ANTIFERROMAGNETIC RESONANCE IN MnCl:-4H:0

than in the case of CuCly-2H,0, but still not large in
comparison to the exchange energy. Thus, Date’s
theory offers no special advantage over the Nagamiya-
Yosida theory for MnCl,-4H,0. Both theories, how-
ever, are deficient, since microwave resonances occur
at magnetic-field values which are comparable to the
low exchange field in MnCly-4H50 (~12 000 Oe at 1°K).
The only theory which is valid for large external fields
is that of Gorter and Haantjes,'® but its applicability
is limited to the case of 7=0°K. Thus, there exists no
theory at present which is suitable for all of our ex-
perimental observations in MnCl,-4H,0.

The expectation that the Nagamiya-Yosida theory
should be approximately valid in MnCl,-4H,0 for low-
field resonances and should become increasingly poor
at higher values of the external field was borne out.
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An unexpected deviation from the theory in a region
where it should be valid, however, occurred at very
low temperatures. A low-field b-axis resonance, which
conformed very well to the theory in the temperature
region of 0.6 to 1.6°K began to exhibit a marked
deviation from the theory below 0.6°K. In addition a
new resonance appeared in this low-temperature region
which exhibited properties similar to the critical-field
resonance as regards linewidth, temperature depend-
ence, and resonance behavior upon rotation of Hy into
the ac and bc planes. We do not have an explanation
of these deviations but the possibility of a change in
magnetic structure such as the formation of additional
sublattices ought not to be excluded. Low-temperature
neutron diffraction studies would be highly desirable
to complement this study.
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Stability of Crystals of Rare-Gas Atoms and Alkali Halides in Terms of
Three-Body Interactions. II. Alkali-Halide Crystals™
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(Received 22 June 1964)

By extending the theory developed in a previous publication for the stability of rare-gas crystals, it is
shown that the stability of alkali-halide crystals can be explained in terms of three-body exchange inter-
actions between the ions. As in the case of rare-gas crystals, the analysis is based on a first- and second-order
perturbation calculation with a Gaussian effective-electron model. The different size of anion and cation of
each solid is taken into account. The effect on stability of double-exchange contributions to the three-body
energy (negligible for rare-gas crystals) is analyzed in detail. It is shown that the theory accounts for all ob-
served regularities on a quantitative basis. In particular, cesium chloride, bromide, and iodide are found to be
stable in the cesium chloride modification ; furthermore, calculated and observed values for the pressure of
transition from the sodium chloride to the cesium chloride configuration are in good agreement.

INTRODUCTION

CCORDING to the Born-Mayer theory of ionic

crystals, all alkali halides should crystallize at
normal pressures and temperatures in the sodium
chloride structure (two interpenetrating face-centered
cubic lattices), this configuration being favored over the
cesium chloride structure (two interpenetrating simple-
cubic lattices) by as much as a few kcal/mole. However,
all cesium halides, except its fluoride, show the cesium
chloride modification, whereas all rubidium and potas-
sium halides, except potassium fluoride, have been
found to exhibit pressure transitions from the sodium
chloride to the cesium chloride structure. Such transi-
tions are indeed predicted by the Born-Mayer theory,
but the calculated transition pressures for the heavier

* Part of this research has been made possible through the
support and sponsorship of the U. S. Department of Army,
through its European Research Office.

1 On leave of absence from the Institute of Industrial Chemistry,
Polytechnic Institute, Milano, Italy.

alkali halides are considerably higher than those ob-
served. For example, rubidium chloride has an experi-
mental transition pressure of 4900 atm, whereas the
calculated value is 39 000 atm.

This stability problem has received extensive atten-
tion in the literature; for detailed reviews we refer to
the excellent treatises by Born and Huang' and by
Pauling.? Historically, the first analysis was carried out
by Hund? on the basis of a pair potential between the
ions consisting of electrostatic interactions between
point charges and a repulsive potential varying as the
inverse nth power with distance. It was found that the
cesium chloride modification is only stable for values of
» higher than 30, but such high values are incompatible
with experimental results on compressibilities of the

1 M. Born and K. Huang, Dynamical Theory of Crystal Lattices
(Oxford University Press, New York, 1954), Chaps. I and III.

2 L. Pauling, The Nature of the Chemical Bond (Cornell Univer-
sity Press, Ithaca, New York, 1948), Chap. X.

5 F. Hund, Z. Physik 34, 833 (1925),
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crystals. Born and Mayer? analyzed the stability on the
basis of an exponentially decreasing repulsive potential
plus electrostatic interactions (Born-Mayer potential) ;
they took into account also attractive second-order (van
der Waals) interactions between the ions. The sodium
chloride structure was consistently found to be the more
stable configuration.

A recalculation of the cesium chloride stability by
May?® on the basis of careful new estimates of van der
Waals interactions by Mayer® gave essentially the
same results. Jacobs” then calculated for the different
alkali halides the pressures at which a transition should
occur from the sodium chloride to the cesium chloride
structure, taking values for the van der Waals inter-
actions as determined by Mayer. The calculated pres-
sures for the heavier halides were considerably higher
than those observed.

It appeared, therefore, that in calculating the differ-
ence between the lattice energies of the sodium chloride
and cesium chloride modifications on the basis of a
Born-Mayer potential, the energy of the cesium chloride
structure is underestimated by a few kcal/mole for the
heavier alkali halides. This implies that the Born-Mayer
potential must be made structure-dependent, i.e., with
different parameters for different crystal structures, in
order to explain the data. It is obvious that the Born-
Mayer potential is in principle different for different
structures since it represents a weighted average of
interactions between a central ion and its first few shells
of neighbors. However, in view of the short-range
character of repulsive forces, such effects cannot lead to
an energy difference as high as a few kcal/mole be-
tween the cesium chloride and the sodium chloride
modifications.

In a recent phenomenological analysis of transition
data for the alkali halides Tosi and Fumi® have shown
that a simple, two-term, structure-dependent Born-
Mayer potential can indeed account for the work in-
volved in the pressure transitions for the rubidium and
potassium halides and for the heat absorbed in the
observed temperature transition of cesium chloride.? As
the only remaining possible explanation for the structure
dependence we assume that this effect is induced by
many-body interactions between the ions. Such inter-
actions must be large, and highly sensitive with respect
to crystal structure, i.e., they must be of short range
(exchange type) and of low order of perturbation theory.
We will consider three-body interactions only, i.e.,
simultaneous interactions between triplets of ions in the
two structures.

The first theoretical analysis of many-body inter-

4 M. Born and J. E. Mayer, Z. Physik 75, 1 (1932).

5 A. May, Phys. Rev. 52, 339 (1937); 54, 629 (1938).

6 J. E. Mayer, J. Chem. Phys. 1, 270 (1933).

7R. B. Jacobs, Phys. Rev. 54, 468 (1933).

