. Above this transition, in the paramag-
netic phase, the configuration of the system is identical
to that in a ferromagnet. %e can therefore adopt the
standard spin-wave analysis of the ferromagnet, ' the
spin-wave frequencies being

h(u(k) =pH —S[J'(0)—J(k)], (1.1)

where J'(0) and J(k) are the Fourier transforms of the
exchange interaction, ti=geh/2mc, and H is the mag-
netic field. ' The minus sign before the second term in
Eq. (1.1) has been inserted to take explicit cognizance
of the negative sign of the exchange interaction, and it
results in an inversion of the spectrum with respect to
the usual ferromagnetic case, as indicated in Fig. 2. The
minimum of the spin-wave spectrum in a simple cubic
structure occurs at the [111]corner of the Brillouin
zone, whereh a=h, a=h.a=7r and A~(kiii) =uH 2SzJ. —
Consequently, this spin-wave frequency becomes nega-
tive if the magnetic field is less than the critical value
H.=2SzJ/u. The spin-wave amplitude then grows ex-
ponentially, corresponding to an instability in the para-
magnetic phase, and a phase transition to the spin-Qop
phase occurs. However, the simple spin-wave theory
just given predicts no temperature dependence of the
critical field. But, in fact, the spin-wave frequencies of
Eq. (1.1) are renormalized's by a temperature-de-
pendent factor R(T), reflecting the effect on the given
mode of the presence of other thermally excited spin
waves.

ho (k) =pH —S[J(0)—J(k)]R(T), (1.2)
whence

%hereas the transition from the spin-Hop to the para-
magnetic phase is second order in the Landau" sense
(the two phases are indistinguishable at the tranitions),
the transition between antiferromagnetic and spin-Bop
phases is first order (the phases being distinct at the
transition). The analysis of this 6rst-order transition is
therefore complicated by the possibility of metastable
"superheating" and "supercooling" states, analogous to
those in a conventional gas-liquid transition. In Fig. 3
we show a conventional I'-V isotherm for a gas-liquid
transition, and the corresponding H-M isotherm for the
spin-flop transition; the ordinate in Fig. 3(b) is taken as

H to —preserve the thermodynamic analogy ( I' & ~ H—)
At point A the liquid is locally stable (i.e., the free
energy has a local minimum) and the value of the free
energy is equal to that in the gas at point D; the pressure
I'~ ——I'~ is the pressure of the true first-order transition
at temperature Ti, as shown in Fig. 3(c).If the pressure
is quasistatically decreased below I'~ along the T»
isotherm in Fig. 3(a), the local minimum of the free
energy changes shape, the quadratic terms finally
ceasing to be positive definite at the point 0. At this
point some generalized coordinate finds a vanishing
restoring force and the natural frequency of the corre-
sponding dynamical mode vanishes. Thus the point 8
in Fig. 3(a), and the corresponding curve in Fig. 3(c),
demarcate the limit of local stability of the liquid phase.

In the antiferromagnet similar considerations apply,
and along the limiting curve of local stability of the
antiferromagnetic phase [8 in Figs. 3(b) and 3(d)] one
of the spin-wave frequencies of the antiferromagnetic
phase vanishes. %e shall refer to the resulting stability
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FIG. 3. Phase diagrams for liquid-gas and spin-Bop transitions.

' See for example L. D. Landau and E. M. Lifshitz, Statistical
Physics (Pergamon Press, Ltd. , London, 1958).
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pH, a=25/K(sJ K)j'". — (1.5)

A quantum-mechanical treatment would undoubtedly
alter the result, and we shall not make quantitative
reference to this value of the criticaL field, indicating it
only for purposes of illustration.

The critical field bounding the stability of the spin-
flop phase (that is, the flop-anti transition) has been
analyzed by Wang and Callen" by a spin-wave analysis.
They Gnd the critical Geld

boundary as the "anti-Aop" transition curve; this should
not be confused with the true "spin-Bop" transition
curve AD, nor with the "Qop-anti" transition curve C
which bounds the stability of the spin-Qop phase. We
shall calculate only the anti-Bop transition curve in
this paper.

The relationship among the critical Gelds is most
simply illustrated at zero temperature. If the spins are
treated as classical vectors, the energy E« in the anti-
ferromagnetic configuration can be directly compared
with the energy Eg in the spin-Bop conGguration. Based
on the model described in the second paragraph of the
Introduction Lthe corresponding Hamiltonian is given
in Sec. 2, Eq. (2.1)j one finds

1 's E„=isÃ—LsJS' cos28 —2iiHS cosg —2ES' cos'gj
——s,SLsJS'—2ES'j, (1.4)

where E is the anisotropy constant and tY is the angle
between the spins and the s axis. Minimizing this ex-

pression with respect to the angle 0, we Gnd that the
resultant energy difference vanishes for a critical Geld

H, ' given by

the low-lying states accurately. And it is clear that these
factors are required for quantum-mechanical consist-
ency, at least in the case of spin -'„ for which the effective
anisotropy constant EP must vanish because (5')' is
merely a constant.

The critical Geld H. as given above also resu1. ts from
our analysis, but with additional quantum corrections,
of the order of a few percent, arising from the lack of
saturation of the sublattice magnetization in the ground
state of the antiferromagnet. In addition, of course
our analysis extends the critical Geld curve to nonzero
temperatures.

To first order in K/sJ, the critical fields given above
stand in the ratio

H- H o Hr=~)1+(K/2sJ)(1+P)) 1.
&&Ll~(1+~)j'"L1—(K/4 J)(5@+~—2)3

For fairly typical values of E and sJ, such as apply
for instance to MnI's, is E/sJ 0.01, and the separation
of the critical fields is of the order of &1%. In such
cases the distinction among the critical Gelds would be
difficult to observe experimentally, and our analysis of
the stability boundary of the antiferromagnetic phase
is operationally equivalent to a theory of the true phase
transition. In MnBrs 4HsO, E/s J is of the order of 13~/o
and the three critical Gelds at the lower transition are
appreciably separated. In fact, a hysteresis of this
general magnitude is observed in upward and downward
excursions through the transition. ' ' In such cases the
antiferromagnetic resonance experiments of Foner'~ are
of special interest.

In a typical AFMR experiment an applied Geld is
adjusted to bring the k=0 spin-wave mode into reso-

where

Kg(1+$)
iiH, r = 25(sJ—EP) — — (1.6)

2sJ+EP(1+$) H;=H(O)
IH(+)

H P/
~= (1-1/25)'" (1.7)

Finally, the critical Geld bounding the stability of
the antiferromagnetic phase (the anti-flop transition)
follows from the standard" " spin-wave treatment of
the antiferromagnetic phase. There are two spin-wave
branches, with energies

~pH+25/EP(s J+EP)]'~' (1.g)

and the mode of zero wave vector, in the lower branch,
becomes unstable at the critical Geld

IiH, =25/Ep(sJ+Ep))'". (1.9)

The P factors appearing in these equations are, in
fact, absent in the standard spin-wave theories. How-
ever, Wang and Callen" have shown that they are intro-
duced if spin-wave theory is suitably altered to treat

"Yung-Li Wang and H. B. Callen, Phys. Chem. Solids (to be
published)."P.W. Anderson, Phys. Rev. 83, 694 (1952)."R.Kubo, Phys. Rev. 87, 568 (1952)."T.Oguchi, Phys Rev. 117, 117. (1960).

H (cu)

H; =H{O)

FIG. 4. Spin-wave spectrum of antiferromagnetic phase. For
77=0 the two branches are degenerate. For an applied held Il (co)
the branch which moves downward becomes degenerate at 4=0
with an applied AFMR signal frequency co. For the applied Geld
H o the k=0 mode becomes unstable.

'6 See for example F. M. Johnson and A. H. Nethercot, Phys.
Rev. 114, 705 {1959};G. G. Low, A. Okazi, R. W. H. Stevenson,
and K. C. Tuberheld, I. Appl. Phys. 35, 998 (1964)."S.Foner, Phys. Rev. 130, 183 (1963).
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nance with a specified signal frequency co, rather than
to reduce its frequency to zero. Such experiments have
been carried out for instance by Foner" on single
crystals of Cr~03. The spin-wave spectrum of the anti-
ferrornagnet with an applied Geld is shown in Fig. 4.
The field H(ru) required for AFMR at frequency tu is
equal to H. if co=0, and is less than H. for co/0. The
loci of H(oi) are shown on the phase diagram in Fig. 5.
Clearly, measurements of H(co), extra, polated to co=0,
give H, even though the actual transition in a given
material may occur at the lower Geld B,'. Thus the
stability boundary of the antiferromagnetic phase can
be measured by AFMR experiments. The temperature
dependence of the H(oi) curves for arbitrary tu will be
calculated in Sec. 7.

The salts MnCls 4H.O and. MnBrs 4HsO (Fig. 1)
have been studied intensively. The Neel temperatures
are of the order of 2'K and, the critical fields H.' Lsee
Eq. (1.3)]for the Qop-para transition are approximately
20 kOe. The anti-Bop transition in MnBr2 4H~O has
been observed by Tsujikawa and Kanda' and by Bolger, ~

by the sudden shift in the optical absorption line at the
transition. The anti-para transition in the same material
was observed by Schelleng4 by measurements of the
speciGc-heat anomaly in crossing the transition curve.
Using both single-crystal and powder specimens of the
two salts, Henry" observed the change in magnetization
with temperature for constant fields between 6 and 58
kOe; a bump appears in the magnetization curves as a
function of temperature, locating both the anti-para
and Qop-para transitions.

Jacobs" also observed magnetization curves to study
the anti-Qop transition in MnF2. This material has a
Neel temperature of 68'K, so that the Rop-para transi-
tion would be at unavailable Geld strengths, but the
anti-Qop transition is observed at 93 kOe at tempera-
tures ~& 20'K.

If the anisotropy Geld is larger than, or comparable to,
the exchange field, the spin-f/op phase region contracts
to zero area, or disappears. The resultant anti-para
"metamagnetic" transition has been studied by Jacobs"
in siderite (FeCOs), for which the Neel temperature is
38'K. He again followed the magnetization as a function
of field at constant temperature and found that for small
temperatures the anti-para critical field is approximately
200 kOe. The same phenomenon has also been observed
in hydrated FeBrs by Jacobs and Lawrence. "The Neel
temperature is 11'K and the antipara critical field is
approximately 31 kOe for low temperatures.

