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Theoretical expressions are derived for the quantum yield and for the energy distribution of photoelectrons
assuming bulk photoemission from a solid. The effects of electrons which escape without inelastic scattering
after optical excitation, and of those electrons which escape after one inelastic-scattering event, are con-
sidered. The expressions relate optical transition probabilities, optical constants, and mean free paths for in-
elastic scattering in a solid to quantities which can be measured in photoemission experiments. Examples of
photoemission data are interpreted to show how the contribution of once-scattered electrons can be separated
from the contribution of those electrons which have not suGered an inelastic-scattering event before escaping.
The contribution to photoemission of those electrons which have not been scattered is analyzed to show the
way in which direct and nondirect optical transitions can be identi6ed and the way in which the density of
states in a solid can be determined. The contribution of once-scattered electrons to photoemission is analyzed
to show the way in which the nature and strength of inelastic-scattering mechanisms can be determined. The
effects of electron-electron scattering, scattering by plasmon creation, and the Auger process are described,
and methods of obtaining mean free paths and other scattering parameters are suggested.

I. INTRODUCTION
'
QHOTOEMISSIOiX from solids is a two-step process.

Electrons are first optically excited into states of
higher energy; then they move to the surface of the
solid, with or without scattering, and escape into
vacuum. As a result, measurements of the spectral
distribution of the photoelectric yield, and of the energy
distribution of photoemitted electrons at individual
photon energies, can be used to study both the optical
excitation processes and the electron-scattering proc-
esses in solids. The main purposes of this paper are to
explain how the eRects of electrons which escape after
one or more inelastic-scattering events can be separated
from the effects of those which escape without sig-
nificant inelastic scattering in photoemission, and to
outline methods by which the data can be interpreted
in terms of band structure, optical excitation proba-
bilities, and scattering probabilities.

In the past, photoemission has been considered by
many authors. ' ' However, the emphasis has been on
the details of this phenomenon at photon energies near
the threshold. In this paper, photoemission at photon
energies well above the threshold is emphasized. The
effects of inelastic scattering are taken into account by
considering only those electrons which escape without
inelastic scattering and those which escape after one
ine]astic scattering. By this means, general results are
obtained which allow detailed interpretation of photo-
emission data.

In parts A, 8, and C of Sec. II, an expression for the
energy distribution of photoemitted electrons at a
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given photon energy is derived considering only elec-
trons which escape without inelastic scattering and
electrons which escape after one inelastic scattering.
This expression is related to the optical transition
probabilities in the solid and the optical constants in

pa, rt D. In parts E and F the eRects of electron-electron
scattering, of electron scattering by plasmon creation,
and of the Auger process are considered. Section III
gives an expression for the photoelectric quantum yield,
and explains in detail the factors aRecting it. Using the
expressions for electron energy distribution and quan-
tum yield derived in Secs. II and III, typical experi-
mental data are interpreted in Sec. IV. The character-
istic eRects on the data of direct optical transitions and
those transitions which are not direct, of electron-
electron sca, ttering, of electron scattering by plasmon
creation, and of the Auger process a,re all discussed in
detail.

It will be shown that photoemission data can be used
to determine whether an optical transition is direct or
not; that is, whether direct conservation of k vector in
an optical transition is required (Sec. IV.A). If it is
found that direct conservation of k vector is not
necessary in an optical transition, there are two possible
explanations. Either the transition is indirect, k vector
being conserved by some mechanism such as phonons, '
or conservation of k vector as a selection rule is not
important. ' Xo distinction between the two possi-
bi ities will be made here. All optical transitions in
which direct conservation of k vector is not important
will be referred to as nondirect transitions.

II. ENERGY DISTRIBUTION OF PHOTOEMITTED
ELECTRONS

A. Probability of Electron Escape Without
Inelastic Scattering

Consider an electron excited to some energy E and
momentum p at a distance x from the surface of a

4 L. H. Hall, J. Bardeen, and F. J. Blatt, Phys. Rev. 95, 559
(1954).

5 9~. E. Spicer, Phys. Rev. Letters 11, 243 {1963).
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semi-infinite solid as shown in Fig. 1. This electron has
just been excited to this state by absorption of a photon.
In order for the electron to escape from the solid without
any loss of total energy, it must (1) reach the surface
of the solid without suffering an inelastic collision, and
(2) have a crystal momentum component perpendicular
to the photoemitting surface greater than some critical
value.

An exact treatment of the scattering and escape
problem presents extreme difliculties and will not be
attempted here. Rather the following simplifying as-
sumptions will be made:

VACUUM

ELECTRON AtlTH

MOMENTUM p AND

ENERGY E

(1) The distribution in direction of the excited
electrons is isotropic.

(2) Only inelastic scattering events need be con-
sidered.

(3) The probability of inelastic scattering can be
described in terms of a mean free path t, which is a
function only of the electron energy.

(4) The inelastic scattering is isotropic.

(5) In order to escape over the surface barrier, the
electron must have a component of its total crystal
momentum p, perpendicula, r to the surface which is
greater than some critical value p, . The escape proba-
bility is assumed to be unity if this condition is satisfied.
Since the samples studied consisted of unoriented poly-
crystals, the first assumption was probably satisfied in
a macroscopic sense. The validity of the second assump-
tion is discussed in detail in Sec. II.C.

The third and fourth assumptions cannot be expected
to be exact; however, deviations from them woul. d
probably not cause first-order errors in the present work.
Greater care would have to be taken if measurements
were made on single crystals. '

The fifth assumption involves the probability of
escape of an electron which reaches the surface. As will
be seen in the equations derived, p and p, appear only
in terms of the form (1—p,/p). In principle these could
be calculated from the known band structure. One effect
of elastic scattering will be to scatter electrons into the
proper direction for escape. As will be discussed in Sec.
II.D, this could be taken into account by redefining the
escape probability.

Since these assumptions are not exact, the treatment
given here must be considered as only a first approxi-
rnation.

If 0 is the angle between the direction of electron
momentum upon excitation and the normal to the
photoemitting surface as shown in Fig. 1, the electron
must move a distance x/cosg to reach the surface. The
probability of the electron escaping without loss of
energy following excitation to energy F., is

«8 1(uc/u)

p...(E,x) =- e
—*~'~pp sin0d8 if p&~ p„

2 0 (1)

if p& p. ,

I"IG. 1. Dehnition of terms for bulk photoemission from a solid.
8 is the angle with the normal and x is the distance from the
surface.

where t is the mean free path for inelastic-scattering
characteristic of electrons with energy E. Changing
variables so that s= cos9

p„,„(E,x) =-
pc/u

=0

e *"'ds if p&~ p,
(2)

R' (E)dE = p„„(E,x)G (E,x)dEdx,

R'(E)dE = Gp(E) dE P,-,„(E,x)e 'Ch.
0

In Eq. (4) the photoemitting solid has been assumed
to be semi-infinite to allow the upper limit in the
integration to be infinite. Carrying out the integration
in Eq. (4) first with respect to x, integration with respect
to s gives the result:

Gp(E) dE
R(E)dE=

2A

p,. 1

p nl

1+nl (5)
P~~P

P&P'

)&ln ——.