8 M. P. Tosi and F. G. Fumi, Phys. Chem. Solids 23, 359 (1962).

9 At a temperature of 718°K and at normal pressure, cesium
chloride goes over from the cesium chloride to the sodium chloride
structure.
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actions in alkali-halide crystals was undertaken by
Lowdin. He found from first-order perturbation theory
a considerable many-body component of the inter-
actions, amounting to 10-20 kcal/mole, with negative
sign, for alkali halides with small positive and large
negative ions. However, this many-body contribution
decreases rapidly as the ions approach equal size and its
magnitude is practically proportional to the Madelung
energy of the crystal. Since the Madelung constants of
the cesium chloride and sodium chloride configurations
differ by only 19, the structure sensitivity of this effect
is much too small to account for stability. Other
attempts have been made to introduce many-body
components of the interactions, but these have no direct
bearing on stability ; they will be mentioned at the end
of this paper. We will show how the stability of alkali
crystals can be understood in terms of three-body ex-
change interactions between the ions in first and second
orders of perturbation theory. The following analysis
bears close resemblance to that given in a previous
publication,!* hereafter referred to as I, for the stability
of rare-gas crystals. Preliminary results of the analysis
have been reported earlier.?

THREE-BODY INTERACTIONS BETWEEN
CLOSED-SHELL IONS

In I we have assumed that there exists a close
similarity between the stability problems of alkali-halide
and rare-gas crystals. This assumption is based on the
fact that the alkali-halide ions are isoelectronic with
rare-gas atoms and that both consist of closed electron
shells. Consequently, their interactions must be of the
same form if we subtract purely electrostatic forces
between the ion charges and disregard polarization
effects in view of the high symmetry of unstrained ionic
crystals.

We use, therefore, the same method as in I for the
evaluation of three-body interactions, namely, an
effective-electron model with one such electron per ion.
The charge distribution of the effective electron is
chosen to be of Gaussian form,

p(r)=(8/7'1%)* exp(—F7%) , (1

where 7 is the distance between the effective electron
and its nucleus and where 8 is a characteristic param-
eter, different for different ions. Since the Gaussian
model is used only to evaluate three-body interactions
(which we assumed to be of the same type as those be-
tween rare-gas atoms with respect to their importance
for stability), ions and atoms are treated on the same
basis. In other words, we assume that, except through
the Madelung energy, the net charges of the ions play
no essential role for the stability of alkali-halide crystals.

10 P, Q. Lowdin, A Theoretical Investigation tnto Some Properties
of Towic Crystals (Almqvist and Wiksell boktryckeri AB, Uppsala,
1948) ; Phil. Mag. Suppl. 5, 1 (1956).

17, Jansen, Phys. Rev. 135, A1292 (1964).

121, Jansen and E. Lombardi, Phys. Rev. Letters 12, 11 (1964),
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We continue to use the names ion, cation, and anion,
even though in the one-effective-electron model they are
charged neutral.

It should also be remarked at the outset that the
limitation to one effective electron per ion (atom)
implies that we consider only contributions to the three-
body energy due to the exchange of one pair of electrons
between the same pair of ions. This approximation holds
for rare-gas crystals. However, the nearest-neighbor dis-
tances in alkali-halide crystals are relatively con-
siderably smaller because of strong compression of the
lattice due to the Madelung energy. Therefore, the
validity of this single-exchange approximation must be
investigated for alkali-halide crystals. In a later section
we will undertake a detailed analysis of double-exchange
contributions to the energy as a function of interionic
distances and ionic dimensions. In this section we discuss
single exchange only.

Consider a triplet (abc) of Gaussian ions with one
effective electron per ion, counterbalanced by nuclear
charges of plus one. The zero-order wave function is
(Slater determinant)

YO=[31(1—Au) I det{p[1]es[2]0 3]}, (2)

where 1, 2, 3 number the electrons. The wave function
for ion a is given by

¢a(r) = p"%a(r) = (Bo/m)* exp(—Bur*0/2),  (3)

i.e., by the positive square root of the Gaussian density
(1). The quantity Ass. is a total overlap integral,
defined by

Azabcz A2ab+ Azac"["Azbc'—' ZAabAacAbc ) (41)

in terms of the overlap integrals Ags, etc., between the
different pairs of ions. Further, B8, is the Gaussian
parameter for ion a. The perturbation Hamiltonian,
H’ .., can be written as

H,aba=H’ab+H,ac+Hlbc;

in terms of the perturbations between the different pairs.

Each alkali halide can be represented by a pair (8,8")
of Gaussian parameters. We adopt the convention 8'> 3,
i.e., B’ represents the smaller ion and 8 the larger ion. The
total three-body energy for a given crystal structure is
then obtained by summing three-body interactions over
all possible triplets of ions. This total three-body compo-
nent appears to be completely determined by the
parameter y= (8'/8)*> 1, by the dimensionless quantity
BR, where R is the nearest-neighbor distance in the
lattice, and by the crystal symmetry.

First- and Second-Order Three-Body Interactions

For the first-order energy E; of the triplet (abc), we
have to evaluate

E1= <H,abc>: <H,ab>+<H,ac>+<H,bc> )
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with the zero-order wave function (2); E; gives the
closed-shell repulsion between the ions. The expressions
are very similar to those concerning a triplet of rare gas
atoms®; the only formal difference being that the ions
a, b, ¢ need not be identical. The result for (H’,3) is

(H'av)/ &
= I/Rab+ 1/(1"A2abc) —1{ - (1_A2bC)G‘m(b)
— (1= A%) Gy F (Aas— AucBie) [Gaviay+Gavry |
+ (Ave— AapApe) Gaovy+ (Ape— Aav8ac) Groay
+ (Aabab'—Aaabb)+Aac(Aabb0'—Aab“b)
+ Ape(A pape—A abac) } - (5)

Here the symbols G and A4 are abbreviations for the
following integrals:

PaPb PaPa
Gab(c): dT; Gaa(b)= (ZT, .

7 ¥y

etc., with 7,=distance between an electron and nucleus
of ion ¢, ry=distance between an electron and nucleus
of ion b, and

ea(1)@(2) pa(1) ¢c(2)
Aabac“// , drid

71072,
12

?a(1) 0a(2) 6(1) 0.(2)
Aaabc*// , drid

71072,
12

etc., with ro=distance between electrons 1 and 2.

Table I contains the integrals occuring in the equation
for E; and their values for Gaussian charge distributions,
for the case B,=f, Bo=B.=p. Methods for evaluating
these integrals have been developed by Boys,** Shavitt,!s
and Zimering.!6

The quantities which appear in Table I are defined
as follows: Rus, Rae, Rs. are the lengths of the sides ab,
ac, bc; (avyy) is that point on ab, whose distance from a
is equal to (1/v41)Ras; (ac,y) is that point on ac, whose
distance from ¢ is equal to (1/v+1)Ruc; Racre=dis-
tance between ¢ and the middle of b¢; R; 43,4y = distance
between ¢ and the point (abd,y), etc., Rub,v)(ac,yy=dis-
tance between the points (abyy) and (ac,y), etc.,
R (ab,v) ey =distance between the point (ab,y) and the
middle of be.

The integrals of Table I can also be used to calculate,
in units of B, the values of the different integrals for the
case B.,=f; By=B.=B" provided that the following
substitutions are made: (i) v is replaced by 1/v; (i) 8is
replaced by ByY?; (iii) the resulting expression is
multiplied by y'/2.

13L. Jansen, Phys. Rev. 125, 1798 (1962).

4SS, F. Boys, Proc. Roy. Soc. (London) A200, 542 (1950).

