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than in the case of CuCl~ 2H~O, but still not large in
comparison to the exchange energy. Thus, Date's
theory oAers no special advantage over the Nagamiya-
Yosida theory for MnC12 4H20. Both theories, how-
ever, are deficient, since microwave resonances occur
at magnetic-field values which are comparabje to the
low exchange field in MnCls 4HsO ( 12 0000e at I 'K).
The only theory which is valid for large external fields
is that of Gorter and Haantjes, "but its applicability
is limited to the case of T=O'K. Thus, there exists no
theory at present which is suitable for all of our ex-
perimental observations in MnC12 4H2O.

The expectation that the Nagamiya-Yosida theory
should be approximately valid in MnC12 ~ 4H20 for low-
6eld resonances and should become increasingly poor
at higher values of the external Beld was borne out.

An unexpected deviation from the theory in a region
where it should be valid, however, occurred at very
low temperatures. A low-field b-axis resonance, which
conformed very well to the theory in the temperature
region of 0.6 to 1.6'K began to exhibit a marked
deviation from the theory below 0.6'K. In addition a
new resonance appeared in this low-temperature region
which exhibited properties similar to the critical-field
resonance as regards linewidth, temperature depend-
ence, and resonance behavior upon rotation of Ho into
the ac and bc planes. We do not have an explanation
of these deviations but the possibility of a change in
magnetic structure such as the formation of additional
sublattices ought not to be excluded. I.ow-temperature
neutron diffraction studies would be highly desirable
to complement this study.
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By extending the theory developed in a previous publication for the stability of rare-gas crystals, it is
shown that the stability of alkali-halide crystals can be explained in terms of three-body exchange inter-
actions between the ions. As in the case of rare-gas crystals, the analysis is based on a first- and second-order
perturbation calculation with a Gaussian effective-electron model. The di6erent size of anion and cation of
each solid is taken into account. The eBect on stability of double-exchange contributions to the three-body
energy (negligible for rare-gas crystals) is analyzed in detail. It is shown that the theory accounts for all ob-
served regularities on a quantitative basis. In particular, cesium chloride, bromide, and iodide are found to be
stable in the cesium chloride modification; furthermore, calculated and observed values for the pressure of
transition from the sodium chloride to the cesium chloride configuration are in good agreement.

INTRODUCTION

CCORDING to the Born-Mayer theory of ionic
crystals, all alkali halides should crystallize at

normal pressures and temperatures in the sodium
chloride structure (two interpenetrating face-centered
cubic lattices), this configuration being favored over the
cesium chloride structure (two interpenetrating simple-
cubic lattices) by as much as a few kcal/mole. However,
all cesium halides, except its fluoride, show the cesium
chloride modification, whereas all rubidium and potas-
sium halides, except potassium Quoride, have been
found to exhibit pressure transitions from the sodium
chloride to the cesium chloride structure. Such transi-
tions are indeed predicted by the Born-Mayer theory,
but the calculated transition pressures for the heavier

*Part of this research has been made possible through the
support and sponsorship of the U. S. Department of Army,
through its European Research 0%ce.

f On leave of absence from the Institute of Industrial Chemistry,
Polytechnic Institute, Mjlano, Italy.

alkali halides are considerably higher than those ob-
served. For example, rubidium chloride has an experi-
mental transition pressure of 4900 atm, whereas the
calculated value is 39 000 atm.

This stability problem has received extensive atten-
tion in the literature; for detailed reviews we refer to
the excellent treatises by Born and Huang' and by
Pauling. Historicall. y, the first analysis was carried out
by Hund' on the basis of a pair potential between the
ions consisting of electrostatic interactions between
point charges and a repulsive potential varying as the
inverse nth power with distance. It was found that the
cesium chloride modification is only stable for values of
e higher than 30, but such high values are incompatible
with experimental results on compressibilities of the

' M. Born and K. Huang, Dynamical Theory of Crystal Jatticcs
(Oxford University Press, New York, 1954), Chaps. I and III.

2 I.. Pauling, The cVat0re of the Chemical Bond (Cornell Univer-
sity Press, Ithaca, New York, 1948), Chap. X.' I'. Hund, Z. Physik 34, 833 (1925).
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crystals. Born and Mayer' analyzed the stability on the
basis of an exponentially decreasing repulsive potential
plus electrostatic interactions (Born-Mayer potential);
they took into account also attractive second-order (van
der Waals) interactions between the ions. The sodium
chloride structure was consistently found to be the more
stable configuration.

A recalculation of the cesium chloride stability by
May"" on the basis of careful new estimates of van der
Waals interactions by Mayer' gave essentially the
same results. Jacobs' then calculated for the different
alkali halides the pressures at which a transition should
occur from the sodium chloride to the cesium chloride
structure, taking vat.ues for the van der Waals inter-
actions as determined by Mayer. The calculated pres-
sures for the heavier halides were considerably higher
than those observed.

It appeared, therefore, that in calculating the dig«-
ence between the lattice energies of the sodium chloride
and cesium chloride modifications on the basis of a
Born-Mayer potential, the energy of the cesium chloride
structure is underestimated by a few kcal/mole for the
heavier alkali halides. This implies that the Born-Mayer
potential must be made structure dependent-, i.e. , with
different parameters for different crystal structures, in

order to explain the data. It is obvious that the Born-
Mayer potential is in principle different for different
structures since it represents a weighted average of
interactions between a central ion and its first few shells

of neighbors. However, in view of the short-range
character of repulsive forces, such effects cannot lead to
an energy difference as high as a few kcal/mole be-

tween the cesium chloride and the sodium chloride
modifications.