-1+(p./P)~L

This expression is rather dificult to interpret in its

This integral does not have a simple closed-form
solution. However, p„,(E,x) can be used in the integral
form, the integration being performed later.

In optical absorption, the rate per unit area at which
electrons are excited to energies between E, and E+dE,
in a slab of width dx located a distance x from the
surface on which the light is incident (see Fig. 1), has
the form

G(E,x)dECk=Gp(E)dEe 'dx, (3)

where a is the absorption coeKcient. Gp(E) will be
defined later. From Eqs. (2) and (3), the rate of escape
of electrons with energy between E and E+dE is



A 1032

I.0 c(E) *0

c(E)

C(E) ~

escape P,. As a result, it is a complicated function.
However, using Eq. (8), it can be seen that C(E) is
zero for electron energies less than the threshold energy
for photoemission, and is 0.5 for electron energies well
above threshold.

B. Probability of Electron Escape After
One Inelastic Scattering

0.00 I 0.0 I O. I IOO

I'IG. 2. Values of the correction factor E. nl is the product of
the absorption coefficient (n) and the mean free path for electron
scattering (f).

Ql 1+nl

(P./P)7nl —Li —(P./P)7'n'l'
+

nl 1+nl 2 (1+nl)'
Li- (P /P) 7'n'l'

3 (1+nl)'
+. (6)

Substituting Eq. (6) in Eq. (5) and collecting terms
gives

kE1 (P./P)7Go(—E)dE Li —(P./P)7
R'(E)dE = — — 1——

n+ (1/l) 2(1+nl)

Li
—(P./P)7ni

3 (1+nl)'
P&P',

present form. It can be written in a form that is more
meaningful if the logarithm in Eq. (5) is expanded in
an infinite series

1 1+nl——ln
nl 1+(P./P)nl

D (P /P)7n—l=+—ln

In both copper and silver, the effect of electron
scattering is small enough over the electron energy
range studied (0 to 11.5 eV above the Fermi level) that
only those electrons which escape without scattering
and those which scatter once before escaping need be
considered. The probability of electron escape after
scattering once can be derived in a way similar to that
for electron escape without scattering.

Consider an electron excited to energy E' a distance
x from the photoemitting surface as shown in Fig. 3.
The probability of this electron escaping with energy
between E and E+dE after scattering once is the
product of three probabilities: (1) the probability that
the primary electron will scatter after moving a distance
r in the solid at an angle 8 with respect to the normal to
the photoemitting surface; (2) the probability that this
electron will be scattered in this scattering process to
an energy between E, and E+dE, ; and (3) the proba-
bility that it will escape after the scattering event
without further scattering. Referring to I ig. 3, the first
probability if the electron velocity direction is random
ls

P, = p, e "~'-sined87(dr/l'), (10)

where l' is the mean free path for inelastic scattering
for electrons with energy E'. The probability of the
electron being scattered to an energy between 8 and
I':+dE, ps, will depend on the scattering mechanism
and will be derived for particular cases later. It will be
assumed, however, that the electron velocity direction
after scattering is random and independent of its initial

P&P'

Equation (7) can be further simplified if a threshold
function C(E) is defined where

C(E) =lL1 —(P./P)7 P&P:
=0 P&P

and if the infinite series in Eq. (7) (which has a value
between —', and 1) is represented by a correction factor
E. This correction factor has been evaluated, and
plotted as a function of C(E) and nl in Fig. 2. U»ng
Kq. (8) and the correction factor K, Eq. (l) becomes

VACuuM SOLID

ELECTRON WITH

ENERGY E AND

MOMENTUM P

EI ECTRQN WITH

ENERGY E

KC(E)Gp(E)dE
E'(E)dE=

n+ (1/l)

The threshold function C(E) depends on the crystal
momentum P and the critical crystal momentum for

I"yo. 3. Definition of terms for photoemission after an inelastic-
scattering event. r is the distance traveled before the inelastic-
scattering event. E' is the energy before scattering. Ji and p are
the values of energy and momentum, respectively, after scattering.
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arried out ex
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~

. (16)
2 O.l'
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FIG. 4. Attenu-
ation length I.calcu-
lated using the
Monte Carlo method.

is the electron-
electron mean free
path and l„ is the
electron-phonon
meanfreepath (after
Stuart, Wooten, and
Spicer).

it has been found both experimentally and theoretically
that the probability of escape of an electron with energy
E a distance x from the surface of a photoemitter can be
approximated in this case by7

p„,(E,x) =B(E)e *~', (20)

where B(1~) is a function which takes into account the
threshoM, and I.is an attenuation length which depends
on the mean free paths for inelastic and elastic col-
lisions. Using Eq. (20), calculations similar to those
resulting in Eq. (7) give

L
0 500 COO 500 PMO 2500

are moving toward the .photoemitting surface. The
probability of these electrons escaping after scattering
once will depend on the probability of their scattering
once before reaching the surface. If I'&)1/n, most of
these electrons will escape without scattering. If
I'((1/u, few will escape without scattering.

C. Effect of Elastic Scattering

It has been assumed in the previous sections that the
mean free path for inelastic scattering is much shorter
than the mean free path for elastic scattering. However,
in copper and silver electron-phonon interaction is a
moderately strong scattering mechanism. This scat-
tering process involves an energy loss small enough
compared to the resolution of photoemission measure-
ments that the process may be considered as elastic. An
estimate of the energy loss per collision can be obtained
in the following way: In a phonon collision, a phonon is
either absorbed or emitted with probability proportional
to e and m+1, respectively, where m is the equilibrium
density of phonons in the metal. Assuming the phonon

. energy corresponds to the Debye temperature (=0.03
eV in Cu, and =0.02 eV in Ag), ' the energy loss per
collision can be averaged over emission and absorption
according to the probabilities involved, phonon emis-
sion corresponding to an electron energy decrease equal
to the phonon energy, and phonon absorption corre-
sponding to an electron energy increase of the same
magnitude. In copper and silver at 300'K, the average
energy loss per collision is =0.016 and =0.0075 eV,
respectively. These values justify the approximation
that phonon collisions are lossless.