Because of the centrality of the spin-wave renormali-
zation effect in the phase transition problem, we emp1oy
the method of two-time, temperature-dependent Green

"W. Henry, Phys. Rev. 94, 1146 (1954)."L S. Jacobs, J. Appl. Phys. Suppl. 32, 1289 (1962).
~0 I. S. Jacobs, J. Appl. Phys. 34, 1106 (1963)."LS. Jacobs and P. E.Lawrence, J.Appl. Phys. 55, 996 (1964).

I'"IG. S. Temperature dependence of the field for AFMR,
for various signal frequencies.

functions" for arbitrary spin. Two decoupling approxi-
mations are explored: the random-phase approximation
(RPA) as introduced by Tyablikovss and generalized
by Tahir-Kheli and ter Haar '4 and the Callen" de-
coupling approximation (CD). We shall find that at low
temperatures CD agrees with spin-wave expansions for
the sublattice magnetizations and the paramagnetic
phases, and with the spin-wave expansions for both
phase transition boundaries. Whereas RPA, like molecu-
lar field theory, gives a constant perpendicular suscepti-
bility in the antiferromagnetic phase, CD predicts a
decrease with temperature, qualitatively similar to that
observed, for instance, in MnF2. " However, neither
approximation is adequate in the neighborhood of the
Neel temperature.

In the ferromagnetic case the decoupling approxima-
tions recently have been investigated by Tahir-Kheli, '
by an ad hoc determination of the optimum decoupling
to obtain agreement with all available rigorous series-
expansion results. He found that the optimum de-
coupling was the CD, but that an additional inhomo-
geneous term of the form suggested by the work of
Wortis" is present. This inhomogeneous term is particu-
larly large for S=~, but for other spin values it has
signiGcant values only in the vicinity of the Curie tem-
peratures. We accordingly expect the CD results for the
antiferromagnet to be satisfactory for 5/~ and for
temperatures comparable to, but not in the immediate
neighborhood of, the Neel temperature.

The phase diagram has been previously studied ex-
tensively, using the Neel molecular-field model. Schel-
leng4 gives an excellent review of these studies. The
model is useful in indicating general qualitative be-

'2 N. N. Bogolyubov and S. V. Tyablikov, Dokl. Akad. Nauk
SSSR 126, 53 (1959) [English transL: Soviet Phys. —Doklady4, 589
(1959)j. A good review article is given by D. N. Zubarev, Usp.
Fis. Nauk 71, 71 (1960) /English transl. : Soviet Phys. —Usp. 3,
320 (1960)].~ S. V. Tyahlikov, Ukr. Nat. Zh. 11, 287 (1961).

~ R. A. Tahir-Kheli and D. ter Hear, Phys. Rev. 127, 88 (1962).
H. B. fallen, Phys. Rev. 139, 890 (1963)."J.W. Stout and M. Griffel, J. Chem. Phys. 18, 1455 (1950).

'7 R. A. Tahir-ICheli, Phys. Rev. 132, 689 (1963).
'8 M. Wortis, Ph.D. thesis, Harvard University, 1963

{unpublished).
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havior, although quantitatively it is in serious disagree-
ment with the rigorous results in the special regions
&&here these are available.

The general problems here considered have received
little theoretical attention. The spin-Qop phase has
been analyzed by Fu-Cho Pu" for the special case of
spin —,'and zero anisotropy, using a Green-function
method. A standard spin-wave analysis of this phase
has been carried out by Wang and Callen" for general
spin and including anisotropy, but restricted, of course,
to low temperature. Falk' has used a variational
method valid at low temperatures for the case of zero
anisotropy but general spin. Falk has also calculated the
fiop-para transition curve; using CD we find complete
agreement with his result in the low-temperature region.
The paramagnetic phase at low temperature is formally
identical to a ferromagnet and is therefore described by
standard spin-wave theory. At high temperatures many
terms in the expansion of the susceptibility in powers of
1/T have been calculated and studied. "The antiferro-
magnetic phase for small fields has been studied most
extensively. In the low-temperature spin-wave region,
an excellent review article of previous treatments has
been given by Nagamiya, Vosida, and Kubo. 32 The
Green-function method for arbitrary temperature, but
for spin —,

' only, has been applied by Ginsburg and Fain."
While writing up the results of our own investigation
we have also received a preprint of a similar Green-
function analysis of the antiferromagnetic phase by
Hewson and ter Haar'4; these authors, incidentally,
treat the case of anisotropic exchange rather than
uniaxial anisotropy, thereby avoiding the formal diK-
culty of decoupling.

2. GREEN-FUNCTION EQUATIONS: ANTI-
PERROMAGNETIC PHASE

For the model described in the second paragraph of
the Introduction the Hamiltonian is

5C=& ~r.Ls(f'g +f g')+f'g'7

Sr+=S—f*+iSfv by f+ T. he temperature-dependent
Green function is de6ned by

-'((f)&LA(f),B7) (f»)
((A(f); »&= (2.2)

sg(f) &LA(f),B7) (f&0)

The function e(t) is the unit step function (zero for nega-
tive argument and unity for positive argument), the
single angular brackets denote an average with respect to
the canonical density operator exp) —PK7, (P= I/kriT),
and the square brackets denote the commutator. The
Fourier transform of the Green function with respect
to the time is denoted by ((A; B)). The equation of
motion satisfied by this function is

E«A; B))= (I/2a. )&PA,B7)+((PA,R7; B)). (2.3)

Knowledge of ((A; B)) suffices to determine the correla-
tion function (BA (f)) in the usual fashion. "

We consider here the Green function «I+; g)) where,
for convenience, we also introduce the notation

(2.4)

where l and j can be on either sublattice and a is a
parameter introduced for the purpose described in Ref.
25. The equation of motion of the Green function is

&)«~+ ))=(I/2 )(L~" 7)+1~&(f+~*+~*I+' ))

+Z ~;&«'"—i";~)) (2&)

We adopt decoupling procedures analogous to those used
previously in the study of the Heisenberg ferromagnet:

(&f'g+' Z)) &f')((g+; f))+~(g')&f g+)((f+ f)), (2 6)

(&g f+ ~))- &g )((f+ ~))+-(f )(g-f+)((g+; ~)), (2 7)

where the random-phase approximation" and the
heuristic decoupling scheme proposed by Callen" are
obtained by appropriate choice of n.

—~&LZ f*+Z g'7 —ltLZ(f')'+Z(g')'7 (2 I)
n= 0 (RPA)
= I/(25') (CD) (2.8)

Here pS is the magnetic moment per ion, H is the ex-
ternal magnetic field (directed along the negative s axis),
and f and g label the sites, respectively, of each of the
two interpenetrating sublattices into which the lattice is
assumed to be decomposable. Ful. thermore, for economy
of notation, we denote the spin operator Sr' by f', and

~ Fu-Cho Pu, Doklady Akad. Nauk. SSSR 13I, 1244 (1960)
/English transl. : Soviet Phys. —Doklady 5, 128 (1960)j.' H. Falk, Phys. Rev. 135, A1382 C'1964).

n C. Domb and M. F. Sykes, Phys. Rev. 128, 168 (1962)."T.Nagamiya, K. Yosida, and R. Kubo, &dvancesin Physics
(Francis gr Taylor, Ltd. , London, 1955), Vol. 4, p. 1.

V. L. Ginsburg and V. M. Fain, Zh. Eksperim. i Teor. Fiz. 39,
1323 (1960) LEnglish transl. : Soviet Phys. —JETP 12, 923 (1961)g.

~A. C. Hewson and D. ter Haar, Clarendon Laboratory,
Oxford, Great Britain, Ref. No. 121/63 (unpublished paper).

As discussed in Ref. 25, at low temperatures CD
represents an approximate treatment of the deviation
of f' from +5 and of g' from —5, whereas at high tem-
peratures it represents an approximate treatment of the
deviations of f' and g' from zero. This consid. eration
contributes the factor (g')/S and (f')/S to the second
terms of Eqs. (2.6) and (2.7), respectively; the alterna-
tive choice of —(f*)/S and (g')/5, respectively, can be
shown to lead to internal inconsistency of the theory,
as will be discussed following Eq. (3.24). Furthermore,
CD can be visualized as an application of Wick's'"'

theorem to the boson-like creation and destruction

"G.C. Wick, Phys. Rev. 80, 268 (1950).
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operators
't(k) —(2S)-in P ea Ri1-.

We further note that

e(0)=2«& (2.16)

this consideration contributes the remaining factors to
the second terms of Eqs. (2.6) and (2.7).

For the Green functions which appear in the ani-
sotropy terms, we adopt a decoupling analogous to
Eqs. (2.6) and (2.7).

((f'f*+f*f';J» ~
L2(f*&—(f*&((f'f )+(f f'))3((f' J&) (2 9)

(&g+g*+a*g' i»
L2(a'& —(a*)(&C'a &+(g g'&)3&(C' 2». (2 1o)

The choice n=0 (RPA) corresponds in this case to the
substitution of 2E&f'&f' for E(f')' in the Hamiltonian;
this is a sort of semi-molecular-field approximation for the
anisotropy energy. The choice n= 1/(2S') is less clearly
motivated for the anisotropy terms (2.9) than for the
exchange terms (2.6). However, we note that the argu-
ment in terms of the application of Varick's theorem to
the boson-like operators a(k) and at(k) proceeds in
the same fashion. Furthermore, it is reassuring to note
that this decoupling satisfies a necessary identity for
spin -'„we then have f+f*+f'f+=0 so that the Green
function (2.9) must vanish. The right-hand member of
Eq. (2.9) becomes 2(f')(1—(f+f )—(f f+)). However,
f+f +f f+=1 for spin s, so that the right-hand mem-
ber of Eq. (2.9) does indeed vanish identically. Finally,
it can easily be shown that the decoupling does give the
famous l(l+ 1)/2 power law for the effective anisotropy
coeKcient at low temperatures. "

The Green-function equations of motion now become

~~-.~+«&( J--Z, J.,(f-g.»
»er(f*H((f—+; I&)

= L~y(~)/2- jar,+Z, J',(f )
&&(1—(g f'&)((g', Z&) (211)

Ã "~+(f')(» ZJ', (g—f+))-
—J .(g'H&(g"; J»

=9,( )/2-7~„+Zr Jr, (g )
X(1—(f g'&)(&f' J)), (2»)

where s is the number of nearest neighbors and J is the
value of Jf, for the nearest-neighbor spins. Further

sr=(2&/»)Li —~&f f')—~&f*&j (2 13)

e.=(2&/sJ)L1 —
&g g+&—&g*&j ('- 14)

and, as in Ref. 25,

'(&)=(P ~l)
= PS(S+1)(e- —1)+(e-'+1)(d/da)

—( —)( '/ ')j( ') ( )

G- (k, ') =Z((~+; i&&e '""' (3.1)

or inversely

2

(&l+; g»= —P G„„'(k,u)e'" " '.
g k

(3.2'l

Here k is a wave vector ranging over the first Brillouin
zone of the magnetic lattice. The subscripts on G(k, a)
merely denote the sublattices to which the ions belong;
r takes the values I (up), or d (down) according to the
sublattice of I; and r' takes the values I, d, according to
the sublattice of j.Hence G can have the four distinct
subscripts (Nn), (ud), (dn), (dd). The Fourier transforms
of the correlation functions carry similar subscripts, r
again specifying the sublattice of l and r' the sublattice
of j:

(3 3)

The correlation function of nearest-neighbor spins

plays a particularly important role, and we therefore
And it convenient to ddine:

fs (f g+) (g n——earest neighbor of f) (3.4)

and we note that this correlation function has the same
value for all nearest-neighbor pairs of f and g.