In a recent phenomenological analysis of transition
data for the alkali halides Tosi and I'umi' have shown

that a simple, two-term, structure-dependent Born-
Mayer potential can indeed account for the work in-

volved in the pressure transitions for the rubidium and

potassium halides and for the heat absorbed in the
observed temperature transition of cesium chloride. ' As

the only remaining possible explanation for the structure
dependence we assume that this effect is induced by
marIy-body interactions between the ions. Such inter-
actions must be large, and highly sensitive with respect
to crystal structure, i.e., they must be of short range

(exchange type) and of low order of perturbation theory.
We will consider three-body interactions only, i.e.,
simultaneous interactions between triplets of ions in the
two structures.

The first theoretical analysis of many-body inter-

' M. Born and J. E. Mayer, Z. Physik 75, 1 (1932).
' A. May, Phys. Rev. 52, 339 (1937); 54, 629 (1938).
' J. E. Mayer, J. Chem. Phys. 1, 270 (1933}.
~ R. B. Jacobs, Phys. Rev. 54, 468 (1938).
s M. P. Tosi and F. G. Fumi, Phys. Chem. Solids 23, 359 (1962).
'At a temperature of 718'K and at normal pressure, cesium

chloride goes over from the cesium chloride to the sodium chloride
stl"Ucture,

actions in alkali-halide crystals was undertaken by
Lowdin. ' He found from first-order perturbation theory
a considerable many-body component of the inter-
actions, amounting to 10—20 kcal/mole, with negative
sign, for alkali halides with small positive and large
negative ions. However, this many-body contribution
decreases rapidly as the ions approach equal size and its
magnitude is practically proportional to the Madelung
energy of the crystal. Since the Madelung constants of
the cesium chloride and sodium chloride configurations
differ by only 1%, the structure sensitivity of this effect
is much too small to account for stability. Other
attempts have been made to introduce many-body
components of the interactions, but these have no direct
bearing on stability; they will be mentioned at the end
of this paper. We wiB show how the stability of alkali
crystals can be understood in terms of three-body ex-

change interactions between the ions in first and second
orders of perturbation theory. The following analysis
bears close resemblance to that given in a previous
publication, "hereafter referred to as I, for the stability
of rare-gas crystals. Preliminary results of the analysis
have been reported earlier. "

THREE-BODY INTERACTIONS BETWEEN
CLOSED-SHELL IONS

In I we have assumed that there exists a close
similarity between the stability problems of alkali-halide
and rare-gas crysta1s. This assumption is based on the
fact that the alkali-halide ions are isoelectronic with
rare-gas atoms and that both consist of closed electron
shells. Consequently, their interactions must be of the
same form if we subtract purely electrostatic forces
between the ion charges and disregard polarization
effects in view of the high symmetry of unstrained ionic
crystals.

We use, therefore, the same method as in I for the
evaluation of three-body interactions, namely, an
effective-electron model with one such electron per ion.
The charge distribution of the effective electron is

chosen to be of Gaussian form,

p(r) = (p/~"')s «p( —0'r')

where r is the distance between the effective electron
and its nucleus and where P is a characteristic param-
eter, different for different ions. Since the Gaussian
model is used only to evaluate three-body interactions
(which we assumed to be of the same type as those be-
tween rare-gas atoms with respect to their importance
for stability), ions and atoms are treated on the same
basis. In other words, we assume that, except through
the Madelung energy, the net charges of the ions play
no essential role for the stability of alkali-halide crystals.

' P. O. Lowdin, A Theoretical Investigation into Some Properties
of lonsc Crystals (Almqvist and Wiksell boktryckeri AB, Uppsala,
1948); Phil. Mag. Suppl. 5, 1 (1956).

n L. Jansen, Phys. Rev. 135, A1292 (1964).
'"-L. Jansen and E. Lombardi, Phys. Rev. Letters 12, 11 (1964),
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We continue to use the names ion, cation, and anion,
even though in the one-eRective-electron model they are
charged neutral.

It should also be remarked at the outset that the
limitation to one effective electron per ion (atom)
implies that we consider only contributions to the three-
body energy due to the exchange of otte pair of electrons
between the same pair of ions. This approximation holds
for rare-gas crystals. However, the nearest-neighbor dis-
tances in alkali-halide crystals are relatively con-
siderably smaller because of strong compression of the
lattice due to the Madelung energy. Therefore, the
validity of this single-exchange approximation must be
investigated for alka¹halide crystals. In a later section
we wiH undertake a detailed analysis of double-exchange
contributions to the energy as a function of interionic
distances and ionic dimensions. In this section we discuss
single exchange only.