The process of electron escape from a photoemitter
when the mean free path for elastic scattering is com-
parable to that for inelastic scattering is dificult to
describe exactly in closed mathematical form. However,

C. Kittel, Introduction to Solid State Physics (John VViley R
Sons, Inc., New York, 1960}.

Stuart, Kooten, and Spicer' have used the Monte
Carlo method to determine I. for various values of the
mean free paths. Some of their results are shown in
Fig. 4. In copper and silver, the absorption coefricient
is of the order of 5&10' cm ' in the visible and ultra-
violet, ' and the mean free paths for phonon scattering
are approximately 500 A at the Fermi energy. "Even
allowing for the fact that the mean free path for elastic
scattering at high-electron energies may be somewhat
lower than the mean free paths for phonon scattering
at the Fermi energy, I'ig. 4 indicates that 1/I, will be
smaH compared to o. in ~opper and silver for inelastic
collision mean free paths longer than approximately
500 A. When the mean free pat:h for inelastic collisions
is less than 500 A, 1. approaches the value of the
inelastic collision mean free path. For these reasons, in

copper and silver Eq. (7) may be used as a, good
approximation over the entire range of electron energies
to be studied, if the small effect of elastic collisions is
included in the threshold function C(E).

D. Relation of' Electron Energy Distribution to
Optical Transition Probs. bilities

The absorption coeKcient of a solid o. at frequency
p may be defined as

n(v) = n„'(E)dE, (22l

if aH photons corresponding to frequency v are absorbed
in exciting electrons in the solid to higher. energy states.
In Eq. (22), n„'(E)dE is the part of n(v) due to electronic
transitions to energy states between E and E+dE. If
e„ is the Aux of photons at frequency v per unit area
absorbed by the photoemitting material, then G(E,x)
)&dEdh in Eq. (3) due to optically excited electronic

7 W. E. Spicer, J. Appl. Phys. Bl, 2077 (1960).
SR. N. Stuart, F. Kooten, and W. E. Spicer, Phys. Rev.

Letters 10, 1—3 (1963); R. ¹ Stuart, F. Wooten, and W. E.
Spicer, Phys. Rev. 135, A495 (1964).

9 H. Ehrenreich and H. R. Philipp, Phys. Rev. 128, 1622 (1962).
"C.Kittel, Elementary Solid State Physics (John Wiley & Sons,

Inc., New York, 1962), p. 112
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R(E)dE
1V (E)dE, =

EC(E)dE ( " 1 1

i
n„'(E)+ ——ln(1+nl')

n+(1/l) E s 2 nl'

+—ln 1+— p,n„'(A')«'
~

. (24))
The transition probability per second per unit

volume for electrons with energy E0 in a solid in the
presence of an electromagnetic field at frequency v can
be determined using first and/or second-order time-
dependent perturbation theory if the wave functions
in the solid are known. Assume that this probability
is Er(E,Ep, v), where E is the energy of the electron
after excitation, Eo is its initial energy, and v is the
frequency of the electromagnetic fieM. Since conser-
vation of energy requires that E=Ep+hv, lilr is not an
independent function of both Eo and E. The power
absorbed per unit volume by the solid is then

iVr(E, Fp, v)dE. (25)

transitions is

G(E,x)dEdx=iivn„'(E)dEe "i"&*dx. (23)

This defines Gp(E) in Eq. (3) as N„n„'(E). Substituting
this Gp(E) in Eq. (19), the number of electrons per
absorbed photon at frequency v emitted with energy
between E and E+dE is

~(E)«=C(E)Ãr(E, Ep, v)~E Er(E,Ep, v) dE.
0 (31)

It should be noted that Eq. (31) was derived as-
suming that only inelastic scattering can take place.
Clearly, as l becomes large, elastic scattering will become
important. An important effect of this will be the scat-
tering of electrons into the escape cone. This could be
taken into account approximately by redefining C(E)
so that the electrons elastically scattered in the escape
cone are considered. In regions away from the threshold
where C(E) is independent of E, relative values of
Nz(E, Ep, v) may be obtained from Eq. (31) without
difficulty; however, near the threshold, C(E) may be
a strong function of energy and introduce considerable
inaccuracies into the determination of V (E).

electrons that escape without scattering with significant
energy loss can be separated from those which escape
after scattering with significant energy loss, the energy
distribution of the photoemitted electrons at various
photon energies can be used to gain a great deal of
information on transition probabilities, including se-
lection rules and densities of states. As an example,
consider the special case where n))1/l and, under the
assumptions made here, there is a negligible number of
electrons which sca,tter with significant energy loss
before escaping. In this case, Eq. (24) becomes

1V(E)dE =C(E)n, '(E)dE/n(v), (30)

since E from Fig. 2 is unity for large O,t. Substituting
Eqs. (28) and (29)

o(v)=
h 2

Xz (E,Ep, v)«. (26)

The absorption coefFicient of a, solid a is de6ned in
terms of the conductivity

n (v) =o'(v)/N(v)cpp ) (27)

where n is the index of refraction, c is the velocity of
light in free space, and eo is the permittivity of free
space. Using Eqs. (26) and (27)

n(v) =
m(v)cpphp'

Kr (E.,Ep, v) dE. (28)

Comparing Eq. (26) to Eq. (20)

n.'(E) = Xr(E,Ep, v) .
s(v)cpp hp

(29)

It is evident from Eqs. (29) and (24) that if the

Remembering that the conductivity o (v) is defined at
optical frequencies in terms of the absorption of power
per unit volume, oh''/2, where hp is the amplitude of
the electric vector of the field,

2kv

E. Effect of Inelastic Scattering on the Energy
Distribution of Photoemitted Electrons

l. Imtrodgctioe

The distribution in energy of photoemitted electrons
is similar to the distribution in energy of electrons in
the solid after optical excitation. However, the distri-
bution is modified by inelastic scattering since the
electrons must move through the solid to the photo-
emitting surface before escaping into vacuum. It is
useful to identify three characteristic modifications of
photoemission data which are produced by scattering.
First, there is scattering of electrons out of the states
into which they were optically excited. This effect is
taken into account by the term 1/(n+$1/l(E) J} in

Eq. (24). Since l(E) normally decreases in metals as
energy E increases, this mechanism wiB result in a
distortion of the energy distributors. A second modi-
fication that may occur is that due to lifetime broad-
ening. A third possible modification can be produced
by the escape of once-scattered electrons, Such electrons
may have been either scattered to lower energies from
excited states, or scattered to higher energies from states
below the Fermi surface. The contribution of the once-
scattered electrons to the photoemission data iiiust be
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"2'—~kI, I p(Eo)p(Eo+E' —E)F(Eo)
0