Finally, we de6ne the transform of Jfg

J(k)=sJV, =JQ e-~a~ .
j'

(3.5)

multiplying Eq. (2.11) by e—'"'a» and Eq. (2.12) by
e 'a'"~~' and summing over f and g, respectively, gives

v~+»(g—*)(1 &A) »e—r(f*)7G—"(k'o)

= (1/2&) gr(o)Z, .+J(k)(f')(1—ups*)Gd, (k,&), (3.6)

& —.+. (f)( --~,*)- .(g» '(, )
=(1/2n)8, (u)~, +J(k)&g*)(1—~f )G, (k,o), (37)

where

6„,=—1, r=r'
—0, rWr'. (3.8)

3. FORMAL SOLUTION: ANTIFERROMAGNETIC
PHASE

To diagonalize Eqs. (2.11) and (2.12), we introduce
Fourier transforms:

ss C. Zener, Phys. Rev. 96, 1335 (1954}.See also a review article
by J. H. Van Vlt.ck, J. Phys. Rad. 20, f24 (j.959), Solving the two couPled equations for the Green func-
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G„, (k,a) = (1/22r)[Z —
««
—bv(k, «))

—'[E—7«+bv(k, «)j '

X(~.,~.,0,( )[Z „a—+.Z(f &(1 op—,*) .Z—.,(g*&j+~.,~., 0,(o)[& «&—+s~(g*)(1 ~A) s~—~~(f'&3

+~.,~„0,(.)J(k)(f &(1 -A—*)+~.,~., f««(~)~(k)(g &(1--&2)), (3 ~)
where

(3.10)

(3.11)

v(k«), =(1—«2y22)'»,

~()- y„(k)+pi(k)+1
P„(k,a) =h.,h„; y„(k)—yg(k) —1+

2 v(k, «)

y„(k)+p((k)+1
0-(k) —4 ~(k) —1— + [~.(k)+e (k)+1j

2 2bv(k, «)

~.(~)
+kg, Ag„

«=(s~/b)l -(f )(g &(1--~2*)(1--A)3 ' .

The Fourier transform of the correlation function consequently is

(3.12)

(3.13)

y [6 „6 , &,( )(f')(1—4 *)+~ .~ "0 ( )(g')(1- 4' )j (3 14)

where

P„,~(k) = [exp'„,~(k) —1] '. (3.15)
(e"'g f+&«=,+2

=(1/b).J~„(~)(f&(1—~P2*)(1/.)Z2 &(~—~'), ( . )

&,i(k) =bv(k, «)ah, (3.16)

where the positive sign is associated with the upper
mode (2«) and the negative sign with the lower mode (l).
The Bose occupation numbers of these modes are P (k)
and p~(k). As in the ferromagnetic case it is convenient
to introduce the Fourier transforms

The energies of the spin waves in the upper and lower
branches are, as can be corroborated by comparison
with conventional spin-wave theory,

where the summation over 6' extends over the s nearest-

neighbor vectors. We also note that the function Q(R),
which appears frequently in the theory, can be related

to the correlations of two spins a distance R apart, in

each sublattice.

(fl f2+&fz fi+I2 (=g& g2 )vz 2&+a=
4n(R) = — (3 23)

(f'& (g*&

Equations (3.21) and (3.22) also evaluate $2, and with

the aid of (2.16)
C „,«(R) = (2/E) Q2 e'"'R&„,2(k),

2 @„(k)Py, (k)+1
Q(R) =—P e'2 " — . (3.18)

2v(k, «) so that f2 is real.
If a factor n«had be—en introduced into Eq. (2.6) in

place of n(g*), and if n, had replaced n(f') in Eq. (2.7),
Eq. (3.21) would contain the factor ((gz&+n«$2) whereas

Eq. (3.22) would contain the factor ((f')—n,f2~). The
consistency of these two equations would then demand
—n«(f*&=n, (g*). This was the basis for the form of

decoupling assumed in Eqs. (2.6) and (2.7).
The three quantities determining the spin-wave

energies (3.16) can now be written in terms of the sub-

lattice magnetizations and the correlation functions.

The correlation functions of particular interest are

(e'"f2 f2')r, r,+R-
8f (G)[4 (R) C' (R) 8,o+20(R)j,

eel~ — +j~gj. g& tu =a+&

29gz(+)[@ (R) @i(R) bR, Q 2~(R)j

(1/b)s~ef(~)(g )(1 &A)(1/s)E ' ~(5 5 )

(3.19)

(3.20)

(3.21)

(3.17)

=(1/b)2sJ(f'&(g*&(1 —&2)(1/s)Z2 Q(~—5') (3 24)

b= 2s~((f*&—(g*&)(1—+2)+~&((f'&—(g*))—«[((f*&'—(g*)')(@-(0)—@'«(0))+2fl(0)((f*&'+(g*)'»

sJ((fz&+(gz))(1 ~g, )+Jt ((fz&+ (gz)) «[((fz&2+(gz&2)(@ (Q) @ (0))+2Q(0)((fz&2 (gz)2)$ (3 26)

«=( ~ib)(1-~ )(-(f )(g &)'" (3.27)
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1n order to 6nd the sublattice magnetization we set &=0 in Eq. (3.19) and note that it is identical in form «
Eq. (42) of Ref. 25, whence

(f*&={I5'—n(0) ——',(e.(0)—et(0) —1)]l 1+n(o)+-;(e „(o)—e,(o)—1)]»+~
+L5'+1+Q(0)+ l(e'.(0)—e' (o)—1)]LQ(0)+l(e'-(0) —e' (o)—1)]'"'&

X{L11Q(0)+-,'(e „(0)—e t(0)—1)]'S+'—fQ(0)+g2(e „(0)—e t(0)—1)]'S+') '. (3.28)

fol

-,'Le „(0)—e (0)—1]—Q(0)

—,'Le „(O)—e,(O) —1]+n(O)

in the right-hand member of the above equation.

The expression for (g*) is obtained by substituting the
function

By straightforward differentiation, one 6nds that

l9

n(o)
BH

=0, (4.10)

from which it follows that the parallel susceptibilities
of the individual sublattices are equal, and each is half

of the total parallel susceptibility:

4. SUBLATTICE MAGNETIZATION AND SUSCEPTI-
BILITIES AT ZERO FIELD

~pl If g 2 (4.11)

&t = —2(f'&t(s ')E ~ Q(5—&'), (41)

(4.2)

For vanishing applied Geld the formalism simplifies
greatly and we can easily evaluate the sublattice mag-
netization as a function of temperature. By obvious
symmetry we have (f')= —(g'). This implies by Eq.
(3.28) that e (0)= e t(0), and by Eqs. (3.15) and (3.16)
in turn that h=o. In addition we find:

(4.12)

and similarly for the definition of X„".
If the anisotropy constant is negligible, the equations

for the sublattice magnetizations and susceptibilities
simplify further. Then t= 1 and Q(R) can be evaluated

I by Eq. (4.4)] in terms of the single parameter pb,

thereby also determining (f') Lthrough Eq. (4.5)] in

terms of Pb Purthe. rmore, we can rewrite Eq. (4.3) in

the form

b=sj(f'&I:t '+2~(f*)s ' Z ~ Q(&—&')] (4.3) (4.13)

Q(R) = (2/1V)gt, exp(ik R)(1—t2~, 2)—&t2

X {Lexppb(1—t2va')'" —1]—'+ g~),
and

(f*&=Hs+k —n(o))(n(o)+-;) 8+

+(5'+ l+Q(o))(n(0) —l)"+']
xL(Q(0)+~)2s+& (Q(0) t)ts+1]—1

Ke further recall that, if u is the lattice constant

so that kttT is also known in terms of the parameter Pb,
and ehmination of Pb between these equations yields
the sublattice magnetization as a function of tempera-
ture for all temperatures below the Neel point.

Similarly, the perpendicular susceptibility becomes,

(4 5) for zero anisotropy,

X'= 'tt'1V(f')/b-
Pg= a (COSA gG+COSktltt+ COSttett) (SC),

yj, ——cos-', k, tt cosak„tt cos-', k, tt (bcc) .

(4.6)

(4.7)

1
1+2 (f*&-Z Q(5—&')

2' $t
(4.14)

The perpendicular susceptibility is determined by the
correlation functions through the well-known relation'~

X'=Pt ' E(i*j*& (4.8)

Expressing i, j' in terms of i+, j+ and using Eq. (3.14)
to evaluate the nonzero correlationfunctions, one obtains

4 (0)+4 l(o)+1'=P '&(f*&(1—t) — (4 9)
2v(o, t)

3~ Any standard textbook in statistical mechanics or in particular
J. H. Van Vleck, Theory of r'lectric astti bgugrtetic Sttsceptibilities
(Clarendoo Press, Oxford, 1932},

For n =0 the perpendicular susceptibility is independent
of temperature and is equal to the value given by
molecular-Beld theory. "

The parallel susceptibility, for zero anisotropy,
becomes

b 2)
Xf" tt —Xt"

(f') ttlV)
2

= (t &/2)pl(n) —Z exppb(1 7')'"—
g I

X I expPb(1 —vt, ')'tm —1] ', (4.15)

3' Sec Ref. 32,
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TABLE I. Quantum correction constants and coefficients in low-
temperature expansions of Q(0) in the antiferromagnetic phase
(Kq. (5.6)7 and of C (0) in the paramagnetic phase [Kq. (9.11)7.
Lf (I) is the Riemann zeta function deiined by f (n) =2„=&P ".7

at T=O,

(f )=-5'(1—"(f)/») (5.5)

c

bp

'c'==c'(1) I.Eq. (5.4)g.
b c—=co —c' fEq. (5.8)j.