Consider a triplet (abc) of Gaussian ions with one
eRective electron per ion, counterbalanced by nuclear
charges of plus one. The zero-order wave function is
(Slater determinant)

+"'=L3'(1—~' b)] '" det(v. E1jv»L21b Pj)

«'. )/"
= 1/Rab+1/(1 —6-'abc) —'{—(1—6'bc) G,.(b)

(1 + ac)Gbb(al+ (+ab +ac+bc)fG baia)+G baib)]

+ (+ac + a+bb)cG a(cb +l(+ cb~ab+ac)Gbc(a)
+ (+ahab +aabb)+ +ac(~ abbe + abcb)

+Ab. (A.„b.—A.b..) ) . (5)

Here the symbols G and 3 are abbreviations for the
following integrals:

Ga b(c) Ggg(b}
~c

papa
d7)

'f b

etc. , with r,=distance between an electron and nucleus
of ion c, rb ——distance between an electron and nucleus
of i.on b, and

with the zero-order wave function (2); Et gives the
closed-shell repulsion between the ions. The expressions
are very similar to those concerning a triplet of rare gas
atoms"; the only formal. difference being that the ions
tb, b, c need not be identical. The result for (H', b) is

where 1, 2, 3 number the electrons. The wave function
for ion a is given by

3 b„=
~.(1)v»(2) ~t. (1)~.(2)—d7.yd7. 2,

+ abc ~ah++ a=c++ bc 2t)ab+act1bc ~ (4)

in terms of the overlap integrals h, b, etc. , between the
different pa, irs of ions. Further, P, is the Gaussian
parameter for ion a. The perturbation Hamiltonian,
H', b„can be written as

II'.b, =H'. bjH'. .+H'b„

in terms of the perturbations between the diRerent pairs.
Each alkali halide can be represented by a pair (P,P')

of Gaussian parameters. We adopt the convention P') P,
i.e., P' represents the smaller ion and P the larger ion. The
total three-body energy for a given crystal structure is
then obtained by summing three-body interactions over
all possible triplets of ions. This total three-body compo-
nent appears to be completely determined by the
parameter p = (p'/p)') 1, by the dimensionless quantity
PR, where R is the nearest-neighbor distance in the
lattice, and by the crystal symmetry.

First- and Second-Ord. er Three-Body Interactions

For the first order energy Et-of the triplet (ttbc), we
have to evaluate

Z, = (H'. b.)= (H'. ,)+(H'..)+(H'..),

..()=" .()=(p./-")""p(-p."./2) (~)

i.e., by the positive square root of the Gaussian density
(1). The quantity d, b, is a total overlap integral,
de6ned by

v-(1)v. (2) v. (1)v. (~)—dgyl7'2,
r12

etc. , with r~2 ——distance between electrons 1 and 2.
Table I contains the integrals occuring in the equation

for E~ and their values for Gaussian charge distributions,
for the case P,=P', Pb=P, =P. Methods for evaluating
these integrals have been developed by Boys,"Shavitt, "
and Zimering. "

The quantities which appear in Table I are de6ned
as follows: R,b, R„,Rb, are the lengths of the sides ab,
ac, bc; (,b,y) is that point on ab, whose distance from a
is equal to (1/7+ 1)R,b, (etc,y) is that point on ac, whose
distance from tt is equal to (1/y+1)R„; R,&b,.l ——dis-
tance between u and the middle of bc; R,(,b ~)

——distance
between c and the point (ab,y), etc. , R&,b»&, » d, is-, ——
tance between the points (ab,y) and (ac,y), etc. ,
Rt, b, »tb, l ——distance between the point (ttb, y) and the
middle of bc.

The integrals of Table I can also be used to calculate,
in units of P, the values of the different integrals for the
case P,=P; Pb=P, =P' provided that the following
substitutions are made: (i) p is replaced by 1/p; (ii) P is
replaced by Py"', (iii) the resulting expression is
multiplied by p"'.

ts L. Jansen, Phys. Rev. 125, 1798 (1962).
'4 S. F. Boys, Proc. Roy. Soc. (London) A200, 542 (1950)."I. Shavitt, 3fethods in Contputatjonai Analysis (Academic

Press Inc. , New York, 1963), Vol. 2, p. 1."S. Zimering (to be published).
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Tmr. E I. List of integrals for I'I, for the case p =p', pb=p, =p, in units of p, and their values for Gaussian distributions of charge.

Integral
(ES',2)

Value for Gaussian distribution Integral
(If', b)

Value for Gaussian distribution

g b(v)
2+I/2 3/2

—
+p2R2 b-

exp
v+& 2(v+&)

Gab�

(c) g, b(v)
(~+$)1/2

elf PRc{ab, v)
PRc(ab, v) 2

erf (Pp'/2g, b) »acac

I/2

erf —— — pR„pR„y+ j.

Gbb(a)
Cab�(a)

~ah(b)

Gbc (a)

Gac(b)

~ abab

—erf (PE„b)
pR, b

V+& PRab

Pg b 21/2(~+ g)1/2

y+1 ~ pyR b

a.b(»——erf-
P~g b 21/2(~+ J)1/2

erf(PR, &b.))
PRa(bc)

(~+])2/2

g„(v) PRb(ac, v)
PRb(ac, v)

erf — PR„b

»acab

» aacb

» accb

» aaac

» accc

=»aba.