Z. E/ectrorl;E/ectrorI, Scattering a.(E',E)=
An important inelastic-scattering mechanism in

lnetals is electron-electron scattering. Motizuki and
Sparks" have calculated the probability per second of
an electron in state (E',k') being scattered to state

Jf"q. 33 becomes

(E,k) by electron-electron scattering, and exciting an
electron in state (Ep,kp) to state (Ei,kt)

X I 1—F(Ep+E' —E)jdEo, (34)

p, (E',E)dE= p(E)$1 F(E)gg—,(E',E)dE (35)

determined before a detailed analysis of photoemission and the variable E~ has been removed using the energy
measurements can be made. delta function in Eq. (32). Defining

P=(2./a) I(u, upIa. , I~,~,)Is
&&&I:(E'—E)—(Ei—Eo)3 (32)

II„is the perturbation Hamiltonian applicable to the
electron-electron scattering process. To find the total
probability per second of an electron with energy E'
being scattered to any other energy E, Eq. (32) must
be summed over all possible states corresponding to
k', ko, k, tlat, E, Ej, and Eo. This summation may be
carried out if the wave functions and selection rules are
known. However, in general this information is not
available in enough detail to allow accurate calculations
and approximations must be made. Here, it will be
assumed that the matrix element in Eq. (32) is inde-
pendent of the k vectors of the electrons involved, and
has a value represented by M, . Such an assumption
will allow a relatively uncomplicated examination of
the effects of electron-electron scattering on the energy
distribution of photoemitted electrons. In the following
paper, " experimental data from Cu and Ag will be
presented and analyzed, and it will be shown that this
is a good first-order approximation.

Under the approximation that the matrix element in
Eq. (32) is independent of the k vectors of the electrons
involved, the summation described above can be
changed to an integral by including the appropriate
densities of states and Fermi functions in the standard
way. Using this approach, the probability per second
of an electron with energy E' being scattered to an
energy between E and E+dE is

2'
p. (E',E)dE= —

I
~.I'p(E)p(Eo)

0

Xp(Eo+E' —E)F(Eo)L1—F(Eo+E'—E)j
)&L1—F(E)jdE dEo, (33)

and the total probability per second of an electron with
energy E' being scattered to any energy is

P, (E')= p, (E',E)dE. (36)

l(E') =n, (F')r (E') = n, (E')/P, (E') . (37)

Given that as electron with energy E' su8ers an
electron-electron scattering event, the probability ps,
of its scattering to a lower energy between E and
E+dE must be

ps= p, (E',E)dE/P, (E') . (38)

In addition to the scattering of an energetic electron
down to an energy between E and E+dE included in
Eq. (38), there is also the scattering of an electron from
a state below the Fermi level which must be included
in ps. Fortunately, this scattering effect can be included
in ps in a simple way. Figure 5 shows the two processes
that may occur in an electron-electron scattering event
involving the four electronic states in Eq. (32). Both
processes result in an electron with energy E, but in
one case the electron has been scattered from a higher
energy E', and in the other case it has been scattered
from a state below the Fermi level. It can easily be
shown that the probability of the two processes are
equal. Hence, the excitation of electrons from states
below the Fermi level by the scattering can be included

Note that this probability P, (E) is the reciprocal of
the lifetime r(E') for electron-electron scattering of an
electron with energy E'. If a group velocity v, (E') is
defined which applies to electrons of energy E', the
mean free path for electron-electron scattering l(E') is
given by

where
I
cV,

I

' is the squared matrix element in Eq. (32),
F(E) is the Fermi function, p(E) is the density of states,

1~ K. Motizuki, and M. Sparks, M.L.R. No. 1032, Contract
SD-87 (ARPA), W. W. Hansen Laboratories of Physics, Stanford
University, California, May 1963 (unpublished)."C. N. Berglund and W. E. Spicer, Phys. Rev. 136,A1044 (1964),
following paper,

I I

E +tE'-E)
0---I-- ----rsnM~ Levant;

Fxo. S. Thoro possible elec-
tron-electron scattering pro-
cesses, A and B, involving four
electronic states,



by using

ps 2p——,(E',E)dE/P, (E') .
POSITION

Substituting Eq. (39) in Eq. (24)

EC(E)dE " 1 1
E(E)dE= a„'(E)+2 ——ln(1+al')

a+(1/l) s 2 cd'

l t
l' p. (E',—E)

+—ln~ 1+— a„'(E')dE' . (40)
P.(E)

In many cases, al'«1, l'/l«1 and the Fermi function
at absolute zero may be used in the equations. Under
these assumptions, Eq. (40) simplifies to

EC(E)dE
X( )

a+ (1/l)
Ev+1iv(E~ E, )a„'(E')dE', (41)

P, (E')
X a,'(E)+2

where Ep is the Fermi energy. Another e8ect of electron-
electron scattering is illustrated by Eq. (41).Due to the
factor of 2 before the scattering term, an increase in

. quantum yield may occur. That is, optically excited.
energetic electrons may scatter once before escaping,
exciting a second electron from a state below the Fermi
level which may also escape. This may result in a
quantum yield greater than unity.

E E , hs FERMIprrrrrrr, r r r rrrr/ LEyEI

xE
pre rr r r r rrr r rrEp

oEt

EV

TOP OF
TAE d-8AN5

EXCITATION OF ELECTRON AUGER PROCESS

FIG. 6. Illustration of the Auger process in a metal.

Equation (42) indicates that strong scattering by
plasmon creation would result in a once-scattered con-
tribution to energy distribution curves of the same
general shape as the contribution of electrons which

escaped without scattering, but shifted to lower energy
by the plasmon energy hv„. In practice, the magnitude
of the once-scattered contribution due to scattering by
plasmon creation would not be given by Eq. (42), but
would depend on the mean free paths for electron-
electron scattering and scattering by plasmon creation.
However, it is evident from Eq. (42) that the effect of
scattering by plasmon creation would be relatively easy
to identify in curves of the energy distribution of
photoemitted electrons if the scattering process were

strong.

3. I'lasmon Creation

W(E)dE=

In Eq. (40), the energy distribution of photoemitted
electrons has been calculated assuming that electron-
electron scattering is the only important inelastic-
scattering mechanism. In some metals, such an assump-
tion may be accurate over a wide range of electron
energy. However, in others, electron scattering due to
plasmon creation might also be an important inelastic
scattering mecharusm, "and Eq. (40) must be modified
to include this scattering.