181, Shavitt, Methods in Computational Analysis (Academic
Press Inc., New York, 1963), Vol. 2, p. 1.

16 S, Zimering (to be published).
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TasLE I. List of integrals for £, for the case 8.=8', Bo=8,=8, in units of B, and their values for Gaussian distributions of charge.

(H' o) (H'av)
Integral Value for Gaussian distribution Integral Value for Gaussian distribution
2yliz\ 312 —vB2R2, 1 (y+1)r
Agp? exp| — Gab(e) Agp erf] BRe(ab, v)
v+1 2(y+1) BRe(ab, 1 21
1 1 v\ 12
Gaad) erf(By**Rav) Aacac erf[ (——-) BRM]
,BRab BRac 'Y+1
1 1\ 12
Goo —— erf(BRw) Aaace L Age?
ﬂRab T
v+1 BRap Auea =4 ybuc
Gab(a) Agp™ erf[————— :| ' abe
BRw  L2(y+1)m Aa® [ (1
- Aacbc ——erf — 6Rc(ab v)
y+1 BYRab Reta 3 '
Gab(b) Aab("‘ erf[ J BRc(av, ) ’Y+
.B'YRab 21/2(7+ 1)”2 Aauob :Aaabc
1 AacM Ape -1\ 12 |
Goe(a) Age erf (BRa(vc)) Agecd [( ) BR (ac, v)(bc)J
BRa(ve) BR (ac, v)(b0)
1 (v+1)r2 Age (v+1) V28R ¢ -
Gac(d) Qg™ erf[ BRb(ac, 7)] A aaac [ :
BRbac, 212 BRas (yF1)12(3y 1)1
1 v\ e (y -1 R
Aabab erf[ (—*—) .BRM)] A wece ('Y-l ) [ ’Yﬁ ac }
BRw Lyl BRa (1)1 (y+3)te
v\ B*R%.
T 4
Ape v 1/2 1
A avac erfl] { —— ] BRuwo Goi(e) —— erf(BRy.)
ﬁRu(bc) 'Y+1 ﬂRbc ’
Aapod =Avoba Gee(ny =Gvb o)
AapMALD (y+1)12 2 SRue
Agabe erf] BR (@b, ) (ac, v) Goocv) Ape—— erf<———>
BR (@b, v) (ae, v 2 BRye 2
A avbe =Abbea Ghrege =Gpo(b)
Aap™ (v+1) Y8R ap Gea(vy =Gac(h)
Aaaab erf
ﬂRab (7+1)1l2<37+ 1)”2 Gba(c) = Gab(c)
Aup@ (y+1) YBR.y 1 BRye
Aabby erf] Abebe erf| ——
vBRw  LOr+1)M2(y+3)1" PRy L 20
2112\ 312 vB2R?, 2\ 172
Agel ( ) exp[ — ac_J Abbee -] A%
v+1 (v+1) Ly
1 Aac(v) 7+1 1z
Gaa(e) erf (8y'?Rac) Aveta B8Ryt vy erf[: <——> PR 7>i]
BRac BRy(ac, v) v+3
4 beac =Aacbc
G erf (B8R
c(a) BRa (BRac) A Ape 1\ 12 ‘
4 bbea erf I BR(ab, 'y)(bc)}
y+1 BRae BR@b, vy L \v+3
Gac(a) Aac(ﬂ erf
ﬁRac 21/2(7-*‘1)”2 Apeca =Aacab
v+1 ByRac 2A4c BRbye
Gac(cy Age™ erf Abvoe —erf| ——
ByRac 22 (y1)12 BRy. 2812
Geb(a) =Gbe(a) Apeoe =Avvbe
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It is also easily verified that by putting y=1 the
integrals are reduced to the same form as that for rare-
gas atoms.'?

The first-order energy between a and b without ¢
present, (H';5)®, is obtained from (5) by removing ion
¢ to infinity. The result is

1
<H,ab)(0)/62=1—Q—+ . {—Gaav)—Goo(a)

ab 1“A ab
FAss[ GavayFGanry I+ (Aasar—Aaarn)} . (6)

Again, the corresponding equations for (H’,.)©® and
(H'3:)@ are obtained from (6) by obvious substitutions.
The three-body component of (H’,3)/¢?, namely,

{(H' ) —(H' )}/ &,

is obtained by subtracting (6) from (5). In the same
manner we form the total three-body first-order energy
for the triplet (abc). Finally, the relative first-order
three-body energy, which we denote by AE/E,©, is
given by

AE1/E1(0) = {(Hlabc>"‘ <Hlabc> © }/(Iflabc> © ] (7)
where
Er© = (| 1) = (' at) O+ (H ) O+ (1) ©

is the sum of first-order pair interactions (6) for the
triplet.

The three-body energies for the cesium chloride and
sodium chloride configurations are obtained by summing
over all triplet interactions in the two structures. In
either lattice a central cation is surrounded by a first
shell of anions, followed by a second shell of cations; for
a central anion the situation is, of course, just the re-
verse. Since the three-body interactions are of short
range, the main contributions arise from triangles of
smallest dimensions. We indicate these triangles by the
triplet of Gaussian parameters for the ions, where the
first parameter represents the central ion. Thus, the
smallest triangles are denoted by (88'8") and (8'88),
followed by (888) and (8'8’8"). The first two types refer
to isosceles triangles formed by a central ion and two of
its nearest neighbors; the last two types refer to
isosceles triangles formed by a central ion and two of its
nexi-nearest neighbors. We note that the contributions
from the triangles (888) and (8'6'8') to the three-body
energy can be evaluated directly as for rare-gas crystals.

The values of the parameter 3 for rare-gas atoms can
be determined from pair potential functions, both at
large and at small interatomic distances.® From these,
the values of BR can be calculated; they lie between 2.0
(solid xenon) and 3.4 (solid neon). For alkali-halide ions
we do not know such pair potentials; therefore, 8 and ¥
must be determined in a different manner. In a later
section, these values will be estimated from diamagnetic
susceptibilities of the ions. It is to be noted that the
precise values of 8 and + are not of direct importance
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since we are primarily interested in their 7ange of values
for the alkali halides. For SR this range extends from
1.3 to 2.1 and for v from 1 to 20 or higher.

For the stability problem we are essentially interested
in those alkali halides which exhibit the cesium chloride
structure under normal or moderate pressures, i.e., in
the cesium and rubidium halides except the fluorides.
For these halides BR lies in the neighborhood of 1.8 and
v assumes values between 1 and 2. We will find that in
these cases the three-body component of the lattice
energy is determined essentially by contributions from
the triangles of types (8/88) and (88’8"), whereas the
triplets (888) and (8'8’8") are relatively unimportant.
On the other hand, the more dissimilar the ions are in
size, 1.e., the larger the value of v, the more important
contributions from triplets (888) of the larger ions to the
three-body energy become.

In Figs. 1 and 2 we give the results for the relative
first-order three-body energy AE;/E;® as a function of
the opening 6 of the isosceles triangles (8/88) and
(88'8") for BR=1.8, and y=1;1.25; 1.50; 1.75; and 2.00.
The results were obtained from (7), (6), and (5) on an
IBM-1620 computer. We draw the following conclusions:

(1) AEy/E©® as a function of 0 exhibits the same
general behavior as for rare-gas crystals': the relative
three-body energy is negative for triangles with small
opening; increases rapidly with 6 until 8~ 120° and then
flattens off very markedly, assuming positive values for
triangles with large opening.