+] I/2

erf —— PR, ( b, v),
PRc(ab, v) P+~
=A, b,

( )g, +] I/2

erf — PR(„, ,) (b, )
PR(ac v)(bc) Y+3

~..& &8+~)
—erf

Pg i (~+$) 1/2 (3~+f)1/2

~-&» (7+&) vp&-—erfpg: (~+] ) 1/2 (~+3)1/2

» aabb g b(v)2 evp

A bac

~ abcb

A„b,

I/2

erf — PRa(bc)
PRa (bc) )/'+ j

=» bcba

g b(v)g (v) (++))I/2
erf PR(ab, v)(ac, v)

PR(ab, v) (ac, q )

=» bbca

&.b&»(V+&) Vl/'P&. b

erf
pg b (++])1/2(3++$)1/2

Gbb(c)

Gcc(b)

Gbc(b)

Gbc {c)

Gca(b)

Gba(c)

» bcbc

—elf (PRb, )
pRb,

= Gbb(c)

2 pRb,
erf

pRb, 2

=+bc(b)

= Gac(b)

= Gab(c)

pRb, '

erf
pub, 2'"

g„(v) » bbcc +2b

Gaa (c)
pRa,

erf (Pp'/2R, ) » bcba

» bcaa

+j I/2

— — erf PRb(...)
PR b(ac, v) )/'+3

=»,b,
Gcc (a)

Gac (a)

Gc b (a)

pRac
erf (PE„)

y+1 pR„6,(»— erf '—Pg, 21/2 (~+$)1/2

v+ j. p&Racerf-
P~g 21/2 (~+$)1/2

=Gbc(a)

» bbca

» bcc.

» bbbc

» bccc

b(v)g ++f I/2

elf — PR(„b, v) (bc)
PR(ab, v)(bc) ' ' ++3
=» ace b

26 bc pRbc
el'f

pRb, 2"
=~ bbbc
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It is also easily verified that by putting y=1 the
integrals are reduced to the same form as that for rare-
gas atoms. "

The first-order energy between a and 6 without c
present, (H', b) &'i, is obtained from (5) by removing ion
c to inIinity. The result is

] 1.

(H'. »"'/cs= —+ . ( —G-&b) —&»&.)
~ah 1 ~ ab

+baht Gab&a)+Gab&b)$+ (nabab ~aabb)} ~ (6)

Again, the corresponding equations for (H'„)&'& and
(H'b. ) &s' are obtained from (6) by obvious substitutions.
The three body co-mponent of (H', b)/c', namely,

PIG. i. Relative
first-order three-body
energy riEi/Ei&'& as
a function of the
opening 8 of isos-
celes triangles (p'ppl,
i.e., those with the
snsaOer ion at the
center, for PR = 1.8
and V = (p'ip)'= &

1.25, 1.50, j..75, and
2.00.

QEi
~Elo I

. l6 ——
l2 ———

.08—

.00

—.04

Isosceles, triangles 13'pp

iBR = l.8

)H

is obtained by subtracting (6) from (5). In the same
manner we form the total three-body 6rst-order energy
for the triplet (&bbc). Finally, the relative first-order
three-body energy, which we denote by AEi/Ei&'&, is
given by

where

Ei&o) —(H' b )&oi —(H b)&o)y(H', )&o)y(H b,)&o)

is the sum of first-order pair interactions (6) for the
triplet.

The three-body energies for the cesium chloride and
sodium chloride con6gurations are obtained by summing
over all triplet interactions in the two structures. In
either lattice a central cation is surrounded by a first
shell of anions, fo', lowed by a second shell of rations; for
a central anion the situation is, of course, just the re-
verse. Since the three-body interactions are of short
range, the main contributions arise from triangles of
smallest dimensions. We indicate these triangles by the
triplet of Gaussian parameters for the ions, where the
first parameter represents the central ion. Thus, the
smallest triangles are denoted by (PP'P') and (P'PP),
followed by (PPP) and (P'P'P'). The erst two types refer
to isosceles triangles formed by a central ion and. two of
its nearest neighbors; the last two types refer to
isosceles triangles formed by a central ion and two of its
next-nearest neighbors. We note that the contributions
from the triangles (PPP) and (P'P'P') to the three-body
energy can be evaluated directly as for rare-gas crystals.

The values of the parameter P for rare-gas atoms can
be determined from pair potential functions, both at
large and at small interatomic distances. "From these,
the va'lues of PR can be calculated; they lie between 2.0
(solid xenon) and 3.4 (solid neon). For alkali-halide ions
we do not know such pair potentials; therefore, P and y
must be determined in a different manner. In a later
section, these values will be estimated from diamagnetic
susceptibilities of the ions. It is to be noted that the
precise values of P and y are not of direct importance

—.l6

—20— r

—.24
60 loo l40 l80'

since we are primarily interested in their range of values
for the alkali halides. For PR this range extends from
1.3 to 2.1 and for y from 1 to 20 or higher.

For the stability problem we are essentially interested
in those alkali halides which exhibit the cesium chloride
structure under normal or moderate pressures, i.e., in
the cesium and rubidium halides except the Quorides.
For these halides PE lies in the neighborhood of 1.8 and
y assumes values between 1 and 2. We wi/1 And that in
these cases the three-body component of the lattice
energy is determined essentially by contributions from
the triangles of types (P'PP) and (PP'P'), whereas the
triplets (PPP) and (P'P'P') are relatively unimportant.
On the other hand, the more dissimilar the ions are in
size, i.e., the larger the value of y, the more important
contributions from triplets (PPP) of the larger ions to the
three-body energy become.

In Figs. 1 and 2 we give the results for the relative
first-order three-body energy AEi/Et&'i as a function of
the opening |I of the isosceles triangles (P'PP) and
(PP'P') for PR = 1.8, and y = 1; 1.25; 1.50; 1.75; and 2.00.
The results were obtained from (7), (6), and (5) on an
IBM-1620 computer. We draw the following conclusions:

(1) AEt/Ei&"& as a function of 0 exhibits the same
general behavior &bs for rare gas crystals":-the relative
three-body energy is negative for triangles with small
opening; increases rapidly with 0 until 0 120 and then
Qattens off very markedly, assuming positive values for
triangles with large opening.