The derivation of an expression for the energy dis-

tribution of photoemitted electrons including both
electron-electron scattering and scattering by plasmon
creation is relatively straightforward. Such an ex-

pression illustrates in detail the effects of the scattering
mechanisms. However, the effects of scattering by
plasrnon creation can be illustrated more easily by
assuming that plasmon creation is the only important
inelastic-scattering mechanism. Since the electron
energy loss in a plasmon scattering event must be equal
to the plasmon energy hv„, the probability ps in Eq.
(24) must be 8(E'—E—hv„). Substituting in Eq. (24),
one would obtain

EC(E)dE 1 1
a„'(E)+——ln(1+al')

a+ (1/l) 2 al'

+—In~ 1+—
~

a,'(E+hv„) . (42)
l' 4 l

"J.J. Quinn, Phys. Rev. 126, 1453 (1962).

F. Effects of the Auger Process on the Energy
Distribution of Photoemitted Electrons

In order to fully discuss the effects of scattering on
photoemission data from metals, the Auger process
must be considered. "This process in a metal is illus-

trated in Fig. 6. An electron is excited from a state at
energy Ep leaving a hole. Another electron with energy
Z~ larger than Ep recombines with this hole. A third
electron, initially having energy E2, absorbs the energy
released (Ei—Es) and is excited into a state above the
Fermi level at energy E. For conservation of energy,

E—E2= Eg—Ep.

If the energy 8 of the excited electron is large enough,
the electron may escape into vacuum and appear as a
photoelectron. It should be noted that the Auger

process is the inverse of the event in which an energetic
electron is scattered to lower energy by means of an
electron-electron interaction. As a result, it can be
treated in a similar way.

Consider the process illustrated in Fig. 6 as the
scattering of an energetic hole. The probability per
second of a hole with energy Ep producing an electron
with energy between E and E+dE through the Auger

process may be written, analogous to Eq. (33) for

'4 See, for instance, H. D. Hagstrum, Phys. Rev. 96, 336 (1954).



electron-electron scattering, as

2~—
I
~.I'p(E) p(Ei)

Q p (F+Fp Fi)

A more complex expression will, of course, result if
scattering by plasmon creation is also included.

P, (Ep,E)dE=
III. THE QUANTUM YIELD

F(Ei)F(E+Pp Fi) The quantum yield is de6ned as the total number of
electrons which escape from a photoemitter per ab-

&&I I F(E)~dE dEi& (44) sorbed quantum at a given photon energy. Hence,

where
~
3I,

~

s is the squared matrix element applicable
to the process and F(E) is the Fermi function. Defining

"2x—i3/I isP(Ei)P(E+Ep —Ei)
p

&&F(Ei)F(E+Ep E,)dEi, —(45)

a.(Ep,E)=

Eq. (44) becomes

P.(Ep,E)dE= p(E) $1 F(E)gg, (—Ep,E)dE (46)

and the total probability per second of a hole with
energy Ep being involved in the Auger process is

F,(Ep) = P.(Ep,E)dE. (47)

n+ (1/l)

&& n„'(E)+2
Ev+bv p (E& E)

rr„'(E')dE'
F (E)

sv (s xv) p, (Ep E)— —
n„'(Ep+hv)dEp . (50)F.(E,)

0

Following the derivation given for electron-electron
scattering, it can easily be shown that the contribution
by the Auger process to the number of electrons which
escape from a photoemitter with energy between E and
E+dE is

EC(E)dE "1 1
X,(E)dE=- ——ln (1+nip)

n+(1/l) p 2 nip

l lp P.(Ep,E)
+—In 1+— (r„'(Ep+hv)dEp, (48)

lp l F,(Ep)

where lp is the mean free path for the Auger process for
holes of energy Ep. This expression simplifies somewhat
when crlp«1, (lp/l)«1, and the Fermi function at
absolute zero applies.

EC(E)dE
iV, (E)dE=

+(1/l)
@v-(& &v) p, (EpE)—

X (r„'(Ep+hv)dEp. (49)
p F (Ep)

It may be useful here to combine Eqs. (49) and (41) to
obtain an expression for the energy distribution of
photoemitted electrons when electron-electron scat-
tering is the dominant scattering process for energetic
electrons and the Auger process is the dominant
scattering process for energetic holes.

EC(E)dE
l(/(E) dE =

F(v) = l&l(E)dE, (51)

where I'„ is the energy corresponding to the Fermi
energy plus the work function, i.e., the energy at the
vacuum level. In general, the quantum yield per
incident photon P(v) is measured for a material. This
is related to the yield per absorbed photon through the
reflectivity R, (v)

I"()=I"()/LI-E.()3 (52)

IV. INTERPRETATION OP PHOTOEMISSION
MEASUREMENTS

A. Direct and Nondirect Transitions

From photoemission measurements, it can be estab-
lished whether nondirect or direct optical transitions

"W. E. Spicer, Phys. Rev. 112, 114 (1958); W. E. Spicer,
Phys. Chem. Solids 22, 365 (1961).

"W. E. Spicer, J. Appl. Phys. Bl& 20'I7 (1960).
~W. E. Spicer and R. E. Simon, Phys. Rev. Letters 9, 385

(&962).

The spectral dependence of the quantum yield near
the threshold for photoemission has been considered in
great detail in the literature. '' However, at photon
energies well above threshold, the quantum yield has
only recently been considered. "The quantum yield at
these photon energies is of interest because it can be
used to verify interpretations of the electron energy
distributions, and also to gain information concerning
the band structure between the Fermi level and the
vacuum level. To illustrate this point, assume that the
scattering term in Eq. (24) is negligible, i.e., l»1/(r,
and C(E) is a step function equal to a constant for
electron energies greater than 8„.Following Spicer,"
define a, (v) as that part of the absorption coefiicient
at frequency v associated with transitions to states
above the vacuum level, and. crb(v) as that part of the
absorption coeKcient at frequency v associated with
transitions to states between the Fermi level and the
vacuum level. Then the quantum yield is given by

I'(v) "~.(v)/L~. (v)+~b(v) 3 (53)

It can be seen that transitions to states between the
Fermi level and the vacuum level affect the yield
through nb(v) in the denominator of Eq. (53). An
excellent example of this is the yield minimum in
silicon at 4.4 ev due to the occurrence of very strong
transitions to states below the vacuum level at that
photon energy. '~
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are most important in a solid. Transitions in which
direct conservation of k vector is important will be
referred to here as direct transitions, and all others as
nondirect. In the following paper, experimental data
from copper and silver will be presented and discussed.
As a result, it will be most fruitful here to focus our
attention on a hypothetical material whose band
structure we will assume to be completely defined by
the E versus k diagram calculated along the principal
directions of copper, and to illustrate using this band
structure the different effects on photoemission data of
direct and nondirect transitions. In the following
article, the actual experimental data will be examined,
and the theoretical significance of nondirect transitions
will be discussed.