Simple cubic

0.156

0.097

i (2)
33/2

f(4)
6g 33/2

f(l) (3/2 )'"

9
f(l)-(3/2 )'"

8

Body-centered cubic

0.150

0.073

f(2)
-4

SC.4)

21/2

~3/2

I(-.') 9
21/2

~»2 8

It is seen that the sublattice magnetization does not
fully saturate even in the ground state. However, for
the case of infinite anisotropy, 3=0, c'=0, and the spins
are completely aligned.

The effect of anisotropy on the spin-wave energy
spectrum for H=O can be seen by referring to Fig. 4.
If no anisotropy were present, the spin-wave energy
wouM be a linear function of k for small k, vanishing at
k=-0. However, finite anisotropy produces an energy
gap at k =0, and also produces a deviation from linearity
for small values of k. Eiselle and Keister" have investi-
gated the effect of anisotropy by a spin-wave analysis
of the antiferromagnet at low temperatures. They found
that there is an effective temperature Tg g, below which
the anisotropy plays an important role in determining
the sublattice magnetizations and susceptibilities. The
temperature T~I". is a measure of the energy gap in the
antiferromagnet, and from Eq. (1.8),

ksTgs=25/arcs(z J+EP)]t"=fJH.'.
where

1-(»+1)'(Q'(0)—!)"
I(Q) =

L(Q(o)+-')"+'—(Q(o) —-')"+']'

We can use Eqs. (4.4), (4.5), and (4.16) to find Xf" as a
function of Pb and, as in the analysis of the sublattice
magnetization, the parameter Pb can be eliminated by
Eq. (4.13), yielding the parallel susceptibility for all
temperatures below the Neel point.

For arbitrary temperatures, all the above calculations
must be carried out by a computer, for specific numerical
values of the parameters. In specihc temperature
regions, however, we can obtain general results by series
expansion.

5. LOW-TEMPERATURE REGION

In order to evaluate explicitly the sublattice magneti-
zation for H=O, at low temperatures, we first expand
(f') in powers of the small quantity Q(0) —-';.

Thus for any material for which II, is practically
measurable (H:&10' Oe), Ties&10'I, whereas for a
material of small II,"such as Mnar2 4H~O, T~~ =0.6'K.
We shall accordingly take E=O in the calculation of
(f'), X", and X', so that our resultant temperature
expansion becomes a formal one valid only for
~~ I:&&'1&&T'x

Expanding the exchange integral in powers of k,
replacing sums by integrals in reciprocal space, and per-
forming the integrations, we find:

Q(0) =-', (c'+1)+as(zJr/b)'
+ai(zJr/b)4+0(zJ7/b)', (5.6)

where c'=—c'(1), as, and ai are constants which depend
on the type of lattice and are listed in Table I. Perform-
ing a similar expansion for the function Q(G —h'), and
using Eq. (4.3) we also find

b= zJ(f*){1+2n(f')[-',cs+as(sJr/b)'
+0(zJr/b)s]), (5.7)

Q(0) =—;[c'(f)+1], (5 3)

where
"(f)= (2/&)Z. (1—f'v")-'"—1 (5.4)

and. the value" of c' for (=1 is listed in Table I. Thus

The function Q(0) is then expanded in powers of the
reduced temperature

r =ksT/zJ.

The temperature-independent part of Q(0) is

(5.8)

The constant cs—=cs(1) can be written as cs——c'+c, and
the constant" c is listed in Table I. -It should also be
noted that the constant a, in (5.7) is identical to that
appearing in (5.6) and that it is listed in Table I, whereas
the term in (zJr/b) in (5.7) vanishes. Using Eq. (5.1)
we now solve the set of equations self-consistently in
powers of v. The results are given for both RPA and CD

"Calculated by Anderson and Kubo. See Refs. 13 and 14. "J.A. Kiselle and I.Keffer, Phys. Rev. 96, 929 (1N4).
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5=-', , n= 1/2S'

b/zJ= ,'(1+-c) Sa—o(c'+c) '+0( '), (5.1.0)

(f') = -', (1—c') —4ap[1 —2(c'+c)$r' —16[a&(l—2c'+4c)
—2a, '(1—7c'—Sc)jr'+0(r'). (5 11)

5&-2', n= 0:

(f')=b/ J=S(1—( '/25))- (1+( '/5)) '/5'
—[ag(1+(2c'/5))+2ap'(1+ (Sc'/2S))/5
—(25+1)'a 's(c'/2)(r/5)4&s '&)r4/54+0(rP)

(5.12)
n = 1/25'.

b/z J=S(1+(c/2S)) ap(c+—2c') rP/54+0(r4),
(f*)=5(1—(c'/25)) —a (1—(c/5)) '/5'

—[a~(1—(2c/5) }+2apP(c+2c')/5'
—(25+1)' o"(c'/2)( /5)"' "] '/5'+o( ').

(5.14)

(5.13)

For comparison, the spin-wave result given by Oguchi" is

(f*)=5(1—(c'/25)) —ap(1 —(c/5)) "/5'
a,(1 (2c/S—)}r'/S—'+0(r') (5 15)

It is seen that both RPA and CD give the same result
as spin-wave theory for the temperature-independent
term in the sublattice magnetization. For S&2 the
principal part of the 7' term agrees with spin-wave
theory for both RPA and CD, but the small correction
of order c agrees only in the CD approximation. In the
7-4 terms, both RPA and CD give spurious contributions
proportional to uo', these terms arise from the renormali-
zation of the energy in the Green-function analysis, and
in CD they are an order of magnitude smaller than in
RPA. The coefficient of the a~ part of the 74 term agrees
only in CD. For 5=—'„ the temperature-independent
terms all agree, as well as the principal part of the v2

term, but now the correction of order c disagrees with
spin-wave theory in both RPA and CD.

Using the previous results we can evaluate the perpen-
dicular susceptibility from Eq. (4.14). The results are

S&-' ~=0

x'= y'1V/2z J; (5.16)

5&~z, n = 1/25'.

(all terms of order c" and c' have been dropped. ).
S=-' a=0.2 7

(f') =b/z J=
p (1—c')—4aprp

—16[ag(1+2c')+2ap'(1+c') jr4+0(r ); (5.9)

The spin-wave result of Oguchi is

x'= 2'
c+c c T

1————ap 1———+0(r4) . (5.18)
25 S S'

The temperature-independent term of the CD result
agrees with spin-wave theory, whereas the RPA result
lacks the quantum corrections and is identical with the
molecular-field result" The ~' term in CD deviates
from spin-wave theory by a correction of order c, where-
as RPA lacks all temperature-dependent terms.

To calculate the parallel susceptibility we first find
from Eq. (3.17) that

Using this result and Eqs. (3.28), and (5.9)—(5.14), ~e
again solve self-consistently for the parallel suscepti-
bility. The results are, to order v'

5= -', o.=0.
2

x"=2x,"= (&p1V/z J)[16a,(1+c')r'+0(r') j; (5.20)

5= -' n= 1/25'
x"= 2Xf"——(g'1V/z J)[16ap(1—3c—2c')r'+0(r4)]; (5.21)

S&-,', o.=0:
x"=2x "=(p, '1V/zJS)

&&[2ao(1+(3c'/25))r'/5'+0(r4) j; (5.22)

5& -' n = 1/25'
x"= 2x,» = (&P1V/z JS)

)& [2ap(1 —(3c/25))r'/5'+0(r')7. (5.23)

The spin-wave result of Oguchi for the parallel suscepti-
bility is

x"= (p'1V/z JS)[2ap(1 —(3c/25)}r'/5'+0(r') g. (5.24)

The principal part of the ~' agrees with spin-wave theory
for both RPA and CD. The quantum correction to the
7' term is given correctly by CD and incorrectly by
RPA for 5&—'„but is given incorrectly by both de-
couplings for S=—,'. Although we do not exhibit the 7'
terms, no spurious terms in ao' appear in either RPA or
CD, and the CD result is correct for S&2 but incorrect
in the quantum correction for S=—'„whereas RPA gives
an incorrect quantum correction for all S.

6. HIGH-TEMPERATURE REGION

j. 8
(C-(0)—4 (0))

2 BH —II=0

b 2-,
= —p —Xg" (1/b) [2ap(zJr/b)'u).1V-

+4a~(zJr/b)4+0(zJr/b)P j. (5.19)

p'X
X =

c+c' 5c+4c'- r'—ap 1— —+O(r4) . (5.17)
25 2S

%e first determine the Neel temperature, at which the
sublattice Inagnetizations vanish in zero external Geld.
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Near the Neel temperature the exponentials in the dis-
tribution function p (k) =p~(k) can be expanded and it
is seen that the function [Q(0)] ' is small. Hence from
Kq. (4.5), the sublattice magnetization is given by

(f*)= ls(5+1) [~1(0)] '—[fl(0)]-'

with the same
~
J~, as given in Ref. 25; similarly for

n= 0 they are the same as those obtained by Tahir-Kheli
and ter Haar. "High-temperature expansions by Rush-
brooke and Wood4' give an estilnate of the relation
between the Neel temperature and the Curie tempera-
ture of materials with equal

~
J~, in the form

rN r,,[1——+0.63/ss(5+1)]. (6.12)

-S(S+1)
X ——+o(Q(0))-4

is 20
(6 1)

In addition, it is found that

Q(0) =sJrF)( 1)(1/b—)+(b/sJr12)+O(b/sJr)' (6.2)

b=sJ(f')(t '+2n(f*)[(sJr/bt')(F (—1)—1)
+ (b/sJ. t 12)(F,(2)—1)+O(b/sJr)']), (6.3)

where
F ( )= (2/&)E. (1—tv')-. (6.4)

The values of F~(e) for rs=1, 2, and t=1 (zero ani-

sotropy) are"

F,(1)=1, F,(2)=(s+1)/s. (6.5)

For e= —1 and t= 1 the summation has been evaluated
by Watson4'; it has the values

Fr(—1)= 1.51638 (sc); 1.39320 (bcc) . (6.6)

The Neel temperature is determined by the following
limits. From (6.1) and (6.2)

(f ) =C.(1-(./ -)),
rp rNF( 1)

(6.14)

(2rrr —rp)
(6.15)

1 (25—1)(25+3) 2n7.p'F( —1)
+

12 60F(—1)

Thus, for example, the difference between the Neel and
Curie temperatures is about 5%%uo for S= 1 in the simple
cubic structure, and decreases for increasing spin. Our
result of v.~=v., is therefore reasonable. The absolute
value of 7-, has been estimated by Rushbrooke and
Wood, as

k~T,/J =sr, = (5/192) (s—1)[115(5+1)—1]. (6.13)

Comparisons of the results of RPA and CD with these
results have been given in Refs. 24 and 25, but for con-
venience we give v-~ in Table II.