(2) For triangles (8'88), i.e., those with the smaller
ion at the center, increasing v has a negligible effect for
small 8, whereas the three-body energy is quenched con-
siderably for large values of 0.

(3) The opposite behavior from (2) is exhibited by
triangles (88'8"), i.e., those with the larger ion at the
center.
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Since E1® >0, we conclude that in all cases first-order
three-body interactions favor triangles with small opening
6, as in the case of rare-gas crystals.

If, on the other hand, the cation is much smaller than
the anion, ie., if ¥>>1, then we expect more drastic
changes in the behavior of AE;/E,©®. This is shown in
Figs. 3 and 4, where AE;/E1© is given for triplets (5'88)
and (88’8 as a function of 4, for BR=1.5 and y=2; 4;
10; 20 and an extreme value y=100. For comparison,
the values for y=1 are also reported. From Fig. 3 and 4
we draw the following conclusions:

(1) In the case of triplets (8'88) we see (Fig. 3) that
AE:/E:©® becomes practically independent of v for
6>150°, whereas the values for small 8 increase rapidly
with «.

(2") In the case of triplets (88'8’), with a much larger
ion at the center, we see (Fig. 4) that the three-body
interactions are independent of 8 for v>10. For y~4
the values increase very sharply for the smallest
openings and then remain practically constant.

Generally, we see that with increasing v, the three-
body energy is quenched considerably and loses its
sensitivity with respect to the crystal structure. From
this we anticipate that in the case of very dissimilar ions
the main three-body contribution will arise from tri-
angles (88B), i.e., those formed by a large ion at the
center and two of its next-nearest neighbors.

In addition to the types of isosceles triangles con-
sidered above, we will later also evaluate contributions
to the three-body energy from nonisosceles triangles
in the sodium chloride and cesium chloride configu-
rations.

Next, we consider three-body interactions between
the ions in second order of perturbation theory. In this
case we have to evaluate, for an arbitrary triplet (abc)
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of ions,
(Hla bC)UK (Hlabc)x()
By Y, e
k70 Eo-‘Ex

1
= _1~<[H/abc“ <H,a bc)]z) ) (8)

where £,y is an average excitation energy defined by the
averaging procedure. The index x numbers the excited
states of the system (energy E,); E is the unperturbed
ground-state energy. The brackets denote again an
expectation value for the ground-state wave function (2).
The quantity of direct interest is again the relative
three-body energy for the triplet, defined by

AEy/Ey® = (Ey— E;©)/Ex©® )

where E,©® denotes the sum of second-order energies
between the three isolated pairs of ions which form the
triangle. In I, AE,/E,©® was analyzed for rare-gas
crystals; detailed numerical results were given for solid
argon (BR=2.4). It was found thai the relative first- and
second-order three-body interactions are practically the
same at all values of the opening 0 of isosceles triangles
formed by a central atom and two of its nearest neighbors in
the crystal.

The analysis of second-order three-body interactions
between alkali-halide ions can be carried through with-
out detailed calculations in two limiting cases. First, we
consider v values between 1 and 2; BR~1.8. In the
present section we found that for such values the first-
order energies AE;/E;® are very similar to those for
rare-gas atoms. It must be expected that this similarity
extends to second-order interactions. Specifically, we
assume that in this range the relation AE;/E,©
=~ AEy/Es® holds also for three-body interactions between

ioms. Secondly, for values of v>>1 we found that the
24
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three-body interactions are strongly quenched; the
three-body component of the crystal energy is then
mainly due to triplets (388) and the relation AE;/E,©®
=~AEy/E,® is again valid. By interpolation the relative
first- and second-order three-body energies will be taken
as equal over the whole range of values for BR and v of
alkali halide crystals.

Since the second-order pair energy E.® for any triplet
is negative, the symmetry properties of second-order
three-body interactions are just the reverse of those in
first order in that triangles with large opening 6 are now
favored. Accordingly, the stability of alkali-halide
crystals will be found to depend on pair interactions
(including the Madelung energy) and on a balance
between first- and second-order three-body interactions
for the different triplets in the cesium chloride and
sodium chloride configurations.

DOUBLE-EXCHANGE CONTRIBUTIONS TO
THREE-BODY ENERGY

The results of the previous section for the relative
three-body interactions were obtained on the basis of a
one-electron model for the ions. This implies that we
take into account only contributions to the three-body
energy due to exchange of a single pair of electrons be-
tween the same pair of ions. As the interionic distances
decrease, it must be expected that effects due to multiple
exchange become more important. Consequently, we
must verify that the results of the previous section are
not essentially changed if double exchange is taken into
account. In particular, the symmetry properties of
three-body interactions should be stable against double
exchange.

To calculate double-exchange contributions it is
sufficient to investigate the case y=1. Consider a triplet
(abc) of identical Gaussian ions or atoms with fwo

ALKALTI-HALIDE
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effective electrons per ion (opposite spins), counter-
balanced by nuclear charges of plus two. The zero-
order wave function is (Slater determinant)

VARES [6!(1 - A2abe)]—1/2 det{ ‘pa[1]a1¢a[2]62
X <Pb[3]043<Pb[4:|134¢c[5]as<ﬁc[6]56} ) (10)

where 1-6 numbers the electrons and where « and 8 are
spin functions (symbol 8 not to be confused with the
Gaussian parameter). The atomic wave functions ¢(r)
are again of the form (3), and A%, is defined by (4).
The perturbation Hamiltonian H' ., is again a sum of
perturbations between the three pairs of atoms, in this
case with two electrons per atom.

The resulting expression for (H’,3)/€? is more compli-
cated than the corresponding equation (5) for the single-
exchange approximation; it can be written, noting that
for identical atoms
and Aaaab=A bbba

Gaa)=Gova), Gasa)=Gab(p)

as
(H'qv)/ €
4 1
:Rab m{ —4Gaa(0) P1+8Gas(a)Q

+4(1+[ab])GacryR+24 50

+2(14+[ab])AvcasT+2A4450.U

+2(14+[ab]) A aaasVA2(1+[ab]) A acsaV
+2460e. X}, (11)

where the symbol [ab] stands for the operation of
permuting ¢ and b, and where the symbols P to X are
defined as follows:
P=2—2N%;,— 3N ;;— 3M%,+ 4440 0cAbc
F A%0p Ayt A0 A% 0o 2A%, A%t Aty ot Ay,
— 2005806830 — 2045 A0cA% ¢ 5

Q‘: Aab“‘ AacAbc_ Asab'_ AabAZbo"‘ AabAQac

+ AacAsbc_i_ AbcAsac"{_ 3A2abAacAbc—" ZAa bA2acA2bc 5
R= Aac"‘ AabAbc_ A2ubAuc_ A2bcAac“' A3(w

+ AabA3b0+ AsabAbc‘i—SAa bA2acAbc_ 2A2a bAacAzbc 5
S= 2— 2A2ac - 2A2 be Agab'*' 2AabAacAbc+ A2acA2bc N
T=-2A bt AabAac+ 2A3bc+ A2abAbc

+ AA2a¢:A be ™ 3AabAacAch 5

U=—1+ A211c+ A? bc+ 2A2ab- 4AabAacAbc+ A2acA2bc )
V=— Aab+ AacAbc— AacAsbc+ AabAch 5

W= AuetDavDac— 20200800 — 204 A%c— APy

+3A00A864%, ’
and

X= AacAbc“ AabAZbc_ AabA2ac+ A2abAacAbc . (12)
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The equations for (H’,.)/¢* and (H'.)/¢* are obtained
from (11) and (12) by cyclic permutations.