All analysis of experimental data is based on the
assumption that structure in the optical transition
probability centered at a given final energy will produce
corresponding structure in the energy distribution of
the emitted electrons. For this to occur, a represen-
tative sample of the excited electrons must escape. The
structure in the optical transition probability may be
associated with a critical point in the final states. Since
VI,S—+0 at the critical point, the group velocity of
these electrons will be zero. Of course, 6nite group
velocity is a requirement for emission. This problem
must be examined in detail. It is unimportant, to the
erst approximation, if the critical point is a band
maximum or minimum since the number of available
6nal states will go to zero at the critical point. However,
jf the critical point is a saddle point, the situation may
be more serious. Two factors, must be considered. First,
what fraction of the electrons associated with the peak

in the final density of states are excited to states with
VI,E=O and what fraction have small but 6nite group
velocities. Second, of the electrons with insufhcient
group velocities to escape, what fraction will suffer
scattering with large energy loss (electron-electron
scattering) and what fraction will suffer scattering with
negligible energy loss (scattering due to phonons, im-
perfections, etc.). In the former case, the electrons will
not appear in the original distribution and information
concerning the optical transition probability will be
lost; however, in the second case the electrons may be
scattered into states with group velocity suKciently
large to allow escape. In the latter case, the information
on the optical transition probability will be retained.
A quantitative treatment of these effects is not possible
here. However, it is clear that a peak in the distribution
of emitted electrons may result from optical transitions
to a saddle point even though the relative magnitude of
this peak may be reduced. Very strong peaks in the
energy distribution from silicon have been observed
where the final state was a saddle point. The best
example is the transition to the I 3 point. A very strong
maximum has been observed experimentally in the
energy distributions" "corresponding to this transition
in good agreement with calculations from band
theory. "" In making detailed comparison between
theory and experiment, Brust"" found no evidence
for a reduced escape probability for the electrons
excited to the saddle point.

rs D. Brust, Bull. Am. Phys. Soc. 9, 274 (1964)."D. Brust, M. L. Cohen, and J. C. Phillips, Phys. Rev. Letters
9, 389 (1962)."D.Brust, Phys. Rev. 134, A1337 (1964).



Q L U g D p AT Q gf g S p $ C E R

«A, a "-,
N(EJ I.5 vAcuuM

LEVEL

hn =2.8eV
0,5-

0 FERMI I EVEL

-os-

of nondirect transitions in a metal.

————E4

L ---———E3gl
ii

hvar hv& hv~

VACUUM LEVEL

FrG. 9. Direct transitions
in copper and their contri-
bution to photoemission.
Note that Es—E2 ——hva —hv~
and E4—E3——hv4 —hv3.(54)E~=Z,+hi,

direct transitions between states near ' and statest

near L» is indicated for several photon energies. At hv,2.0-
Q

N(B no direct transitions are allowed; at he», the p otonI.5NCuuQ
LEVEL

energy jus equa st l the energy difference betweenhv~P. leV

and L2', and there is a contribution by direct transltlons;
~&Q

d hv the eak is larger, and is being excited-os-

to higher energy. The important feature o e pea
DENSITY OF due to direct transltlons i ustra eted in Fi . 9 is that theSTATES STATES

eak moves to higher energy as photon energy is in-I IG. 8. Illustration
creased at a somew at s ower

of the initialEq. (54). This occurs because the energy of the initia
e eak is a function of photong for coppco er is shown in states responsible or t e pe

Fi . 7. The vacuum level marked on the diag ener . It is t ls c arac eris icgy
n to establish unambiguously

.0 ]g
hen a roximately a transitions that allows one o es a ivacuum level which results w en appr

d ta the relative strength of non-l ed on the surface of copper. from photoemlsslon a a e

p p
levels whereas the bands lying at higher energy are emissionmeasurements]ntermso

ansltlons is given by transitions rom
. C 'd r the excitation of d electrons to sta esthe s- and +-like states just below t e copper. onsl er e ex

ure 10vacuum ieve]' hen the X h b d „„(F . 7). F
n the ener difference between shows the contrlbutlon o e e

photoemitte e ectrons a wo
s can a ect the photoemission results. Because of

in
ol-tional to the product OI tile moves to hlg er energy in

s thel h h in photon energy, i.e., follows epS. Slncethesa epolnts e ual to t e c ange lnp
at X4' and L2' correspond to peaks in the density o

and is approximately Qa

f om hotoemission measurements the l erence e-f om t tesnearL, andstrong transltlo o rom p o ence e
tween direct transitions to or rom

p o o o p
p g' o vonl nondirect transitions iater. ) However, t e pea s ue

. The slgnlfLcant characterlstlc o other d baIlds a e e an
because they are not pat. The energies onondirect transitions ls that a pea

for the eaks decrease as photontribution of p o oemi eI h t tt d electrons due to such tran states responsl e or e Pe
sitions eltner ~ g remains'th

&1p mains located at a constant energy energy increases.
in the distribution as photon energy is change, t e
energy of such a peak corresponding to the location of
a maximum in the final density of states (peak A in.

Fig. g), or (2) moves to higher energy in increments
e ual to the change in photon energy, corresponding to
a maximum in the initial density of states (peak 8 in
Fig. 8).

eakThe peak in the energy distributions due to the pea
in the density of states at 1.2' (peak 8) shown in Fig.
will continue to move to higher energy as photon energy
is increased, the energy at the peak, E„,being given y
the equation

where E; is the energy at the symmetry point L2'. How-
r when the hoton energy becomes greater than the

energy diGerence between L» and 2 in ig.
transltlons wl e a o'll b ll wed from states near L2' to states
near L», and these transitions will also contribute to

the energy distribution of photoemitted electrons y

LLI

E, Ee E~
ENERGY



A1041S OF Cu AND SILVER: THEORYP HOTOE M I SS ION STU D I ES OF C u

nsider the contribution to photoemission data
of nondirect transitions from the d bands o s

h transition proba-X4'. For nondirect transitions, the
ill reQect the density of states, and the energy

e in Fi . 11. Peaks in the energy distribution o
photoemitted electrons due to pea s in
d 't f states will move to higher energy in incre-
ments equal to the change in photon energy, a p

k in the density of states at X4' will
remain at a constant energy independent o p o o
energy.

The above examples illustrate how the contribution
of direct ana non ireeo

'
d d' t transitions to photoemission

ow this information can bed ta can be separated, and howa
d t determine the relative strengthh of direct an

k rs have usednondirect transitions. Spicer and co-wor ers
hotoemission wi con

''th siderable success to determine,p
for instance, t a ireeh t d' t conservation of k vector is

~ ~ ~ ~ ~
g7important for op ica yt' ll excited transitions in sihcon,

5,21but not i.n CssSb and Cs38i.