To expand the sublattice magnetization near T~ we
use Eqs. (6.1)—(6.3), ending that to 6rst order in
1—(r/re), and for K=O,

5(5+1)
lim (f'}=

{fz) ~p 3

whereas, for (6.3)

sJr~F g( 1)—and F(—1)—=Fr(—1), Tp=rp(1). Val'ues for C for the

(6 7) simple cubic and body-centered cubic lattices, and for
various spin values are given in Table III. Since the
Neel temperature predicted by CD is higher than that

sfvN
b= J(f } t-'+2.(f } [F (—»-», (6.g)

{fz~ p bt'

TAnLE II. Reduced Noel temperature (kaT~/sJ) in the anti-
ferromagnetic phase (Eq. (6.9), t 1I and r=educed temperature
Lr(H, =O)g in the paramagnetic phase LEq. (9.19)g determined
for cubic lattices and nearest neighbor interaction.

whence

rrr= rp(t){t r+2nrp(t)t s[Fg(—1)—1]), (6.9)
CD

antiferro-
magnetic

CD
para-

magnetic

where
o(t) =S(5+1)/3F (—1)

2X 1—2 [5(5+1)/3]
sJ 1+2n[F(—1)—1]rpt—'

(6.10)

(6.11)

0.17
0.44
0.82
1.32
1.92
2.64

Simple cubic
0.22
0.54
0.98
1.54
2.23
3.03

0.11
0.34
0.67
1.01.
1.61
2.24

We note that the e8ect of the anisotropy is to increase
the value of the Neel temperature, as might be expected.
For E=O and n=1/25' the Neel temperatures are
identical with the Curie temperatures of a ferromagnet

"Easily corroborated from definition of exchange integral,
Eq. (3.5).

4p G. N. Watson, Quart. J. Math. 10, 266 (1939). See also
M. Tikson, J. Res. Natl. Bur. Std. 50, 177 (1953).

Body-centered cubic

0.18 0.23
0.48 0.57
0.90 1.04
1.44 1.64
2.09 2.37
2.87 3.23

0.14
0.39
0.75
1.24
1.82
2.53

~ G. S. Rushbrooke and P. J. Wood, Mol. Phys. 1, 257 (1958).
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for RPA, the eGect of CD for a given temperature is to
increase the value of the sublattice magnetization in
comparison with RPA.

Since the quantity (f')/b determines the perpen-
dicular susceptibility Lsee Eq. (4.14)j, it is also found
from the solutions of Eqs. (6.1)-(6.3) that to first order
in 1 (r—/r~),

p'N (f*) p'S r, p—1+D.
~

1—~, (6.16)
2 b 2sJ re E r+/

where

2n(F( —1)—1)ro'

70

(2S—1)(2S+3) F(—1)

60F(—1) 12s(F(—1)—1)
(6.17)

(25—1)(2S+3) 2nr p'F( —1)

12s(2r pr rp)—6OF(—1)

and the values of D are listed in Table IV. It should
be pointed out that in CD the value of the perpendicular
susceptibility at the Neel temperature is smaller than
that given by RPA; the ratio of the two values is rp/rN
The slope of X' at T~, as given by CD, is nonzero and
negative. A more detailed comparison of RPA and CD
for the perpendicular susceptibility will be given in
Sec. 10.

Finally, to evaluate the parallel susceptibility Eq.
(3.17) can be used to obtain,

8
L~-(0)—~ (0))

2 BII

b 2-1
p —XJ"

(f') pS sJr

XL(sJr/b)'F( —1)——,', +O(b/s Jr)'). (6.18)

XgN Xg+

Using the previous results we 6nd that the parallel
and perpendicular susceptibilities become equal at the
Neel temperature,

(6.19)

Tanr. z HI. CoefEcients C in the teni erature expansion of (f')'
near T= Tp LEq. 6.15)j.

S

1

2

3

Simple cubic
RPA CD

0.49
2.12
4.79
8.40

12.90
18.26

0.42
2.10
5.25
9.90

16.04
23.64

Body-centered cubic
RPA CD

0.54
2.23
4.94
8.58

13.69
18.46

0.47
2.21
5.33
9.80

15.32
22.72

slope of +1 at the Neel temperature. Values of G are
given for the two lattice types and various spin values
in Table IV.

7. ANTIFERROMAGNETIC RESONANCE (AFMR)

As described in the Introduction, AFMR measures
the 6eld H(pp) required to reduce the energy of a k=o
spin wave to a value Ace, determined by the imposed
signal frequency. Extrapolation of the field H(op) to o& =0
determines the critical field for the anti-Qop transition.

Such measurements have been carried out, for in-
stance, by Foner' on Cr203. The crystal structure of
this material permits the decomposition into two sub-
lattices with the nearest neighbors of a spin on a given
sublattice belonging only to the other sublattice. The
anisotropy is uniaxial, with a small effective anisotropy
6eld of 700 Oe and an exchange field of 2.45&10' Oe,
corresponding to a Neel temperature of 308'K. Foner's
measurements are represented in Fig. 6, where H(a)
curves are given as functions of T, for two values of co.

For a given signal frequency co, there exists a tempera-
ture T (pp) at which the field H(~) vanishes. This tem-
perature T,(co) is equal to Tpr for pp= 0, but is less than
T& for nonzero frequencies. Referring to Fig. 4, it can
be seen that the temperature T, (pp) is such that, for
H= 0, the k=0 spin-wave energy is renormalized down
to hop. At higher temperatures the 1=0 spin-wave
energy lies below Ace, and a Geld must be applied to
drive E„(0)ep to App. The required fieM H(~) then in-

and that

where

27'N %0

XgQ

(6.2o)

TAsLE IV. Coefficients in the temperature expansions of perpen-
dicular (D ) and parallel susceptibility (G ), using CD, near
T= T~ LEqs. (6.17) and (6.21)g. Here

D = —[d lnx /d(T/Tir)]p rrr Lsee Eq. (6.16)]=;

for RPA, D =0.
G =Pdlnx /d(T/TN)]r rN /see Eq. (6.20)];

for RPA, G =1.
(25—1)(2S+3) 2nrpF( 1)—

6OF(—1) 12s
(6.21)X

(2S—1)(25+3) 2nro'F( 1)—
~+

60F(—1) 12s(2rir —rp)

%e note that for +=0, 6 = 1, so that in RPA a plot of
lnx" versus the temperature ratio T/TN should have a

0.11
0.13
0.14
0.15
0.16
0.16

0.74
0.86
0.96
1.03
1.10
1.14

Simple cubic
D G

0.11
0.12
0.12
0.13
0.13
0.13

0.76
0.88
0.96
1.02
1.06
1,10

Body-centered cubic
D G
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kH (cu)

Fio. 6. Schematic oi Foner's measurements on Crsop(co)0) and
anti-Qop transition curve II;=II(~=0).

creases with temperature until the anti-para transition
curve is crossed, at a temperature designated by Tp(pp)

ln Fig. 6.
In this section we restrict our analysis to signal fre-

quencies cv which are appreciably greater than zero,
permitting us to adopt a linear relation between the
sublattice magnetizations and held.

The eAect of the anisotropy on the small constants c and
c' has been neglected. Furthermore, corrections of order
c have been neglected in the r' terms in Eq. (7.4). As
might be expected, H, (T=O) vanishes for 5=—', in CD
but not RPA.

The quantity H, (T=O) is identified as the critical
field at zero temperature by letting T=cu=O in (7.4).
We have accordingly designated this coeKcient as
H, (T. =O). However, it should be recalled that the
analysis required to compute B,. generally must tak.e
cognizance of the nonlinearity of the magnetization for
fields near H.', whereas Eq. (7.4) is based on an
assumption of linearity. Nevertheless, the results given
for II, (T= 0) are correct, as will be corroborated in the
next section, and the justihcation lies in the fact that the
susceptibilities, linear or nonlinear, vanish at T=0.

To investigate the high-temperature behavior, the
temperatures r.=r.(M) and—rp —=rp(~) must first be
determined. r, is easily found by requiring H(oi) =0,
setting Ei(0) = Ao~ in (7.3), and using the results of Sec. 6.

u') =(f'&-=.+2HX "/.~,
(g &= (f& =-.+» /.~ (72)

Fol Q= Qq

ra 2E E)
1——=(Pi,ip/sJ)' C p

—2+2—
isJ sJl

(7.7)

In this connection we note that at the stability boundary,
corresponding to co=0, the differential susceptibility
diverges and (f') is highly nonlinear in H, as is clear
from Fig. 3(b). This case will be treated in the next
section.

The quantities (f*) and XI" have been evaluated
previously in the low- and high-temperature regions
for zero anisotropy. Equation (3.16) determines the
spin-wave energy, and for the lower branch at k =0,

Ei(0) =b(1—P)'"—h. (7.3)

Equations (7.1), (7.2), and the previous results can now
be used to find t as well as b and h. Setting Fi(0) =&~
Fq. (7.3) can be solved for the external field H(~). In
the low-temperature region, and to order w',

@II(o~)=iiH;(T =0)$1+ap(r'/5') $
-~ L1+2 o("/5')j («.), (7.4)

where ap is the constant introduced in Eq. (5.6), and
given in, Ts,ble I, and where H, (T=0) depends on the
choice of n as follows:

For Ex=0~
t' c' 2E 2E

IJH. (T=O)=sJS~ 1—— 2+
25 sJ sJ

where C, vo, and ~~ have been given in Sec. 6.
At the temperature 7 b, the held required to drive the

upper spin-wave energy to Ace reduces the lower one to
zero. Since the two branches are symmetric around their
value for II= 0, it follows that at r = r p, E~=p(0) = hop/2.
This criterion enables us to Q.nd rb in terms of 7., and g~.

4Y~~ g jc ~

3 t (7.9)

As in the low-temperature case, the required held
H(o~) can be found from Eq. (7.3). Using Eqs. (7.7) and
(7.8), a temperature expansion of H(pp) to 6rst order in
r,—7. can be put in the convenient form:

and for rr=1/25',

7 ~ Aco r~ (25—1) 2E
C =-~(28—

zJ vo 3S sJ

E (25—1) rpX2 2— — —,78
sJ 35

(7.10)
(7.5)

and for n= 1/2S',

f c
pH, '(T=O) =zJSi 1+—

25

2E~ 1~- 2Et 1
X —i1—I 2+—I1-

sJ E 25j s II 25.
wh~~e G is the constant appearing in Eq. (6.20) and
is listed in Table IV.

