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Influence of Landau Level Broadening on the de Haas —van Alphen Effect
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Dingle's treatment of the influence of Landau level broadening on the de Haas-van Alphen eRect is ex-
tended by the method of Lifshitz and Kosevich to include a Fermi surface of arbitrary shape. It is shown that
a momentum- or energy-dependent linewidth can influence the period, phase, and amplitude of the magneti-
zation oscillations, although crude estimates indicate that in many cases the eRects would be quite small.

INTRODUCTION

HE inQuence of Landau level broadening on the
de Haas —van Alphen (DHVA) effect has been

considered by Dingle' for free electrons, where the e6ect
of a Lorentzian line shape parameterized by a "collision
time" r takes the form of the factor exp( srt*c/7. e—H) in
the oscillatory magnetization. We shall show by the
method of Lifshitz and Kosevich' (hereafter referred to
as LK) that this result is applicable for an arbitrary
Fermi surface, provided the effective mass as* is defined
as equal to BS/2srctE, where S is the appropriate ex-
tremal cross-sectional area inclosed by the Fermi surface
in momentum space. We shall also show that kinemati-
cal or dynamical eBects which cause the parameter 7. to
be momentum or energy dependent may infI.uence the
period and phase as well as the amplitude of the oscilla-
tions. In particular, by allowing 1/r to contain a term
proportional to the momentum in the direction of the
applied magnetic field (the z axis), the relative impor-
tance of electrons with different p, is shifted so that the
effective area determining the frequency of the oscilla-
tory magnetization is no longer the extremum. However,
as indicated by crude estimates, such effects may
generally be quite small.

With the methods of quantum GeM theory, Bychkov'
has treated the effect of elastic scattering of free elec-
trons by impurities. He has concluded that the Dingle
factor is applicable if r=4r'/sr, where r' is the mean
free-collision time in the absence of an applied field,
provided that 1/v, r'))ho, /f, where v, is the cyclotron
frequency and f the Fermi energy. For 1/o, r'&hv, /i',
the eGect of impurities can also reduce to the Dingle
factor if other conditions are met. '

PROOF FOR ARBITRARY FERMI SURFACE

Following Dingle, ' let us suppose that the broadening
of the eth Landau level can be described by a Lorentzian

distribution function given by

(Pt) dE
d2V=

/

—f—
4rf (E E) +(—Pt/r)

This has been normalized on the interval (—~,~),
which can also be taken as (E L~"o, co) wit—h negligible
error, provided that the ground-state energy Eo and
energy-level spacing are much larger than pt/r. Such
broadening can be caused by the finite lifetime of the
individual states or the lowering of the free-particle
symmetry by the crystal field. ' ' Consequently, it could
be energy-dependent, although the exact form it would
take is as yet uncertain. We shall consider Eq. (1) as a
phenomenological basis for our treatment.

A system of noninteracting fermions has a free energy
which from the standpoint of the grand canonical
ensemble can be written as a sum over quantum states
X available to each particle'

F= —kT P in{1+expD'—EP)/k&j) —t&, (2)

where 1 is the Fermi energy. Diamagnetic properties of
the system are predicted by retaining the summation
over the E„levels, each with a degeneracy L'eH/hc (we
assume normalization for a cube of side L); each level

must include an integration over the states lying below
and above in energy as given by Eq. (1).The sum over

p. can be approximated by an integral with the usual

degeneracy factor L/h. For the present we shall ignore
the spin contribution, which has been considered by
Cohen and Blountv and references given by them. Then
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Eq. (2) is explicitly written as the lower limit of the E' integration by zero, leaving

—kTVeH
F= ——— «Q dp.

h2C XV ~0 n=O

2A—TV~ A~
(F).„= —

/

—
/
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d$ P dE' dp,

-{-—E-(p.)—~-
1+exp [P+(A/ )'j-' —{&. (3)

kT

The lower limit on the P integration is a finite number,
so that all integrals converge. We arbitrarily choose it
to insure that all energies included in the "sum" are
positive; later we shall replace it by —~, since Eo&)A/r.
Application of the Poisson formula to the sum over "e"
[cf.LK Eq. (2.3)]permits us to write for the oscillatory

part of F:

BS t' E' ——

X (E' $, p,)—ln 1+exp
kT

exp{27rij[cS(E'—g, p, )/AeII y7j—
X —-- — . (8)

P+(A/r)'

Exchanging orders of integration and summation and
integrating by parts, we 6nd

2V—/A " )E —f
(F)-.= I
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Xln 1+exp
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kT

exp[ic jS(E" $, p,)/AeII —i2mjy j—
X—

P+ (A/r)'

Xexp(i2~ jki) [P+(A/r)'$ —'. (4)

The integral over "e"can be changed to one over E by
using the Bohr-Sommerfeld quantum condition for
motion in the plane perpendicular to H [LK Eq. (1.3)):

where f(x) = (1+e*) ' is the Fermi function. The inte-
grals can be approximated by noting that the primary
contribution of interest from the integrand is in the
region E"=E' and )=0 where (BS/Bp.)„=0.This
latter condition de6nes "p ."Then the area in the phase
factor can be expanded as

F„dgy = (e+y)h, (5) BS
5(E" g, p,)=5(E',p.)—+ (E',p„)[E;——E'j

BE

which reduces to the quantum condition for the area
contained within the projection of each particle s tra-
jectory on the transverse plane in momentum space,

B28
+l (F',p-)Lp.-p-j'. (10)

B z

5(E,p,)= (e+y)heII/c.