Xg

I
ti(q" Vi)

FIG. 11.Energy distributions to
be expected for nondirect optical
transitions from the d band of
copper.

/Ul

/
/

/
I
I
f

/
/ s, /

/ q I
/

1

hV,

ENERGY

p,, (E',E)dE= —~M, ~sp,sdE ~dE,
hEg—(Fi'—E)

le exam le will illustrate theparameters. A very simp e examp
of electron-electron scattering.

h' hth d ityofst tAssume a material in w ic e
above and below the Fermi eve.

(33) i d d t ofe that, M.
~

' in Eq. is

electron energies, an the F unc
'

he Fermi unc
zero applies. Equation (33) then reduces to

B. Effect of Electron-Scattering Processes

It has been mentioned that strong scattering proc-
esses resu in ilt in lifetime broadening of absorption peaks,
and also distort the energy distribution of photoem

n addition to these effects, electrons sometimes escapeIn a ition o ~es
fter scattering and contribute to e gythe ener distri-a er sca

b
'

. . It is important to identify t-e ehe electrons whichutlons.
after scattering in order to ta e eescape a er

inin band structurettering into account in determining an s rlt ~ tyh toemission data. It is also possromp ooe
hanisms which arethe scattering mechanism or mec anisms w

'

dominant in a so i, an1'd d determine some scattering

(M, l'pss(E'—E)dE—
and Eq. (36) becomes

& (E')=
g' 21r—

I
M,

I
'ps'(E' —E)dE'

Qy

l M,
~

'po'(E' E—)'d&, —(56)

rmj. ener . If n„'(E) is a constant.where EF is the Fermi energy. a,
n„' independent of electron e gy,ner an i it is assume

that n) an ared I'y l re much smaller than unity, q.
becomes

~A

(I,O,O)

hVa

XgA

IC C (E)n„'dE
sV(E)dE, =

hvi

VACUUM LEVEL

FERMI LEVEL
X &+2

EJ'+av 2 (E~ E)
dE'

(E' EI)'—
FIG. 10. Energy dis-

tributions to be expected
for direct optical tran-
sitions from the d band
of copper.

ii XI 1 l ICC (E)n„'dE

n+ (1/f)

X &+4I —&+l
)I ( )

& a. E—Ep

Ai
K

A

hvar

ENERGY

"E A Taft ancl H. R. Philipp, Phys. Rav. 115, 1583 (1959).~ s

E for several photonThe energy distribution X„
C(E)a typical threshold functionenergies assuming a yp'

and neglecting 1/l(E) compared to n(v) is shown
'

i . 12. The once-scattered contribution is s a
e fi ure is that electron-The important feature of the g

electron scattering results in a low- gy p-ener eak in t c
U 'butions of photoemitted electrons. Theenergy istr io s o

position o ef th &eak remains approximate y



C. N. BERGLUND AND W. E. SPICER

&1 =5ev &@=6.5eV

FzG 12. Theoretical energy distribution of photoernitted elec-
trons for a metal including the eRect of electron-electron scat-
tering. The cross-hatched area indicates the contribution due to
once-scattered electrons.

might be expected that scattering of electrons with

energy more than 3.85 eV above the Fermi level by
plasmon creation is a strong scattering mechanism in
this metal. Applying directly Eq. (42) with cd' and
l'// much less than unity, the behavior shown in Fig.
14 for the energy distribution of photoemitted electrons
at two photon energies might result. The shaded portion
represents those electrons which have scattered once

by plasmon creation before escaping. It is a replica of
the original distribution reduced in energy by the
plasmon energy. It is evident that if this scattering
mechanism is important, it will be easily detected by
studying the energy distribution curves for silver.

in energy just above the vacuum level and the size of
the peak increases as photon energy increases.

The above example, although very crude, illustrates
the way in which electron-electron scattering affects
the energy distribution of photoemitted electrons. Corn-
parison of this simple example to the experimental data
of Dickey on Na and K, however, shows how well the
simple model predicts the shape and behavior of that
part of the electron energy distribution of photoemitted
electrons due to once-scattered electrons. " Dickey's
curves for Na are shown in Fig. 13. The peak in the
distributions centered at E —8=0.3 eV is due to
transitions from states below the Fermi level. These
transitions are apparently mondirect. The remainder
of the distribution is due to the contribution of once-
scattered electrons as described above. Further veri-
fication of the accuracy of the scattering model is given
by the results from copper and silver to be presented
in the following article.

Silver has a plasma resonance at hv„=3.85 eV. It

C. HGects of the Auger Process

It is evident by comparison of Eq. (48) to Eq. (40)
that the effects of the Auger process on photoemission
data will show marked similarity to those of electron-
electron scattering; that is, a low-energy peak will

appear in the energy distribution of photoemitted
electrons due to the Auger-excited electrons, and an

4J
hv,

ENERGY—Em,
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F&G. 14. Effect of scattering by plasmon creation on photo-
emission. The shaded region represents the contribution of once-
scattered electrons.
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increase in quantum yield will occur. Because of th~s,

it may often be diKcult to determine whether electron-
electron scattering or the Auger process is responsible
for observed photoemission results. However, in many
materials it is possible to separate the two processes
unambiguously. One example of a material where this
occurs is silver, described in detail in the following

article. "Another example is sodium, where it is known
that the bottom of the 61led band is 3 eV below the
Fermi level. In this case, the maximum possible energy
of an Auger excited electron is 3 eV above the Fermi
level. As a result, in photoemission measurements of
sodium, any distribution of electrons which extends to
an energy more than 3 eV above the Fermi level can-
not be due to the Auger process.

FIG. 13.Energy distribution from E (after Dickey). The energy
of the exciting photons is indicated beside each curve. Note that
E —I'. is plotted on the abscissa. E is the maximum energy and
E is the measured energy.

"J. Dickey, Phys. Rev. 81, 612 (1951).

D. The Density of States

In materials where it is found that nondirect tran-
sitions are dominant, the density of states can often
be determined from photoemission data. The following
discussion wig iBustrate how this may he done„
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If transitions are known to be nondirect, the tran-
sition probability, neglecting lifetime broadening, when
light of photon energy hv is directed onto a solid may
be written as the product of the initial and final density
of filled and empty states, respectively, and some
oscillator strength f

C(E)fp(E)p(E kv)d—L"

fp(E)p(E —hv)dE. (61)

Eq. (59) can be integrated to give for the yield

Eg~'+h»

I'(v) =

X5(E—Eo—hv) . (58)

N(E)dE= fC(E)p(E)p(L' —hv)dE

EJ'+A»

fp(E)p(E hv)dE Ev&—E&Ev+hv. (59)

If f is assumed independent of electron en.ergy at a
given photon energy, Eq. (59) becomes

Assuming the Fermi function at absolute zero for
simplicity, Eq. (58) can be substituted in Eq. (31) to
give

Since the denominator of Eq. (61) is dependent on the
density of states between the Fermi level and the
vacuum level, comparison of the calculated yield to
the observed yield can be used to determine indirectly
the density of states in this energy range.