The first-order energy for the pair (ab), without ¢
present, is then given by (11) with atom ¢ removed to
infinity. The result, corresponding to (6), is

4
(H' a2y ® ) = —

ab

——————{2G 0ty 205G 0ty — (A avar— A aars)}
(1—A2%,;)

[AzabA abab+A aabb+2AabA aaab]- (13)

_!__________
(1—A%)?

By comparing (6) and (13) we see that the first two
terms of (13) represent four times the single-exchange
first-order energy between a and &; the remainder con-
stitutes an interference effect between the electron pairs
on the different atoms. The interactions between ¢ and
¢, or those between b and ¢, follow again from (13) by
cyclic permutations.

In Fig. 5 the results for AE)/E;® are given for
BR=1.0; 1.6 and 2.0, as a function of the opening 6 of
isosceles triangles, both for one and for two effective
electrons. We draw the following conclusions:

(a) No qualitative changes occur for AE1/FEi®, as a
function of 6, if double exchange is taken into account.
In particular, the symmetry properties of the three-body
interactions remain the same even for values as small
as BR=1.

(b) Double exchange quenches AEi/E;® both at
small and at large openings of the triangles, but the
quenching effect decreases rapidly with increasing SR.

AND L. JANSEN
These results confirm validity of the single exchange
approximation for rare-gas crystals (BR> 2).

(c) The double-exchange analysis supports the as-
sumed similarity between stability of rare-gas and
alkali-halide crystals.

In view of these results, it is justified to carry out the
stability analysis on the basis of a single-exchange
approximation.

DETERMINATION OF GAUSSIAN PARAMETERS
FOR ALKALI HALIDES

The values of the Gaussian parameter 8 for rare-gas
atoms can be determined from pair potential functions'
at large and at small interatomic distances. For alkali-
halide ions such a method cannot be used, since pair
potentials between the ions are unknown. Therefore, a
different procedure for estimating the Gaussian param-
eters 8, 8 or B, v must be followed. We expect that the
B value for each cation will be somewhat larger than
that for the corresponding isoelectronic rare gas atom,
and for each anion that it is somewhat smaller than
this value.

To estimate such differences, experimental values for
the molar diamagnetic susceptibilities of alkali-halide
ions and rare-gas atoms'” were used to evaluate 8 param-
eters of the jons. Since the susceptibility x of an atom
or ion with one effective electron is proportional to (),
i.e., proportional to 3% for a Gaussian distribution, we
have the following relation

(ﬂion/:eatom)zzxatom/xion- (14>

The 8 values for ions were calculated from (14) by
comparing each ion with its corresponding isoelectronic
rare gas atom, using for the atoms the 8 parameters
obtained from pair potentials.’®1? The resulting values
are given in Table IT together with those of the rare-gas
atoms. In addition, we give in Table III values of v and
BR for the alkali-halide crystals; R denotes the nearest-
neighbor distance in the lattice and 8 represents the
larger ion.

The wvalues in the two tables should be viewed
primarily in relation to each other and to the rare-gas
crystals, for which the values of BR are 2.0 (xenon),
2.1 (krypton), 2.4 (argon), and 3.4 (neon). We have
included the calculated parameters for lithium halides,

TasLE 1I. Values obtained with (14) for Gaussian parameter 8
in units 10% cm™, for alkali-halide ions, and compared with those
of rare-gas atoms.

He 1.59 Ne 107 A 0.623 Kr 0532 Xe 0454
Lit 2.60 Na* 1.162 X* 0.718 Rb* 0.600 Cs* 0.503
F~ 0936 CI- 0558 Br~ 0479 I~ 0.419

17 C. Kittel, Tntroduction to Solid State Physics (John Wiley &
Sons, Inc., New York, 1957), Chap. 9.
18 L. Jansen and R. T. McGinnies, Phys. Rev. 104, 961 (1956).
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TaBLE III. Values obtained with (14) for the dimensionless
parameters BR and y= (8’/B)2 for alkali-halide crystals; R denotes
the nearest-neighbor distance and g represents the larger ion.

Alkali Alkali

halide BR v halide BR v
LiF 1.88 7.72 LiBr 1.325 29
NaF 2.16 1.54 NaBr 1.43 5.88
KF 1.91 1.70 KBr 1.58 2.25
RbF 1.69 2.43 RbBr 1.64 1.57
CsF 1.51 3.46 CsBr 1.78 1.10
LiCl 1.44 22 Lil 1.26 38
NaCl 1.57 434 Nal 1.35 7.69
KCl 1.75 1.66 KI 1.48 2.94
RbCl 1.83 1.16 RbI 1.54 2.05
CsCl 1.79 1.23 CsI 1.66 144

although it is only relevant to mention that their
v values are high.

THE STABILITY OF ALKALI-HALIDE CRYSTALS

We will now apply the results of the previous sections
to the stability of alkali-halide crystals. As a simplifica-
tion, we limit ourselves to the absolute zero of tempera-
ture and neglect the effect of zero-point energy on
stability, so that we only have to compare the static
lattice energies of the cesium chloride and the sodium
chloride configurations for the different alkali halides.

Consider a crystal of NV cations and N anions; the
static lattice energy, E(rire,: - - ,7on), is defined as the
difference between the energy of the crystal, for a fixed
configuration 7y, 7s, - -+, raxy of nuclei, and the energy
of the 2N constituents at infinite separations and at
absolute zero temperature. We write the lattice energy
formally as a series of terms depending upon the position
coordinates of increasing numbers of ions, as follows

E(ry,ra,- - - ron) = E{Q2}+E@B}+E{4}+---, (15)

where E{2} contains all terms of £ which depend on the
coordinates of only two ions; in E{3} all terms are
collected which are simultaneously functions of the
coordinates of three ions, etc. We assume that this
expansion may be terminated with the three-particle
function E{3} for molecular crystals and ionic solids.

Expressions for the components E{2}, E{3}, etc., of
E in terms of the interactions between the ions can
easily be given. Evidently, E{2} is just the sum of inter-
actions for the isolated pairs of ions in the crystal
Further, E{3} is the limiting value of E—E{2} if all
simultaneous interactions between more than three
ions are discarded, i.e.,

E{3}= <Zb:< [E(abc)—{E® (ab)+E® (ac)+E (bc)} ]
= Y AE(abc), (16)

a<lb<lec

where E(abc) denotes the total interaction energy for the
isolated triplet (abc) and E® (ab) the interaction for the
isolated pair (ab); the summations extend over all

CRYSTALS A 1019

possible triplets. The pair interactions E© (ab) and the
triplet interactions AE(abc) are evaluated in first and
second orders of perturbation theory. We write E®
=EO+E,® and AE=AE;+AE, for any pair or
triplet of ions; the subscripts / and 2 denote the orders
of perturbation, as in the previous sections.