In the temperature range T,(T&Tp, H(&u) is simply
the negative ot Eq. (7.10).It should be pointed out that
the magnitude of the slope of H(o~) is large but finite,
with negative sign for r =7, and positive sign for

(7 6) T=r
The results of the theory are in qualitative agreement
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with experiment. In the low-temperature region both
theory and experiment indicate that the slope of the
II-T curve is positive. In the vicinity of i, the exper-
iments of I'oner indicate a large negative slope for ~ &v,
and a large positive slope for ~&7„again in agreement
with theory.

A more quantitative comparison with experiment can
be made by using Foner's experimental results on Cr203.
Although the crystal structure of Cr&OS is fairly com-
plex, the magnetic lattice can be reasonably approxi-
mated by a body-centered cubic one. Measurements
indicate that the magnetic ions have an effective spin
5= ~3. The exchange integral can be evaluated by using
Eq. (6.9) for TN (with f=1) and equating it to the
experimental Neel temperature of 308'K. The theoreti-
cal value of H(or) at T=0, Lgiven by Eqs. (7.4)—(7.6)j,
can be equated with the experimental value of 47 kOe
corresponding to an AFMR frequency of 36 kMc/sec,
thereby evaluating E.The comparisons between theory
and experiment are given in Table V. The theory pre-
dicts an increase in H(or) with temperature, with a slope
which is virtually zero (to two significant figures) be-
tween T=O'K and T=50'K; this agrees with the experi-
mental observations. Comparison of the temperatures
T,(or) indicates that the results of CD are in much
closer agreement with experiment than those given by
RPA. Although not tabulated, the slope of the II-T
curves at T= T,(or) also fav—ors CD rather than RPA.

a= b(1—fs)'". (8.1)

Using expansions similar to those of Sec. 5 and Eq.
(8.1), it is straightforward to determine the values at
T=o of the functions C„(0), Cr(0)r and Q(0):

e„(0)=c,(0) (T=o)

fl(0) = s(c+1) (T=o)

(8.2)

(8.3)

where again the effect of the anisotropy on the small
quantity c' has been neglected. The sublattice mag-
netizations (f')r s and (g*)r o can be found from Eqs.
(8.2), (8.3), and (5.1).

These results are identical with those given in Eqs. (7.1)
and (7.2) at T=0, since the suscept-ibility vanishes at
zero temperature. Consequently, the zero-temperature
value of the critical G.eld calculated in the previous
section is correct.

8. THE ANTI-FLOP TRANSITION BOUNDARY

As was indicated in the Introduction, the critical field
for the anti-Qop transition boundary is obtained by
allowing the external field to increase until. the k=0
value of the lower spin-wave energy branch, Ei(0),
vanishes, as illustrated in Fig. 4. On referring to Eq.
(7.3) it is seen that the critical field is determined by
the condition

TAsLE V. Comparison of theory and experiment. AFMR of
Cr20~ from Foner's (Ref. 17) measurements. J and E determined
by Trr/= 308'K and the 6eld for resonance at T=0, co/2rr =36
kMc/sec. These values are starred in the table.

Experiment RPA CD

For or/2rr =36 kMc/seo:
H(co) at T=O
dP(~)/dT at T=O
TQ

For &o/2rr =70.6 kMc/sec:
H(co) at T=O
dH(co)/dT at T=O
TQ

47 kOe*
0

304'K

34 kOe
0

300'K

47 kOe*
0

301'K

34 kOe
0

286'K

47 kOe*
0

305'K

34 kOe
0

300'K

C„(0)= p expL —2pbm(1 —fs)'/sl
n,=1

]zJr(1 fs)'/'—
Ci(0)= g I'~ ——

bet'
(8 7)

8

E ~ 2
(8.8)

When the summation in Eq. (8.8) is replaced by an
integral over k space, it is evident that the leading term
in the function I'(zJr(1 fs)'/s/brief, ') will —be propor
tional to LsJr(1 —t')'"/brst'j'/' To obtain a power
series expansion in v for the sublattice magnetizations,
the coeKcient of I' in Eq. (8.6) must vanish. That is,
the number of thermal spin waves excited by the upper
branch must be negligibly small. This requirement is
satisfied by the inequality

since
k&T & 2b(1—fs)'/s,

b(1—t')'/s=/ H. =%/AT~/. (T=O)

(8.9)

(8.10)

The situation becomes more complex, however, for
the temperature-dependent terms. The assumption of a
linear relation between the magnetization and external
field, which was made in Sec. 7, is no longer valid. As
indicated in Fig. 3(b), the susceptibility dM/dH becomes
infinite (for TWO) as point 8 is approached. The low-
temperature expansions of Sec. 5 must also be carried
out here, but any attempt to linearize the spin-wave
energies E„(k) and Ei(k) as functions of k results in a
divergence of the integrals over k space. Hence the
exchange integral must. be expanded exactly for small
values of k,

(1 ]2~. 2)l/2 —(1 ]2)1/2

+sf'(1-&') '"(1-V ')+ (85)
The distribution functions C „(0) and C i(0) can then be
put in the following form:
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and /zan is the characteristic temperature discussed in
Sec. 5. The low-temperature expansions are valid in the
emperature range 0&T&2T&J:.. This is an extremely

restrictive range; for instance, HP(T=O) =60 kOe in
r2O3, and Tgg= 10'K. In this temperature range the

formal expression for the critical 6eld H. would lead
to a power series in the reduced temperature, 7'/2, ,5/2,

etc. but this is of academic interest only. Furthermore,')
0the experimental data are for H(~)(H. and even in

this case dH(&o)/dT is approximately zero for T(50'K.
Consequently we shall not carry out these calculations.

Both the CD and RPA treatments of the anti-Qop
transitions are inadequate in the neighborhood of the
Keel temperature, as we shall now demonstrate. The
temperature behavior of the critical field near the Neel
temperature is determined by using Eq. (8.1) and ex-
panding the functions C„(0), 4&(0), and Q(E) as in
Sec. 6.

—;[c„(0)—c,(0)j
(1/bt-')z JrF—( 1)(1 &')U'—+o(b/—zJr) (8 11)

z-i P, n(S —6')

=(1/g&)zJr[F( —1)—1j+0(b/zJr), (8.12)

Q(0) = (1/bt2) zJrF( 1)+o(b/—zJr) (8 13)

Expandjng Fq. (3.28) in powers of {-',[C'.(0)—%(0)—1]
+g(p) }—i for (f*) and similarly for (g-"), the sublattice
magnetizations are

the decoupling procedure (RPA or CD) is inadequate
for. the treatment of the anisotropy in the vicinity of the
Neel temperature.

where
[E—~(k)PG(k, n) =6(~)/2~, (9 2)

F(k) =uH »&f'&(1 nA—)(1 v)+—»~f(f~&—(9 3)

9. PARAMAGNETIC PHASE

The analysis of the paramagnetic phase is formally
identical to that carried out for the ferromagnet in
Ref. 25, except that the sign of the exchange integral is
changed. The Hamiltonian is

&= z ZI,.Jr.(f'g +f'g*)
uH Z—i f' KZ—~(f*)' (9 1)

where the factor 2 is put before the exchange terms for
consistency with the definition of the exchange integral
used in the antiferromagnetic phase (our J is thus twice
that of Ref. 25). The Green functions are decoupled as
in Eq. (2.9) and Ref. 25. The Fourier transforms of the
Green function, correlation function, and exchange
integral are defined as in Eqs. (3.1), (3.3), and (3.5),
except that now the subscripts r, r' are superII. uous. iV
replaces X/2, and the Brillouin zone is now twice as
large, containing only one rather than two spin-wave
branches. Noting that fq ——Pq*, the Green function
equation of motion is given by

g0 b/2
~ b

f&=
'

+ol-,J, 1—(1—P)'~' (zJr
(8.14) and er is given by Eq. (2.13).

Again it is convenient to introduce the Fourier trans-
form C (R) which is the analog of Eq. (3.17),

+0 ~, (8.15)
zJr 1+.(1—p)'~' zJrl

where

(8.16).,=S(S+1)/3F(—1)

ultiplying Eqs. (8.14) and (8.15), using (3.24) and
(3.27), ancl taking the limit (f*)~0, (g*&~0, which
corresponds to
(3 26)j r(H', =0) is evaluated to be

(9 4)I/I(R) =/ —i pg gn'a[/ps(&& —1j—i

The correlation function may now be written as

(" ~+& =+ =0( )@(R).
The correlation functions of particular interest are

(e ~'f-f+&=e, (n)C(0),

~ =&f-g &,=r. =2&f &C(~),

(9.5)

(9 6)

(9 7)

F.(k) =uH —J(f )(1+ |t,,)(1
+2K&f'&[1—n&f')(2C(0)+1)j. (9.8)

Comparing Eels. (9.6) and (3.19), it can be seen that the
sublattice magnetization (f') can be obtained from

(3.28) by replacing iz[C„(0)—C,,(0) 1j+.fl(0)
by c(0).

It was demonstrated in the Introduction that the
critical field for the para-anti or para-Aop transitions
can be found by requiring that E(k) =0 for values of k
such that —p&= I. The critical Geld H. is then given by
uH. = 2zJ&f')(1+&~)

—2K(f'&[1—&f*)(2C'(0)+1)j (9 9)

,(H,.=p) = [1+2nro(F(—1)—1H (8 17)

This result implies that the temperature required for the
vanishing of the critical held is independent of the
anisotropy constant. Ke would expect that this tem-
perature shouM be the Neel temperature as calculated
in Sec. 6, but for finite anisotropy it is not. Furthermore,
if we add Eqs. (8.14) and (8.15) and use (3.25) for b,
then (taking n=0)

r(H; =0) = ra(1+ (2K/z J)). (8.18)

However, for n=p, r(H, ~=O) =ra from Eq. (8.17) and
hence Eqs. (8.14) and (8.15) are inconsistent unless the
anisotropy constant E is zero. Similar inconsistencies
obtain for the case of n= 1/2S'. We must conclude that
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C (0)=bp[r/& f')(1+nP,)]'"
+bi[r/(f')(1+ 0 )]'"+0( )'"

d
(9.11)

+(5)= —bo[ /&f')(1+ O )]'"
+lb L /&f )(1+ a)]'"+0( )'&' (9.»&

where the constants bo and bi depend on the lattice
structure but not on 0, , they are listed in Table I. Using
Eqs. (9.7), (9.11), (9.12), and (5.1) with C (0) replacing
Q(0) —pi we may solve the set of equations self-consis-
tently in powers of ~. The results are

&f*)=S—bo( /S)'" b( /S') "+ ", — (9 13)

1+ntt p
= 1—2nSbp(r/S) '"

+2nS(bi/3) (r/S) '"+' ~ . (9.14)

The magnetization is unaffected by the choice of n for
terms to order v'"', furthermore, the magnetization to
this order is the same as obtained in Ref. 25 for the zero-
anisotropy ferromagnet with the same value of

~
J

~

. To
this order the results agree with the spin-wa, ve expan-
sions of Dyson' for the ferromagnet; however. , if the
expansions were carried to any higher order, differences
between these results and Dyson's would appear.