(2) For triangles (P'PP), i.e., those with the smaller
ion at the center, increasing y has a negligible eBect for
small 0, whereas the three-body energy is quenched con-
siderably for large values of 0.

(3) The opposite behavior from (2) is exhibited by
triangles (PP'P'), i.e. , those with the larger ion at the
center.
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.24

.20
AEI

E
Iol
I .I6

.I2

.08

.04

.00

—.04

—.08

—.I2

—.I6

Isosceles triangles /3P'P'

PR = I.8

PIG. 2. Relative
erst-order three-body
energy DER/Ei&'& as
a function of the
opening 8 of isos-
celes triangles (pp'p'),
i.e., those with the
larger ion at the
center for PR = 1.8
andy= (p'/p)'=1. 00,
1.25, 1.50, 1.75, and
2.00.

of lonsl

(H'. „)p„(H', b,) „p

tt+0 Qp —Q»
1

=——(E&'.p.—(&'.p )3'), (8)
~SV

where .R, is an average excitation energy defined by the
averaging procedure. The index z numbers the excited
states of the system (energy E,); Ep is the unperturbed
ground-state energy. The brackets denote again an
expectation value for the ground-state wave function (2) .

The quantity of direct interest is again the relative
three-body energy for the triplet, defined by

AEs/Es&P& = (Es—Es&P))/Es&P) (9)

—.20

—.24
60 IOO I4 0 180

e

Since E~( '&0, we conclude that in all cases first-order
three-body interactions favor triangles with small opening

0, as in the case of rare-gas crystals.
If, on the other hand, the cation is much smaller than

the anion, i.e., if 7))1, then we expect more drastic
changes in the behavior of AE&/Et&'&. This is shown in
Figs. 3 and 4, where AEr/Er &" is given for triplets (P'PP)
and (PP'P') as a function of t), for PR= 1.5 and y= 2; 4;
10; 20 and an extreme value y=100. For comparison,
the values for y= 1 are also reported. From Fig. 3 and 4
we draw the following conclusions:

(1') In the case of triplets (P'PP) we see (Fig. 3) that
AEr/Er&'& becomes practically independent of y for
8& 150', whereas the values for small 0 increase rapidly
with y.

(2') In the case of triplets (PP'P'), with a much larger
ion'at the center, we see (Fig. 4) that the three-body
interactions are independent of 0 for 7&~10. For y 4
the values increase very sharply for the smallest
openings and then remain practically constant.

where E2") denotes the sum of second-order energies
between the three isolated pairs of ions which form the
triangle. In I, AEs/Es& l was analyzed for rare-gas
crystals; detailed numerical results were given for solid
argon (PE=2.4). It was found that the relative first and-
second order thre-e body -interactions are practically the
same at all valges of the opening 0 of isosceles triangles
formed by a central atom and two of its nearest neighborsin
the crystal.

The analysis of second-order three-body interactions
between alkali-halide ions can be carried through with-
out detailed calculations in two limiting cases. First, we
consider y values between 1 and 2; PR 1.8. In the
present section we found that for such values the first-
order energies AEt/Er&P& are very similar to those for
rare-gas atoms. It must be expected that this similarity
extends to second-order interactions. Specifically, we
assume that in this range the relation AE,/E, &pl

=&Es/Es&'& holds also for three body inter-actions between

ions. Secondly, for values of p))1 we found that the

.24

.20
AEl Isosceles triangles p'pp

(o) I3R = l.5.I6

.I2
Generally, we see that with increasing y, the three-

body energy is qmenched considerably and loses its
sensitivity with respect to the crystal structure. From
this we anticipate that in the case of very dissimilar ions
the main three-body contribution will arise from tri-
angles (PPP), i.e., those formed by a large ion at the
center and two of its next-nearest neighbors.

In addition to the types of isosceles triangles con-
sidered above, we will later also evaluate contributions
to the three-body energy from nonisosceles triangles
in the sodium chloride and cesium chloride configu-
rations.

Next, we consider three-body interactions between
the ions in second order of perturbation theory. In this
case we have to evaluate, for an arbitrary triplet (abc)
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effective electrons per ion (opposite spins), counter-
balanced by nuclear charges of plus two. The zero-
order wave function is (Slater determinant)

e"'= [6!(1—t)1'abc)] '" det( cpa[1]nt1)oa[2]1(4

X 1pb[3](rs &lb[4]P4V [5](rs1t'o[6]Ps}, (10)
Fxo. 4. Relative

6rst-order three-body
energy tsLi/L~i('& as
a function of the
opening 0 of isos-
celes triangles (pp'p'),
i.e., those with the
larger ion at the
center for PR = 1.5
andy = (p'/p) '= t 2
4, 10, 20, and 100.
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where 1—6 numbers the electrons and where a and P are
spin functions (symbol P not to be confused with the
Gaussian parameter). The atomic wave functions (1)(r)
are again of the form (3), and 6',b, is defined by (4).
The perturbation Hamiltonian II,b, is again a sum of
perturbations between the three pairs of atoms, in this
case with two electrons per atom.