Equation (4) then becomes

—2kTV
(F)„,.=— — — —Re

h' xv

BS f —E—(
X (E,P,) ln 1+exp

BE kT

(6) With the assumptions that the $ dependence of r and
BS/BE" can be neglected and that Eo&)A/r so that the
lower limit of the $ integral is effectively —OIk, the ~k'

integration can be readily performed:

~ ~

A) " icj BS
« —.p — —(E',p-)~ [V+(A/ )'j-'

mri AeH BE

cj BS
=exp —— (F',p ) =exp{—j/k, *r), (11)

veB BE
exp[2m ij(cS/heH —y) $X---

~'+(A/ )'

By making the further change of variable E'=E+$,
(F).„can be seen to have the same form as Eq. (7), but
with the E' integration taken over the interval ($, ~).
Since the maximum contribution of the integrand comes
from the region I~'=i&)A/r and )&A/7, we approxiniate

where ik,*=eII/m*c and rN*=BS/27rBE. If r is inde-
pendent of E' and p„ this factor can be removed from
the integral and be recognized as the factor erst derived
by Dingle. ' It also can conveniently be written as
exp( —2~'jkTik/p*P), where Trk is defined to be the
"Dingle temperature" —previously called the "x factor"—and P* is eA/m*c. The remaining integrals are per-
formed as in the treatment of LK, and with the insertion
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of the cos(jmgm*/2m) from the spin dependence as
dered by Cohen and Blout, ~ we obtain as our end result

eH ' ' 8'5
(&)...=2VkT

hc Bp, ' r,„„
exp( 2n—' jk T~/P*H)

sinh(2m' jkT/P+H)

gC 7r

Xcos —SQ,p )—2m. jy+—
AeH 4

Xcos( j7rgm*/2m) . (12)

The upper sign is used when S(g,p ) is a maximum, the
lower for a minimum. As usual, the magnetization is
given by M= —(BF/BH)r z

ENERGY AND MOMENTUM-
DEPENDENT BROADENING

The lifetimes of electronic states in metals at low
temperature are determined primarily by the frequency
of collision with impurities and lattice imperfections.

Since a single particle moving through a cloud of 6xed,
hard-core scattering centers has a mean free path inde-
pendent of its speed, its collision time is inversely pro-
portional to its speed or momentum. In addition, lattice
broadening of levels may contribute an energy-de-
pendent term to the linewidth, which is additive to 1/r
at least in the limit fz/r(&P*H. 4 As a simple phenomeno-
logical description which is mathematically tractible,
we assume

1/r=1/rp+np[ p [+oti(E) .

The $ integral in Eq. (9) can be performed as before,
leaving the p, integral, which for np ——0 was evaluated
by the method of stationary phase about the point p
where (BS/Bp, )„„=0.

Near this point S(E",p,) can be expanded as

S(E"p*)=Si(E") e(E")—PP p-3' — (14)

where e)0 if S has a maximum at p . For np/0, the
stationary point is moved off the real axis by an amount
zo.'phm*/2e, and the integral can be evaluated by the
Inethod of steepest descent. Continuing the evaluation
of the remaining integrals in Eq. (9) by asymptotic
approximations, we find the equivalent to Eq. (12):

eH '" iA Bn»
(P)„,=2VkT

( 2e(i)
~

'~' Re 1——= P j '" exp{ —j[1/rp+npP, +nr({)j/z'~*}
hc 2' BF

2z'k I xk T Bn» 2m 'k T
sinh — —cos - - - — —i cosh

P*H v, * BE r P*H

hark T BQii
sin

z.* BE/ r

icj — (n'I'zm*) '
Xexp S»

keg 4'»
J7l gtPS

i2rrjy~—i cos —— — . (15)
4 2m

Since the actual form of ni(E) is unknown, we must
resort to crude estimates to determine the importance
of the correction terms in Eq. (15).Assuming a linear de-
pendence for ni(E), we let (d /doEr)r=1/ {',rspo that for
/=10 ' eV, Izdn, /dE='h/rp{ =10 "/rp. As DHVA ex-
periments have been conducted on materials with wp as
small as 10 "sec, ' this term can be appreciable for such
extreme cases. The other energy-dependent correction
term is

frequency of magnetization oscillation, depending upon
the field dependence of ni(E).

%e shall now consider the explicit frequency correc-
tion term, (npAm ) '/4eSi. For an ellipsoid of revolution,
S=2~m*(E—p, '/2m, ), and with ap'= 1/rp'm, {,we find
this term is about (A/4rrrp{)'=(10 '4/rp)' and con-
sequently is of second order and negligible. However
this term might be noticeable if Br/Bp, were anoma-
lously large at the Fermi surface.

In conclusion, we wish to emphasize that the above
estimates necessarily have been crude, because the
energy and p, dependence of the linewidths are un-
known; however, our results indicate that such depend-
ence could lead to noticeable eGects other than an
exponential decrease in amplitude.

which becomes 10 '(kT/P*H) if Tran=1'K. This term
is therefore more important at lower fields, where
kT/P*H = 1. lt is thus possible that if (dni/dE) r is large,
th
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