If scattering is strong so that Eq. (59) is not a good
approximation for N„(E)dE, the density of states is
more diKcult to determine. In this case, the contri-
bution to the energy distributions of once-scattered
electrons and Auger-excited electrons must be esti-
mated, and the mean free path l as a function of energy
be known. However, even if scattering is strong, as in
the case of copper and silver, most of the features of
the density of states can always be determined from
photoemission measurements.

N(E)dE= C(E)p(E)p(E hv)dE—

Fiy+Av

p(E)p (E, hv) dE'. (60)—

Equations (59) and (60) show that the energy distri-
bution of photoemitted electrons is proportional to the
product of the initial and final density of states. By
comparing energy distributions at several photon
energies, it is possible to determine the density of states
below the Fermi level and above the vacuum level.
This technique has been used to determine the density
of states of copper and silver, and will be described in
more detail later.

In determining the density of states above the
vacuum level from photoemission data, the threshold
function C(E) in Eqs. (59) and (60) must be known.
In general, this is a complicated function of electron
energy, and is not easily determined accurately. How-
ever, at electron energies well above threshold it is
relative constant, and at electron energies near threshold
it can generally be estimated with sufhcient accuracy.

The density of states between the Fermi level and
the vacuum level cannot be determined directly from
the photoemission data. However, an estimate can be
made of the density of states in this energy range using
Eq. (59) and the measured quantum yield. Assuming a
trial density of states between the Fermi level and the
vacuum level, and knowing the density of states at
other energies and C(E) from the experimental data,

V. DISCUSSION AND CONCLUSIONS

The analysis of the photoemission process presented
has emphasized the characteristics of the phenomena
when the photon energy of the incident light is much
above threshold. Only those electrons which are excited
optically to higher energy states and escape without
suffering an inelastic collision, and those electrons
which escape after suGering one inelastic collision have
been considered. The once-scattered electrons which
escape include those scattered from higher energy states,
those scattered by electron-electron scattering from
states below the Fermi level, and those produced by
the Auger process. Using a simple model, expressions
for the energy distribution of photoemitted electrons
and the quantum yield were derived. These expressions
give a remarkable amount of information on the effect
of various optical absorption processes and electron-
scattering mechanisms on photoemission data, and
provide the experimentalist with a basis for interpreting
photoemission measurements.

In Sec. IV, detailed descriptions of the effects of
various absorption and scattering mechanisms have
been given. It has been shown that the contribution to
photoemission data of electrons which escape without
inelastic scattering can be separated from the contri-
bution of electrons which escape after scattering, and
that the data can be used to determine the relative
strength of direct and nondirect optically excited tran-
sitions in a solid, and to determine the nature and
strength of the scattering mechanisms.

It has been mentioned that one cannot tell the
difference in photoemission data between direct tran-
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sitions to or from fiat energy bands and nondirect
transitions. However, the resolution of photoemission
data is approximately 0.1 eV. Hence, a band would
have to vary over less than 0.1 eV before this ambiguity
would arise. The 6ve d bands in copper, for instance,
extend over 3.5 eV, so this problem should not be
important in this material. In materials where bands

are narrower than 0.1 eV, it is evident that the concepts
of direct transitions and Bloch waves lose their im-
portance, since the wave functions are probably repre-
sented more accurately in terms of atomic orbitals.

In the following article, photoemission measurements
of copper and silver which illustrate most of the e6ects
described here are presented and interpreted.
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Experimental photoemission data from copper and silver are presented and interpreted in detail in terms of
the calculated band structures over a photon energy range from 1.5 to 11.5 eV. It is shown that nondirect
optical transitions are stronger than direct ones in both metals. In fact, the only direct optical transitions ob-
served are rather weak ones between p- and s-like states near I.2' and I j in the calculated band structures. No
evidence of direct transitions from the d bands is found. From the data, the density of states for copper and
silver is determined from approximately tt eV below the Fermi level to approximately 10 eV above it. Several
symmetry points in the calculated band structures, and the d bands, are located absolutely in energy. It is
found that electron-electron scattering is the dominant inelastic scattering mechanism for energetic electrons
in the metals over the range of energy studied. No evidence of electron scattering by plasmon creation is
found. In the silver data, the Auger process is identified, and its eBect on photoemission is discussed in detail.
To check on the results and conclusions drawn from the photoemission studies, and to illustrate the utility of
the method, the spectral distribution of the quantum yield and the energy distribution of photoernitted elec-
trons at several photon energies for copper are calculated and compared to the observations. The contribu-
tion of the Auger process to photoemission is calculated and compared to the observations for silver. In ad-
dition, the imaginary part of the dielectric constant e2 for both copper and silver is calculated, assuming that
only nondirect optical transitions are important, and compared to measured values. In all cases, very good
agreement is obtained.

I. INTRODUCTION
' "N the previous paper, ' the e6ects of diferent optical
- ~ transitions and electron scattering processes on
photoemission from metals have been described. In this
paper, experimental data from the metals copper and
silver are presented which illustrate most of these
eGects. The data are interpreted in detail in terms of the
calculated band structures of the metals. In this paper,
as in the preceding one, optically excited electronic
transitions in which direct conservation of k vector is
not required are referred to as nondirect transitions.

A description of the instrumentation used is given
elsewhere. ' The phototubes used were of the same design
as those used by Apker et cl.,' and Spicer. ' The metals
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were evaporated onto the photocathode and collector
in vacuum to a thickness of approximately 2000 to
5000 A. Following evaporation of the metal, approxi-
mately a monolayer of cesium was deposited on the
surface of the metals to reduce the work function to
values of 1.55 and 1.65 eV for copper and silver, re-
spectively. The optimum layer of cesium on the metal
surface was determined by maximizing the photoemis-
sion from the metal when it was irradiated with light
from a tungsten lamp.

In order to verify that the cesium layer had no eGect
on the photoemission results other than the reduction
in work function, a copper phototube was constructed
without cesium treatment. The experimental results
from this tube were consistent with the results reported
here for tubes with cesium on the surface.

. II. PHOTOEMISSION STUDY OF COPPER

A. The Calculated Band Structure of Copper

Calculations of the energy band structure of copper
have recently been made by Segall and Burdick, ' ' It ip

' B. Segall, Phys. Rev. 125, 109 (1962).' G, A, Burdick, Phys. Rev, 129, 138 (1963),