The resulting expression for (H', b)/e' is more compli-
cated than the corresponding equation (5) for the single-
exchange approximation; it can be written, noting that
for identical atoms

—.24
60 IOO 140 leOo

~aa(b) Gbb(a) y Gab(a) Gab(b) ~aaab ~ 6bba

three-body interactions are strongly quenched; the
three-body component of the crystal energy is then
mainly due to triplets (PPP) and the relation t)iE)/Et(')
=AEs/Es( ' is again valid. By interpolation the relative
first- and second-order three-body energies miO be taken
as equal over the whole range of values for 18R and y of
alkali halide crystals.

Since the second-order pair energy E2(0' for any triplet
is negative, the symmetry properties of second-order
three-body interactions are just the reverse of those in
first order in that triangles with /arge opening 0 are now
favored. Accordingly, the stability of alkali-halide
crystals will be found to depend on pair interactions
(including the Madelung energy) and on a balance
between first- and second-order three-body interactions
for the different triplets in the cesium chloride and
sodium chloride con6gurations.

DOUBLE-EXCHANGE CONTMBUTION3 TO
THREE-BODY ENERGY

The results of the previous section for the relative
three-body interactions were obtained on the basis of a
one-electron model for the ions. This implies that we
take into account only contributions to the three-body
energy due to exchange of a single pair of electrons be-
tween the same pair of ions. As the interionic distances
decrease, it must be expected that effects due to multiple
exchange become more important. Consequently, we
must verify that the results of the previous section are
not essentially changed if double exchange is taken into
account. In particular, the symmetry properties of
three-body interactions should be stable against double
exchange.

To calculate double-exchange contributions it is
su%.cient to investigate the case y= 1. Consider a triplet
(abc) of identical Gaussian ions or atoms with two

(&'.b)/e'

4
+ {—4Gaa(o)I +gGab(a)Q

R.. (1—6'.b,)'

+4(1+[ah])G„(b)R+2A, b, &

+2 (1+[ah])A „.bT+2A abb, U

+2(1+[ab])A...b V+2(1+[ab])A.„.W
+2A, b„X), (11)

where the symbol [ab] stands for the operation of
permuting a and b, and where the symbols I' to X are
dined as follows:

P=2—2LP b
—36' —36'b,+46,bh„b, b,

+6',blab, +LB bled„+26'„6'b, +t)'„+64b,
—26,bd„lVb, —26,

blab,

lpga„

Q=h, b
—t)„hb,—LV, b

—6, lV, t)1, dP. , —
+A„t)'b,+t) b,dP„+329,bh„hb, —26,bh'„t), 'b, ,

X=A„—A, blab, —6',bh, —5'b 5
+~ab& bc+t) ab&bc+3&ab& c&bc 2& ab& c—D b,

S= 2 2d „2t—), b, iV—b+2t)—,abt).achbc+hs„hsb„

2t) bc+~abaca+2~ bc+/) abt) bc

+As t), b 36 bA lPb

U= —1+6'„+tV b,+2LV, b 4A bh„h—b,+LV„h'b, ,

V=- Db+/S. „hb, 0„t).'b, +/).,bt),sb, ,
— —

W= 6„+t)1,bh„—2h', bA„—23„LPb,—LV„
+36,blab, hs„, ;

X= t) „hb,—A, b/). 'b, h, bdP„+—t) s, bd, „hb, (12).
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(II'.s) &sl/c'=

The equations for (II „)/e' and (II b.)/-e' are obtained
from (11) and (12) by cyclic permutations.

The first-order energy for the pair (ab), m&ithout c
present, is then given by (11) with atom c removed to
infi. nity. The result, corresponding to (6), is

These results con6rm validity of the single exchange
approximation for rare-gas crystals (/Pi~& 2).

(c) The double-exchange analysis supports the as-
sumed similarity between stability of rare-gas and
alkali-halide crystals.

In view of these results, it is justified to carry out the
stability analysis on the basis of a single-exchange
approximation.

DETERMINATION OP GAUSSIAN PARAMETERS
FOR ALKALI HALIDES

The values of the Gaussian parameter P for rare-gas
atoms can be determined from pair potential functions"
at )arge and at small interatomic distances. For alkali-
halide ions such a method cannot be used, since pair
potentials between the ions are unknown. Therefore, a
diferent procedure for estimating the Gaussian param-
eters P, P' or P, y must be followed. We expect that the
P value for each cation will be somewhat larger than
that for the corresponding isoelectronic rare gas atom,
and for each anion that it is somewhat smaller than
this value.

To estimate such dÃerences, experimental values for
the molar diamagnetic susceptibilities of alkali-halide
ions and rare-gas atoms" were used to evaluate P param-
eters of the ions. Since the susceptibility x of an atom
or ion with one effective electron is proportional to (r'),
i.e. , proportional to P for a Gaussian distribution, we
have the following relation

j 2(raba) (2+as(rabia) (~ahab ~aabb))
(1—a'. ,)

+ -E~'.&.s,s+~..»+2~.s~-.»
(1—LV.s)'

l3y comparing (6) and (13) we see that the 6rst two
terms of (13) represent four times the single-exchange
erst-order energy between a and b; the remainder con-
stitutes an interference eBect between the electron pairs
on the diferent atoms. The interactions between a and

c, or those between b and c, follow again from (13) by
cyclic permutations.