We first consider the pair energy E{2} for the crystal.
Since accurate theoretical expressions for the pair inter-
actions between ions are not available, we use the
empirical information that the fotal pair energy of alkali-
halide crystals may be calculated with a model of
electrostatic interactions between point charges for the
ions, supplemented by first-order repulsions between
the closed shells. We remark that the van der Waals
(second-order) interactions between the ions are only
indirectly represented in this model. Since we have
ascribed the structure dependence of the repulsive
parameters, analyzed by Tosi and Funi,? to the effect of
three-body interactions, we write, accordingly, the total
pair energy E{2} for each alkali halide and either crystal
structure as a sum of Madelung energy M and of the
total first-order repulsion between the ions, i.e., as

CE{2}=M+Y E,©(ab).

a<lb

7

Further, let AE=AE;,+AE, represent the three-body
energy for an arbitrary triplet and AE,/E1©, AE,/ E,®
the relative first- and second-order three-body inter-
actions. With the assumption AE/E1® =~ AE,/E;® we
can now write

AE= (AE1/E1(°))E1(°)—|'— (AE2/E2(O>)E2(0)

= (AEy/ E©) (E/O+E.®), (18)
where E{®+4E,©=FE® is the total (first-plus second-
order) pair energy of the triplet. It is important to note,
from (18), that in this case the van der Waals pair
interactions E2© must explicitly be taken into account.
The three-body crystal energy E{3} is the sum of (18)
over all possible triplets of ions.

TasLE IV. Numbers and types of triangles per don in the
sodium chloride configuration. The sides of the triangles are in
units of nearest neighbor distance; 6 is the angle between Rgp
and Rae.

Number

Type perion R%p R:. K%  cos?d 0

AoCi1Cy 12 1 1 2 0 90°

(Cod 141) 3 1 1 4 1 180°

AgdoA, 8 2 2 2 1/4 60°

(CoC2Cy) 12 2 2 4 0 90°

24 2 2 6 1/4 120°

6 2 2 8 - 1 180°

AgCi14q 24 1 2 3 0 90°

(Cod1Cs) 24 1 2 5 1/2 135°
A0C1Cq 24 1 3 6 1/3 125° 15

(Cod1A3)

AgA5Cs 48 2 3 5 0 90°

(CoCady) 24 2 3 9 2/3 144° 44/
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To evaluate E{3} for the cesium chloride and the
sodium chloride structures, we first classify the different
triangles formed by a central ion and two neighbors of
the first few shells in the two configurations. Before, we
have indicated such triangles by the corresponding
triplet of Gaussian parameters, but for what follows a
more specific notation is needed. We denote a cation by
C, an anion by 4, and add subscripts 0, 1, 2, to dis-
tinguish between different shells around the central ion.
The subscript zero refers to the central cation or anion.

In Tables IV and V, the numbers per ton and the
types of different triangular configurations are given
for the sodium chloride and cesium chloride structures.
The sides R, Rac, and Ry, are expressed in units of
nearest-neighbor distance R; 6 is the angle between
R,y and R,,. The type of triangle 4,C14 ., for example,
denotes a triangle formed by a central anion, a cation

Tasre V. Numbers and types of triangles per on in the cesium
chloride configuration. The sides of the triangles are in units of
nearest-neighbor distance; 6 is the angle between Rqs and Re.

Number

Type  perion Ry R R%.  cos* 6
A,C,C, 12 1 1 4/3 1/9 70° 32/
(Cod141) 12 1 1 8/3 1/9 109° 28’

4 1 1 4 1 180°

AogdsA, 12 4/3 4/3 8/3 0 90°

(CoC2Cy) 3 4/3  4/3 16/3 1 180°

0d3d s 8 8/3 8/3 8/3 1/4 60°

(CoC3Cy) 12 8/3 8/3 16/3 0 90°

24 8/3 8/3 8 1/4 120°

6 8/3 8/3 32/3 1 180°

Aodo4; 24 4/3 8/3 4 0 90°

(CeC2Cs) 24 4/3  8/3  20/3 1/2  135°
0C1ds 24 1 4/3 11/3 1/3 125° 15’

(Co4,Cy)

AoCid; 48 1 8/3 11/3 0 90°

(Co4.Cs) 24 1 8/3 19/3 2/3 144° 44’

LOMBARDI AND L.
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of the first shell and an anion belonging to the second
shell of neighbors. As is seen from the tables, the first
two types of triplets in the sodium chloride structure
and the first three types of triplets in the cesium chloride
structure form isosceles triangles. The remaining types
of triangles have three different sides; we will first
verify that the contributions to the three-body energy
due to these nonisosceles triangles are small, so that we
then may restrict ourselves to isosceles triangles only.

We have determined the relative first-order three-
body energy AE:/E1® as a function of SR for the con-
gruent types of triangles 4¢C14 2 (sodium chloride) and
AoA2A43 (cesium chloride) as well as for the types
AC145 and AC14; (cesium chloride). For simplicity,
we considered only the case y=1. The results are given
in Fig. 6. For comparison, curve (a) of Fig. 6 refers to an
isosceles triangle with §=90°. We draw the following
conclusions:

(1) AEy/E1© is quenched for §=90° as the third ion
is moved away from the other two; this is apparent
from curves (a), (b), and (c). Also, AE;/E;® decreases
rapidly with increasing BR.

(ii) Contributions from nonisosceles triangles in
either structure tend to cancel each other. For example,
consider the type 4¢C1ds (sodium chloride); there are
24 such triangles with 8=90° [curve (b)] and 24 with
6=135° [curve (d)]. These two contributions are
practically equal and of opposite sign over the whole
range of values of BR. In the same way, considering the
types A¢C1ds and A4¢C1d; (cesium chloride), we note
that there are 24 triangles with =125° 15’ [curve (e)],
and 24 with §=144° 44’ [curve (f)7], which practically
cancel against 48 triangles with §=90° [curve (c)].
The same considerations apply to the types A4¢C1Cs,
AoA:Cs, (sodium chloride) and to the type Aodad;
(cesium chloride).

It is thus seen that the contributions from nonisosceles
triangles are small, of the same order in the two structures
and, moreover, that they tend to cancel each other in either
structure because of symmetry properties of three-body
interactions. '

We will now undertake the stability analysis, restrict-
ing ourselves to the isosceles triangles of Table IV
(sodium chloride structure) and of Table V (cesium
chloride structure). A number of qualitative features of
the differences between the two structures with respect
to stability can already be obtained by comparing
triangles of Tables IV and V and applying symmetry
properties of three-body interactions. However, we will
postpone a more general discussion until after the
complete numerical results have been presented.

The stability analysis is carried out in the following
four steps:

(A) For each alkali halide and for both structures we
determine the total three-body energy (16) for N cations and
N anions. The values of v and BR are taken from
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Table II1. To determine AE for each triangle from (18),
we must know its fofal pair energy, including contribu-
tions from van der Waals interactions. For rare-gas
crystals (see I) a pair potential function is taken as
basis, e.g., a Lennard-Jones (12,6) potential, placing
nearest neighbors at a distance where the potential
has its minimum. For alkali halides such pair potentials®
are not known with precision. We estimate that, on the
basis of a Lennard-Jones (12,6) potential, the nearest-
neighbor distance may be taken between 0.85¢ and
0.900, where o is the distance for zero potential. The
ratio between repulsive and attractive interactions for
such a pair varies between —2.7 and —1.9. This
implies that E;@-E,©® for a pair of nearest neighbors
varies between 0.63 E;® and 0.47 E;®. We will write
for the total pair energy of the triplet E1® (1—5), with b
between 0.4 and 0.6, approximately.