The critical field H. can be found by using Eqs. (9.13)
and (9.14) in Eq. (9.9).

pH, = 2sJS[1 (bp/S)(r/S)'—"(1+2nS')
—(b,/S)(./S) ~ (1—-', ~S )]

2KS[1 aS —bp(r/S) '"— —
&&(2 (S—1)+(1/S))]. (915)

The e6ect of the anisotropy is to move the transition
curve downward. However, for materials with high
Neel temperatures and small anisotropy, such as Cr&03,
the effect of the anisotropy constant E can be neglected
in comparison to the leading term of Eq. (9.15), which
is the order of sJ.

It is instructive to find the temperature dependence
of the spin-wave energy E(0) at the critical field H, .
Using the previous results and Eq. (9.10) it is found
that to order &3/2,

Z(0) =2sJS[1—(bp/S) (1+2uS') (r/S) '~'+0(r) '~'] .
(9.16)

At the critical field H=H„ the spin-wave energy'(k) is

E(k) =zJ(f*)(1+u|tp) (1+y~) . (9 1o)

To explicitly evaluate the magnetization at low tem-
peratures we use the analog of Eq. (5.1), expanding &f')
in powers of C(0). The function C(0) can then be ex-

panded in powers of the reduced temperature v as
defined by Eq. (5.2). It should be pointed out that the
expansion of yl, (sc) in powers of 7p must be carried out
around (m/ap-/ap. /a) rather than around (0,0,0) as in
the antiferromagnetic or ferromagnetic case.

%e And that

Comparing this result with that for the ferromagnet'~
we note that the temperature dependence of the re-
normalization factor &f*)(1+nPp) is r'" rather than 7' '.
Furthermore, the choice of u makes a significant differ-
ence in the coeKcient of the temperature terms in the
expression for the critical field. The coeflicient of
(r/S)"' is 2bp/S in CD while it is bp/S in RPA. In a
paper employing a variational treatment using the
Holstein-Primakoff variables, Falk' calculates the
critical curve (zero anisotropy) in the low-temperature
region. We 6nd agreement with his results to order v'/'
for the CD approximation. A more detailed discussion
of the renormalization eGects will be given in Sec. 10.

It would be'expected that the critical field H, should
vanish at the Neel temperature. To find the temperature
at which H, =O, we expand the exponential in the
distribution function C(R), and again the function
[C (0)+p] ' is small. Hence the analog of Eq. (6.1) can
be used to determine the magnetization, with C(0)+ ip

replacing Q(0).The functions C (0) and C (5) are given by

F(—1) (f*) (f )q'
C (0)+2

= + (1+~ipp)+ Q i, (9.17)
(f*) 1+ng p 12r r )

F(—1)—1
C(fi) =

(f*) 1+~A

+ (1+ngp)(F(2) —1)+Oi
i
. (9.18)

&f') t
&f')~'

12T &r)
Talking the limit &f') ~0, the temperature at which
H.=O [see Eq. (9.9)] is

r(H, =O) = rp[1 —2nrp(F( —1)—1)], (9.19)

where rp was defined in Eq. (6.10), (t= 1) and is equal
to the Neel temperature in the RPA for zero anisotropy.
Values of the temperature r(H, =O) for the two lattice
types and various spin values are given in Table II.

It is interesting to compare the temperature given by
Eq. (9.19) with that obtained in Sec. 8; that is, with the
temperature at which the critical Q.eld of the antiferro-
magnetic phase vanishes [see Eq. (8.17)]. We would
expect both of these values to be the Neel temperature
as calculated in Sec. 4. We recall however, that in the
lower transition the value of r(H;=0) was self-incon-
sistent. The expression for r(H, = 0) in the upper phase
transition is not self-inconsistent, but it is independent
of the anisotropy, and hence it does not agree with the
Neel temperature. Even in the absence of anisotropy,
the temperatures r(H. =-0) and r(H, =O) are identical
only in RPA, and differ quite widely in CD, as can be
seen in Table II.Hence we must again conclude that the
decoupling procedures for the anisotropy are inadequate
in the vicinity of the Keel temperature.

The magnetization (f*) near T(H, =O) can be found
from Eqs. (9.17) and (9.18) and to first order in
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1-Lr/r(H. =O)],

(f')'=I'-Ll —(rlr(& =0))3

E=O and (f') =xP/p2IV, and retaining terms linear in
II only, we find from Eq. (6.1) and the analogs of Eqs.
(6.2) and (6.3) the following relations:

where I. is the same function of ro and r)r as was the
similar quantity C given in Eq. (6.15). That is,

3 p'X E

2r(II, =0)—ro
L = ---. (921)

1 (2S—1)(2S+3) 2arp F(—1)—+—
12 60F(—1) 12sf2r(P, =O) —roj

In the vicinity of the temperature r(H, =O) the critical
Geld can now be found. using the previous results.

(9.25)

pB,=2' I.
r(II,=O)

— (P.=O) I S(5+1))-
1—2n

o zJ 3

ZP/sI &-si. (9.23)

Hence the anisotropy constant must be of the order of
the exchange field. This condition is possible for
materials with small Neel temperatures and large ani-
sotropy fields. Under these conditions the antiferro-
magnetic phase would go over to the paramagneticphase
upon the application of an external field greater than
the critical 6eld given in Eq. (9.15). Siderite (FeCO3)
exhibits" such a rnetamagnetic transition (at approxi-
mately 200 kOe).

The paramagnetic susceptibility x above the Neel
temperature, where the spontaneous magnetization
vanishes, can also be determined. Setting the anisotropy

Ferromagnet

H~0
An tiferrornagnet

Para - phase

Fxo. 7'. Spin-wave spectra of ferrornagnet at B=O, and anti-
ferromagnet at the Bop-para transition (E=0).

The critical field predicted by Eq. (9.22) vanishes and
has an infinite slope for r = r(II,=0).

%e have mentioned that the eGect of the anisotropy
on the para-Aop transition curve is to move it down-

wards, while it moves the anti-Qop curve upwards. It is
interesting to determine the value of the anisotropy
required for the two transition curves to meet at T=0.
Using Eqs. (7.6) and (9.15) and recalling the definition
of $ in Eq. (1.7), we find that at T=0(in CD) the spi-n-

Gop phase is absent if

Expanding the summands in the above two equations,
the susceptibility can be found as a power series in 1/r.
Using the relations given by Eq. (6.5) the result is

x= 1— +
SJ 7 7- 7

r~= sS(S+1).
Equation (9.26) can be written. approximately as

(9.27)

p'E
x

sJ r+r))r
(9.28)

10. RESULTS AND DISCUSSION

The sublattice magnetizations, susceptibilities, and
phase transition boundaries of both the antiferromag-
netic and paramagnetic phases have been calculatecl,
with results to be summarized and described below. Of
particular physical interest is the temperature depend-
ence of the Qop-para transition curve, as it directly
rejects the renormalization of the spin-wave modes in
the paramagnetic phase Lrecall Eq. (1.3)j.The analysis
of the paramagnetic phase at the transition is remark-
ably like the analysis of a ferromagnet at zero Geld. The
change of sign of J inverts the spin-wave spectrum, and
the critical field brings the mode at lr= (m/g)(1, 1,1) (sc)
to zero frequency; a shift of origin of the Brillouin zone
then makes the spectrum appear identical to that of a
ferromagnet at zero field (see Fig. 7). It thereby might
be expected that the IIIop-para transition curve would
behave as (1—constr'~') at low temperatures, in agree-
ment with the well known Dyson' result that the spin-
wave energies are "renormalized by the energy (r'~')

S(S+1) 1
X~ 1—2a )+0(—), (9.M)

3 7'

where v.~~ corresponds to the paramagnetic Neel tem-
perature given by molecular Geld theory.
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4s= 6=2Sf(z)r"", (10.4)

where r' is an appropriate reduced temperatures and
f'(-,s) is the Riemann zeta function. Then

r&s/2

&( ')=(~—ril)- -+
l ~+&(l) +"'s J 's

=O(r'I') (10 5)

This cancellation of the cross terms in Eq. (10.5) is the
celebrated result of Dyson.

For the antiferromagnet at the Qop-para transition
the above considerations again apply, except that the
thermally excited spin waves have precisely opposite
phase for the nearest-neighbor ions, the thermal spin
waves being centered at the edge of the Brillouin zone.
Consequently, the correlation function has the magni-
tude given in Eq. (10.4) but opposite sign Thus.

~~3/2 ( r~S/s

&( ')=(&—r(l) +"
l

& r(l) +—
)s 5 s

2
=1—-f (s)"sos+ O(r"~') (10.6)

5

rather than the magnetization (r'")."This is not so, for
the following reasons. Let us 6rst recall that for zero
anisotropy the renormalization factor is, according to
Ref. 25 Lalso see Eq. (9.9))

&=((f )/s)L1+(~/2s')], (10 1)

where)P() is the transverse correlation function of nearest
neighbor spins

&&=(f g+) -r+s. (10.2)

If the thermally excited magnons are very long com-
pared to the nearest-neighbor distance, as they are in
the ferromagnet, )Ps is identical to the self-correlation
function (p() to leading order in a temperature expansion.
This immediately relates the temperature dependence
of it () to that of (f'), and one obtains directly that if

spin-wave interaction in the antiferromagnet is repulsive
rather than attractive as in the ferromagnet. Thus the
dynamical correction at the flop par-a transition inverts the
si gn of the dynamical ki ne-mati cal interference and
doubles the egect of the pure kinematical term (f')/S,
rather than cancelling it.