In Fig. 5 the results for AEi/Zi&" are given for
PE= 1.0; 1.6 and 2.0, as a function of the opening 0 of
isosceles triangles, both for one and for two effective
electrons. We draw the following conclusions:

(a) Xo qualitative charges occur for AEt/Ei"', as a
function of 0, if double exchange is taken into account.
In particular, the symmetry properties of the three-body
interactions remain the same even for values as small
as PE=1.

(b) Double exchange queuches BEi/Etta& both at
small and at large openings of the triangles, but the
quenching eifect decreases rapidly with increasing PE.

(p;,./p. .. )'=x.„. /x;.„.
The P values for ions were calculated from (14) by

comparing each ion with its corresponding isoelectronic
rare gas atom, using for the atoms the P parameters
obtained from pair potentials. ""The resulting values
are given in Table II together with those of the rare-gas
atoms. In addition, we give in Table III values of y and
PR for the alkali-halide crystals; E denotes the nearest-
neighbor distance in the lattice and P represents the
larger ion.

The values in the two tables should be viewed
primarily in relation to each other and to the rare-gas
crystals, for which the values of PR are 2.0 (xenon),
2.1 (krypton), 2.4 (argon), and 3.4 (neon). We have
included the calculated parameters for lithium halides,

TAnLE II. Values obtained with (14) for Gaussian paratneter p
in units 10' cm ', for alkali-halide ions, and compared with those
of rare-gas atoms.

He 1.59 Ne 1.07 A 0.623 Kr 0.532 Xe 0.454
Li+ 2.60 Na+ 1.162 K+ 0.718 Rb+ 0.600 Cs+ 0.503

0.936 Cl 0.558 Br 0.479 I 0.419

'~ C. Kittel, Introdz&ctioe to Solid State Physics (John Wiley Bz
Sons, Inc. , New York, 1957), Chap. 9.

ra L. Jansen and R. T. McGinnies, Phys. Rev. 104, 961 (1956).
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TA&&LE HI. Values obtained with (14} for the dimensionless
parameters pR and p = (p'/p}.' for alkali-halide crystals; R denotes
the nearest-neighbor distance and P represents the larger ion.

Alkali
halide

LiF
NaF
KF
RbF
CsF

1.88
2.16
1.91
1.69
1.51

7.72
1.54
1.70
2.43
3.46

Alkali
halide

LiBr
NaBr
KBr
RbBr
CsBr

PR

1.325 29
1.43 5.88
1.58 2.25
1.64 1.57
1.78 1.10

LiCl
NaC1
Eel
RbC1
CsCl

1.44
1.57
1.75
1.83
1.79

22
4.34
1.66
1.16
1.23

LiI
NaI
KI
RbI
CsI

1.26
1.35
1.48
1.54
1.66

38
7.69
2.94
2.05
1.44

although it is only relevant to mention that their
values are high.

where E((sbc) denotes the total interaction energy for the
isolated triplet (&sbc) and E(s& (&sb) the interaction for the
isolated pair (&sb); the summations extend over all

THE STABILITY OF ALKALI-HALIDE CRYSTALS

We will now apply the results of the previous sections
to the stability of alkali-halide crystals. As a simplifica-
tion, we limit ourselves to the absolute zero of tempera-
ture and neglect the effect of zero-point energy on
stability, so that we only have to compare the static
lattice energies of the cesium chloride and the sodium
chloride configurations for the diferent alkali halides.

Consider a crystal of Ã cations and X anions; the
static lattice energy, E(rt, rs, ,rs~), is defined as the
difference between the energy of the crystal, for a fixed
configuration r~, r2, ~ ~, r2~ of nuclei, and the energy
of the 2S constituents at infinite separations and at
absolute zero temperature. We write the lattice energy
formally as a series of terms depending upon the position
coordinates of increasing numbers of ions, as follows

E(st, r2 ' ' ' r2N) =E{2)+E{3}+E{4)+,(13)

where E{2)contains all terms of E which depend on the
coordinates of only two ions; in E{3) all terms are
collected which are simultaneously functions of the
coordinates of three ions, etc. We assume that this
expansion may be terminated with the three-particle
function E{3)for molecular crystals and ionic solids.

Expressions for the components E{2),E{3},etc. , of
Ji in terms of the interactions between the ions can
easily be given. Evidently, E{2} is just the sum of inter-
actions for the isolated pairs of ions in the crystal.
Further, E{3) is the limiting value of E—E{2) if all

simultaneous interactions between more than three
ions are discarded, i.e.,

E{3)= & LE( b )—{E"'(b)+E"'( )+E"'(b ))3
a&b&c

=—P ~E(ab.), (16)
e&b&c

possible triplets. The pair interactions E('&(&sb) and the
triplet interactions /& E((sbc) are evaluated in first and
second orders of perturbation theory. We write 8("
=Ei&"+Es('& and DE= AE&+AEs for any pair or
triplet of ions; the subscripts I and Z denote the orders
of perturbation, as in the previous sections.