On the other hand, if next-nearest neighbors are at
distances comparable to the nearest-neighbor separation
in rare gas crystals, then the relation E;® =~ —2F,©
holds, so that E;@+FE,@~ —E;©® in this case. Con-
tributions from triangles at much larger distances will
be neglected.

On the basis of these estimates we can evaluate AE
for each triplet in terms of its total first-order pair energy
E\®. To sum over the different triangles we must
relate their first-order energies. Let oy denote the pair
repulsion between nearest neighbors, as the repulsion

TaBLE VI. Total pair repulstion (column 1), total three-body
energy involving nearest neighbors (column 2), total three-body
energy involving next-nearest neighbors (column 3), for the alkali
halides in the sodium chloride configuration. All results are
expressed in units of nearest-neighbor repulsion a1, except those
in column 2, where the unit is «;(1—5). The parameter b stands
for the ratio between first- and second-order pair interactions for
a triplet of nearest neighbors; 6~0.5 approximately.

Sodium chloride configuration
Three-body energy

Alkali Pair AyC1C1; AodoAy;
halide repulsion Cod 144 CoC2Co
LiF 11.68 —4.46 4.36
NaF 6.30 —1.91 0.24
KF 6.82 —2.41 0.64
RbF 8.09 -3.07 1.48
CsF 10.21 —3.88 2.64
LiCl 37.23 —7.37 18.46
NaCl 11.06 —4.44 3.32
KCl 7.20 —2.81 0.83
RbCl 6.96 —2.92 0.72
CsCl 7.03 —2.96 0.53
LiBr 55.33 —8.10 2747
NaBr 14.56 —5.40 5.06
KBr 8.31 —3.23 1.47
RbBr 7.55 —3.18 1.04
CsBr 7.16 —-3.13 0.83
LiI 75.50 —8.48 37.59
Nal 18.49 —6.21 7.13
KI 9.65 —3.64 2.20
RbI 8.30 —-3.37 1.39
CsI 747 —3.22 1.00

19 Cf, Y. P. Varshni and R. C. Shukla [J. Chem. Phys. 35, 582
(1961) ] for detailed references.
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TasLE VII. Total pair repulsion (column 1), total three-body
energy involving nearest neighbors (column 2), total three-body
energy involving next-nearest neighbors (column 3) and third
neighbors (column 4), for the alkali halides in the cesium chloride
configuration. All results are expressed in units of nearest-neighbor
repulsion ay, except those in column 2, where the unit is a; (1—2).
The parameter b stands for the ratio between first- and second-
order pair interactions for a triplet of nearest neighbors; 5=0.5
approximately.

Cesium chloride configuration
Three-body energy

Alkdh Pair A0C1€1; AoAzAg; A0A3A3;
halide repulsion Cod141  CoC:Cy CoC3Cy
LiF 24.60 —10.87 5.47

NaF 10.07 —7.84 0.44 oo
KF 10.78 —8.53 0.82 0.30
RbF 12.60 —-9.47 1.81 0.39
CsF 15.53 —10.60 3.44 0.98
LiCl 61.20 —15.12 2491 8.05
NaCl 17.55 —11.19 4.20 1.10
KCl 11.16 —8.90 1.14 0.19
RbC1 10.75 —8.78 0.92 0.09
CsCl 10.83 —8.82 0.96 0.11
LiBr 86.41 —16.30 3747 13.22
NaBr 22.41 —12.44 6.68 2.15
KBr 12.59 —9.58 1.95 0.49
RbBr 11.44 -9.15 1.34 0.27
CsBr 10.94 —8.91 1.06 0.11
LiI 115.02 —16.88 51.58 18.78
Nal 28.17 —13.50 9.55 3.31
KI 14.45 —10.27 2.90 0.88
RbI 12.46 —9.59 1.91 0.50
Csl 11.33 —-9.11 1.29 0.24

between next-nearest neighbors and a3 that between
third neighbors in the crystal. We equate as/a; and as/a;
to the corresponding ratios between first-order inter-
actions in the Gaussian model. Since E;©® for any triplet
considered is a function of a1, @, and a3, we can express
in this way E1© for each triplet as a function of o) only.

(B) The total first-order pair energy E{2} is then
evaluated from (17) by adding to the Madelung energy
the sum of all pair repulsions as a function of a;, using
Gaussian ratios for distant neighbors.

(C) From (A) and (B) we obtain the sum of all pair
and triplet interactions as a function of oy for the two
structures. This sum, for the stable structure, is put
equal to the experimental value of the lattice energy as
determined by the Born-Haber cycle. We use this
equality to determine the nearest-neighbor repulsion a;.

(D) With the value of «; obtained from (C), we
calculate the lattice energy of the other structure. The
energy difference between the two structures is then
used to evaluate also transition pressures from the
sodium chloride to the cesium chloride structure.

The results of steps (A) and (B) for all alkali halides
in the sodium chloride and cesium chloride configura-
tions are reported in Tables VI and VII, respectively.
The first column of either Table gives the total pair
repulsion in units of the nearest-neighbor repulsion a.
In the second column we list the total three-body
contributions from A¢CiC: and Coed14; triangles,
whereas the third column gives the total three-body
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TaBLE VIIL Difference in lattice energy, AE, in kcal/mole be-
tween the cesium chloride and the sodium chloride configurations
for the alkali halides. Also given are calculated transition pressures,
Py(calc) in kbar compared with the results of the Born-Mayer-
Jacobs theory P,(B-M), and experimental values P(exp). The
first column gives the values for the parameter b.

Alkali AE P(calc) P.(B-M) Pi(exp)
halide b kcal/mole  kbar kbar kbar
LiF 0.6 33.3 1.060 300

NaF 0.6 7.5 158 200

KF 0.6 6.0 83 88 e
RbF 0.4 2.2 25 68 9-15=
CsF 0.4 3.2 31 35 (not observed)®
LiCl 0.6 14.4 221 140 e
NaCl 0.6 8.1 95 74 ..
KCl 0.5 2.1 18 74 19.6
RbCl 0.5 1.05 7.7 39 49
CsCl 0.4 —0.6 (not calc)

LiBr 0.6 11.0 140 105

NaBr 0.6 7.8 78 53 e
KBr 0.5 2.3 17 59 18
RbBr 0.5 0.94 6.1 30 4.5-5.0
CsBr 0.4 —0.82 (not calc)

Lil 0.6 6.9

Nal 0.6 5.7 44 44 e
KI 0.6 2.8 17 49 17.85
RbI 0.5 09 4.8 22 4.0
CsI 0.4 —0.95 (not calc)

a See Ref. 21. New experiments on cesium fluoride have been announced
by these authors.

interactions for triangles CoCeCe and A o424, in either
structure. Finally, in the fourth column of Table VII
we list the contributions from triangles 4,4343; and
CiCsCs in the cesium chloride configuration. From
Tables VI and VII we draw the following main
conclusions:

(I) The three-body interactions for triplets involving
nearest neighbors (AoCiCy and Cod14,) increase the
attractive forces in either structure. The contribution is
larger for the cesium chloride configuration, which is thus
favored by these types of triangles.