Eever and Loudon" have given another interesting
heuristic interpretation for the renormalization of ferro-
magnetic spin waves by thermal excitation of others.
They draw an analogy with waves on a liquid surface,
and point out that a ripple superposed on a long wave
senses only the local curvature of the surface produced
by the latter. This curvature is analogous to the angle
between neighboring spins, or to the energy. Hence a
ripple is renormalized by the energy if the thermal waves
are all very long. If the thermal waves are predominately
short, the argument can be inverted, and the relevant
measure of their effect is their total number (or, in the
magnetic case, the magnetization). At the flop-para
transition the thermal spin waves are very short and the
renormalization does, indeed, occur by the magnetiza-
tion (r'")

Turning now to the lower transition, we examine the
qualitative features of the renormalization of the anti-
ferromagnetic spin-wave modes. At zero field the simple
spin-wave modes" " are doubly degenerate, with an
energy gap related to the anisotropy Lcf. Fig. 8(a)]. A
Geld II then splits the degeneracy, moving the modes
up and down by ~pH. The renormalization then has
two effects. Firstly, the curvature of the spectrum is
flattened, decreasing the energy gap (Fig. 8(b)) from
6 to I(.'i(r) A. Secondly, the effect of the field is reduced,
the modes moving up and down by &trHI(.'z(r). Thus
I(!i(r) is the renorrnalization factor for the spin-wave
energies at zero H, and I(.'s(r) is the renormalization
factor for the effective spin (or magnetic moment)
carried by a spin wave. Both I('.&(r) and I('.s(r) decrease
with increasing T. The field required to reduce the k= 0
mode to a given frequency co is, then,

uH(~) = I:~i(r)/&s( )l~—L&~/~s(r) j (10 &)

The competition of R&(r) and I(!s(r) is evidenced by the
change in slope of the H(&0) versus T curves (Fig. 9), the

or, the cocci ent of r"~' in the flop para transition cur-ve

is twice that i n the reduced magnetization of a ferromagnet
with equal

~

J'
~
. The r""terms in the flop-para transition

boundaries have been given in Eq. (9.15).
Dyson has shown that the cancellation of the terms in

a ferromagnet is related physically to the cancellation
of kinematical corrections against dynamical-kinernati-
cal interference terms. The kinematical correction finds
expression in the factor (f')/S in I(.', and the dynamical-
kinematical term manifests itself in the correlation
function )ps. The cancellation of the cross terms in (10.5)
is, then, the physical cancellation of kinematical and
dynamical-kinematical terms. However, the eGective

~ H=O

&-t(t H
R& + p HR~

Rt&
Rt 4-p. HRg

FIG. 8. RenormaIization of antiferroma~netie spin-wave spec-
trum. (a) Simple spin-wave spectrum (T=O). (b) Renormalized
spectrum, at higher T.
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TABLE VI. Ratio of perpendicular susceptibilities (xone/xapai)
at T=O LEq. (5.17)j and at T=Tz i Eq. (6.16)g.

Lower Brooch
nance

Upper Branch
Resonance

Pro. 9. Schematic
of field reqi. lired for
AE'MP~ ns a function
tion of temperature. 0.75

0.87
0.92
0.94
0.95
0.96

0.75
0.82
0.84
0.86
0,86
0.87

Simple cubic
T=O T= TN

0.78
0.89
0.93
0,94
0.96
0.96

0.78
0.84
0.87
0.88
0.88
0.89

Body-centered cubic
T=O T=Tg

Rs(r) renormalization being dominant at low T (re-
quiring a larger field with increasing T) and the Ri(r)
renormalization being dominant at higher T.

When the Ri(r) renormalization reduces the energy
gap Ri(r)6 to the signal frequency ie, the field II(ie)
required for resonance becomes zero. At higher tempera-
tures the k=O modes lies below Aa&. Application of a
field II then drives the upper branch of the curve upward
to resonance, and the condition for resonance becomes

@II((e)= Lh(u/Rs(r)$ —LR,(r)/Rs(r)]A. (10.8)

As the temperature increases further the separation
Aoi —Ri(r)h increases, and the field II(ie) increases as
shown in Fig. 9, after Foner. "

Comparison of theory with experiment is given in
Table V. The values of J and E are determined by the
experimental values of the Neel temperature and by the
field required for resonance at T=O'K, with a particular
AFMR frequency. Comparison is then made of the
fields required for resonance at various frequencies, at
T=O'K, with the temperature at which the field
vanishes for each frequency, and with the initial slopes
of the field-versus-temperature curves. The experi-
mental data is taken from the measurements of Foner
on Cr203. The agreement, using the CD approximation,
is quite good.

Turning now from the phase transitions to the thermo-
dynamic properties of the antiferromagnetic pha, se, with
zero external field and vanishing anisotropy, two distinct
approximations (RPA and CD) have been used to deter-
mine the sublattice magnetization and the parallel and
perpendicular susceptibilities. For the sublattice mag-
netization and parallel susceptibility both approxima-
tions agree with spin-wave theory for the principal part
of the v' term. However, only CD agrees with spin-wave
theory for the quantum corrections to the 7' term
(except for S=—', ).

The results for the perpendicular susceptibility differ
considerably in RPA and CD. Molecular-field theory
predicts a temperature-independent perpendicular sus-
ceptibility and this is precisely the RPA result. How-
ever, at T=O, CD is in agreement with spin-wave
theory, predicting a decrease from the molecular-field
value Lmeasured by the small constant c'+c of Eqs.
(5.4) and (S.8)j. At low temperatures both CD and
spin-wave theory indicate a decrease proportional to v-'.

According to CD, the susceptibility still has a negative

slope and has the value p'cVre/2s Jr~ at the Neel tem-
perature. The values of XoD'/Zap~' at T=O and at
T= T~ are given in Table VI. The experimental curves
of MnF& by Stout and GriGel" exhibit this general type
of behavior with x'(T=T~)/x'(T=O)=0. 76 as com-
pared with our predicted value 0.92. However, we stress
the fact that our approximations are not expected to be
valid in the;icinity of the Neel temperature. We
according'y place more emphasis on the quantitative
agreement with spin-wave theory at low temperature,
and on the general agreement with experimental obser-
vations at intermediate temperatures, than on quanti-
tative comparison with data at the Neel temperature.

Further insight of the behavior of the perpendicular
susceptibility may be gained by recalling that the sus-
ceptibility measures the transverse correlation function

(10.9)

The physical source of the decrease in x' from the
molecular-field value, at T=0, is the contribution of the
spin-wave zero-point oscillations. These contribute
primarily to the self-correlation term i= j, in the series
(10.9).As the temperature increases, this self-correlation
increases with the amplitude of the transverse spin
components, but the negative nearest-neighbor correla-
tion also builds up as longer-wavelength spin waves are
excited. The competition of these correlations depends
delicately on the spin-wave renormalization, giving the
result

(10.10)

We have specifically taken the anisotropy II." to be zero
in this discussion to stress that the temperature depend-
ence of the perpendicular susceptibility is a fundamental
property, quite distinct from the phenomenological tem-
perature dependence ascribed to the anisotropy in dis-
cussions based on molecular-field theory. "

Finally, we note that the approximations here ex-
plored fail in the immediate vicinity of the Neel tem-
perature. In the case of vanishing anisotropy, the
apparent Neel temperatures of the parama, gnetic and
antiferromagnetic phase are the same in RPA, while
they differ considerably in CD. The Neel temperatures
predicted by RPA and CD for the antiferromagnetic
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phase with zero anisotropy are in agreement with the
Curie temperatures obtained for a ferromagnet of equal
i Jj, using the same approximations. This equality is in
close agreement with the Pade predictions of Rush-
brooke and Wood. "CD yields higher Neel temperatures
than RPA and for the larger spin values is in better
quantitative agreement with the results obtained by
Rushbrooke and Wood.
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The nuclear magnetic-resonance spin-lattice (T|) and spin-spin (Ts) relaxation times and the Knight shift
of La'" in pure fcc lanthanum metal have been studied from 295 to 825'K. The relaxation times exhibit a
temperature dependence which can be explained by vacancy diffusion and annealing eAects that perturb the
spin system via the nuclear electric-quadrupole interaction. At the highest temperatures, it is found that
T, = Tscc exp(C' /kT) where I', = 15 kcal/mole is found for the activation energy of vacancy formation and
diffusion. The Knight shift is found to increase from 0.64/o at 295'K to 0.72% at 825'K, which may be the
result of an electron-phonon interaction.

I. INTRODUCTION

l 'HE behavior of the nuclear spin-spin (Ts) and
spin-lattice (TI) relaxation times of La'" in pure

fcc lanthanum metal has been studied from 25 to 550'C.
The major part of their temperature dependence can
be interpreted on the basis of vacancy diffusion and
formation, on a competition between the two stable
crystal structure forms, hcp and fcc, and annealing
effects, all of which affect the nuclear-spin system. via
the electric-quadrupole interaction.

X-ray studies' have shown that hcp La metal begins
to transform to an fcc structure at 200'C which, is then
stable even below 200'C. Cold working below 200'C
restores the hcp phase. However, even in the fcc phase,
a small amount of hcp phase remains. ' The fact that the
c/It ratio (c/a) L,——1.61 of hcp La is not ideal, and that
La"' possesses a moderate quadrupole moment, leads
to a quadrupole interaction which has the effect of
broadening the resonance linewidth, or alternatively of
shortening T2, while at the same time reducing the
intensity of the resonance by removing the satellite
transitions from th, e central resonance. The central
resonance (srt = sr —+ ttt = —sr) and the two inner satellites
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(tN= i-', i~i-,s )) have been observed' in hcp La which
was annealed for several days at a temperature just
below the phase-transition temperature. Another source
for a quadrupole interaction in hcp La, which will mani-
fest itself whenever the local symmetry is noncubic, is
strains and stacking faults which are dificult to anneal
away since annealing must be done below 200'C to
preserve the hcp phase.

The fcc phase of La should ideally show no evidence
of a static quadrupole interaction. However, any devi-
ation from cubic symmetry such as a small amount of
the hcp phase will produce an observable effect. On
the other hand, even in a pure fcc phase rapidly time
varying or momentary deviations from cubic symmetry
as may be produced by diffusing vacancies or other
defects will be observable in a TI (spin-lattice relaxation-
time) measurement, where TI is considerably shortened
via the quadrupolar-relaxation mechanism.

A study of the La linewidth, with some direct T&

measurements, from 25 to 550'C reveals the effect of
both a static and a time varying quadrupole interaction.
Quantitative results of vacancy formation and diffusion
and annealing eBects are deduced and are discussed in
Sec. III. A Knight shift, increasing with temperature,
is also observed and is qualitatively discussed.

II. EXPERIMENTAL

In order to avoid skin-depth-effect problems, the
samples were prepared in the form of a powder by using

~ D. Torgeson, D. Peterson, and R. G. Barnes, Bull. Am. Phys.
Soc. 8, 529 (1963).