(II) The three-body interactions for triplets involv-
ing next-nearest neighbors (4odsds and CoCoCy) in the
sodium chloride structure, and next-nearest as well as
third neighbors in the cesium chleride structure
(A ()Ay‘lz, COC2C2, AOA3A3 a.nd CoCng) increase the
repulsive forces in either structure. The contribution is
smaller (less repulsive) for the sodium chloride configura-
tion, which is thus favored by these types of triangles.

(III) When the ions become more dissimilar in size,
i.e., when v increases, the three-body interactions
involving next-nearest neighbors become increasingly
more important with respect to those involving first
neighbors.

(IV) In addition to the difference in Madelung
energy between the two structures, the stability is deter-
mined by a balance between pair repulsions, three-body
attractive and three-body repulsive forces; these different
components of the crystal energy depend on the values
of BR and «. For large values of y¥ we predict the sodium
chloride structure to be the stable one. As will be shown,
this influence of v explains the difference in crystal
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structure between cesium fluoride (y=3.5) and that of
the other cesium halides (y between 1.1 and 1.4).

(V) All the above conclusions are independent of ay,
the pair repulsion between nearest neighbors, and of the
parameter b which measures the ratio between second-
order and first-order pair interactions for a triplet of
nearest neighbors.

Finally, following steps (C) and (D) of the analysis,
we determine the difference in static lattice energy be-
tween the sodium chloride and the cesium chloride con-
figurations for the alkali halides. In addition, we esti-
mate the transition pressures for those halides which
exhibit sodium chloride structure at normal pressure,
following the simplified treatment given by Born and
Huang.?

In Table VIII, the numerical results are given for the
difference in lattice energy AE between the cesium
chloride and the sodium chloride structures. A positive
value of AE implies that the sodium chloride structure
is the stable one. Also included in the table are values
for the transition pressure, P.(calc), the corresponding
results of the Born-Mayer-Jacobs theory P,(B-M), and
the experimental®? values, P(exp). The precise
numerical values for the paramber & are not of impor-
tance for the sign of the difference in lattice energy.
However, the transition pressures are a sensitive func-
tion of &. The values listed in Table VIII give the best
agreement with experimental results on transition
pressures. It is important to observe that & wvaries
regularly and in the same manner for all the alkali-
halide crystals.

DISCUSSION OF RESULTS

It is seen from the results reported in Table VIII that
by introducing three-body exchange interactions be-
tween the ions, all the main aspects of the stability problem
for alkali-halide crystals can be derived on a quaniitative
basts. Specifically, the theory accounts for the stability
of the cesium chloride configuration for cesium chloride,
bromide, and iodide. Moreover, the theory reproduces
the pressure values of experimentally observed transi-
tions from the sodium chloride to the cesium chloride
configuration. Further, it is of particular interest to note
that the theory agrees with recent experimental in-
formation? according to which rubidium fluoride is less
stable in the sodium chloride structure than cesium
fluoride. }

Considering the values of the parameter b, which
stands for an average ratio between second- and first-
order pair interactions for a triplet of nearest neighbors,
it is seen that these vary regularly and in the same
manner for all alkali halides; the limiting values of 0.6

20 Reference 1, Chap. III, Eqgs. (13.18) and (13.19).

% P. W. Bridgman, The Physics of High Pressure (G. Bell and
Sons, Ltd., London, 1952). :
(1;-’ G) J. Piermarini and C. E. Weir, J. Chem. Phys. 37, 1887

62).
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and 0.4 can be explained by analogy with potential
functions between rare-gas atoms. To illustrate the
sensitivity of the results with respect to changes in b, we
find that, taking 5=0.5 instead of 0.6 for potassium
fluoride and iodide, the values for AE and P, change
to 3.8 kcal/mole, 53 kbar, 2.2 kcal/mole, 13.5 kbar,
respectively.

The relative magnitude of the total three-body inter-
actions, with respect to the crystal energy of the stable
structure, lies between —1.6 and 43.39, for the
fluorides, between —2.8 and +3.69 for the chlorides,
between —2.2 and +3.59, for the bromides, and
between —2.6 and +2.39, for the iodides. The total
pair repulsion varies between 7 and 187, of the crystal
energy, in good agreement with the Born-Mayer theory.

Other attempts have been undertaken in the litera-
ture to introduce many-body interactions in alkali
halide crystals; these have, however, no bearing on
stability. Apart from Lowdin’s first-order calculations,®
which we have already discussed, we mention a semi-
classical analysis by Dick and Overhauser,”® and by
Dick,” based on electrostatic interactions involving
“exchange charges” in terms of which the first-order
repulsion between two closed-shell atoms was inter-
preted. Four-body interactions are then introduced by
considering electrostatic forces between two exchange
charges associated with two nonoverlapping pairs of
atoms or ions; three-body interactions arise from forces
between an exchange charge and distant ions. Finally,
Colwell?® has attempted a detailed analysis for the
specific case of cesium chloride in terms of the various
possible contributions to the crystal field, starting from
explicit expressions for the electron wave functions.
Unfortunately, it is impossible to estimate the reliability
of such a calculation.

There are two aspects of the theory of alkali-halide
stability, presented in this paper, which we like to

2 B). G. Dick, Jr. and A. W. Overhauser, Phys. Rev. 112, 90
(1958).

% B, G. Dick, Jr., Phys. Rev. 129, 1583 (1963).

2 J, F. Colwell, thesis, Cornell University, 1960 (unpublished).
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emphasize. First, the essential simplicity of the original
Born-Mayer theory, which has been so successful in
interpreting many properties of alkali-halide and other
lonic solids, is retained. The reason why the Born-Mayer
theory fails to account for stability of the cesium
chloride structure is that the gain in Madelung energy
in going from the sodium chloride to the cesium chloride
configuration is overcompensated by an increase in
pair-repulsion energy for all alkali halides. Three-body
exchange interactions for triplets of smallest dimensions
in the two structures introduce a net attraction in favor
of the cesium chloride structure, which effect in some
cases suffices to render this configuration the stable one.
The three-body interactions are of short range, strongly
structure-dependent, and they exhibit simple symmetry
properties. Second, the stability problems of rare-gas
crystals and of alkali-halide crystals are resolved on the
same physical basis. For ions of comparable size, i.e., for
values of v not too different from one, the ions can be
replaced by the corresponding isoelectronic rare-gas
atoms. Because of the compression of the crystal due to
the Madelung energy, nearest neighbors repel each
other. Compared with rare-gas crystals, the sign of the
three-body interactions is now reversed. For ions of very
dissimilar size, i.e., for values of ¥ much larger than one,
we can, in the limit, replace the smaller ion by a point
charge and the larger one by the corresponding rare-gas
atom. The sign of the three-body interactions for the
larger ions, which dominate stability, in then the same as
in the case of rare-gas crystals. It must be expected that
the stability of other classes of ionic solids, e.g., the
zincblende-wurtzite relative stability, can be explained
on the same basis.
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