We first consider the p(ssr energy E{2}for the crystal.
Since accurate theoretical expressions for the pair inter-
actions between ions are not available, we use the
empirical information that the tot(sl pair energy of alkali-
halide crystals may be calcu/ated with a model of
electrostatic interactions between point charges for the
ions, supplemented by first-order repulsions between
the closed shells. Ke remark that the van der Waals
(second-order) interactions between the ions are only
indirectly represented in this model. Since we have
ascribed the structure dependence of the repulsive
parameters, analyzed by Tosi and I'uni, ' to the eGect of
t~ree-body interactions, we write, accordingly, the total
pair energy E{2}for each alkali halide and either crystal
structure as a sum of Madelung energy M and of the
total first-order repulsion between the ions, i.e., as

E{2}=M+ Q Ei&'&((sb) .
a&b

(17)

Further, let DE=DE +tAE rsepresent the three-body
energy for an arbitrary triplet and /& Et/E, ('&, AEs/Es('&
the relative first- and second-order three-body inter-
actions. With the assumption s&,E&/Ei('& = AEs/Es(0& we
can now write

(s1E /E (0&)E (0&+ (gE /E (0&)E ((0

(gE /E (0&) (E (0&+E ((&i) (1g)

where Ei&"+Es "& ——E&'& is the total (first-plus second-
order) pair energy of the triplet. It is important to note,
from (18), that in this case the &&un der W(s(sls pair
interactions Es(s& nsust exPlicitly be fakers into account
The three-body crystal energy E{3)is the sum of (18)
over all possible triplets of ions.

Type

ApC1C1
(COA gA |}
ApA2A2

(Co CgCg}

Ap CIA2
(COA, C2}
Ap CIC3

(CpA gA g}
ApA pC3

(COCOA s}

Number
per ion R' b

12 1
3 1
8 2

12 2
24 2

6 2
24 1
24
24 1

Rac R bc

1
2
2
2
2
2
2
3

2 0

2 1/4
4 0
6 1/4
8 1
3 0
5 1/2
6 1/3

2/3

90'
180'
60'
90'

120'
180'
90'

135'
125' 15'

90'
144' 44'

TABLE IV. Numbers and types of triangles Per ioe in the
sodium chloride configuration. The sides of the triangles are in
units of nearest neighbor distance; |t is the angle between R, q

and R„.
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Non-isosceies triangles

/=i

I'n. 6. Relative
&st-order three-body
energy rsE~/E~ ' for
the special case y=1
as a function of PR,
for non~sosceles tri-
angles. In the nota-
tion of Tables IV and
V, curve (b) refers
to triangles (1, 2, 3;
e=90'), curve (c)
to (1 8/3 11/3 '

8=90'), curve (d) to
(1, 2, 5' 8=135')
curve (e) to (1, 4/3,
11/3 e = 125' 15'),
and curve (t) to
(1, 8/3, 19/3' e=
144'44'). E"or com-
parison with isosceles
triangles, curve (a)
refers to the type
(1, 1, 2; e=90').

of the 6rst shell and an anion belonging to the second
shell of neighbors. As is seen from the tables, the 6rst
two types of triplets in the sodium chloride structure
and the first three types of triplets in the cesium chloride
structure form isosceles triangles. The remaining types
of triangles have three diferent sides; we will 6rst
verify that the contributions to the three-body energy
due to these nonisosceles triangles are small, so that we
then may restrict ourselves to isosceles triangles only.

Ke have determined the relative first-order three-
body energy AEt/Et "& as a function of pR for the con-
gruent types of triangles A pCtAs (sodium chloride) and
ApAsAs (cesium chloride) as well as for the types
A OCtA s and A pCtA s (cesium chloride) . For simplicity,
we considered only the case 7= 1. The results are given
in Fig. 6. For comparison, curve (a) of Fig. 6 refers to an
isosceles triangle with 0=90'. Ke draw the following
conclusions:

—.I4
l, 2 1.6 2.0 2.4 2.8

PR

T~x,z V. Numbers and types of triangles per ion in the cesium
chloride configuration. The sides of the triangles are in units of
nearest-neighbor distance; 8 is the angle between R,b and R„.

Number
Type per ion R'&b

AoC1C1 12 1
{CQ,A,}

4 1
A,A,As 12 4/3

(Co Cs Cx) 3 4/3
ApASA8 8 8/3

(Cp Cr C3) 12 8/3
24 8/3

6 8/3
24 4/3
24 4/3
24 1

ApA2Ag
I', Cp C2C3)
A0CIA~

I, CoA I C2)
ApCIA3

(CpA&C )

1
4/3
4/3
8/3
8/3
8/3
8/3
8/3
8/3
4/3

cos'8

4/3 1/9
8/3 1/9
4

8/3 0
16/3 1
8/3 1/4

16/3 0
8 1/4

32/3 1
4 0

20/3 1/2
11/3 1/3

8/3 11/3 0
8/3 19/3 2/3

70' 32'
109' 28'
180'
90'

180'
60'
90'

120'
180'
90'

135
125' 15'

90'
144' 44'

To evaluate E{3) for the cesium chloride and the
sodium chloride structures, we 6rst classify the diBerent
triangles formed by a central ion and two neighbors of
the 6rst few shells in the two con6gurations. Before, we
have indicated such triangles by the corresponding
triplet of Gaussian parameters, but for what follows a
more specific notation is needed. Ke denote a cation by
C, an anion by A, and add subscripts 0, 1, 2, to dis-
tinguish between different, shells around the central i.on.
The subscript zero refers to the central cation or anion.

In Tables IV and V, the numbers per iota and the
types of different triangular con6gurations are given
for the sodium chloride and cesium chloride structures.
The sides R,~, R„, and Rq, are expressed in units of
nearest-neighbor distance R; 0 is the angle between
R ~ and R„.The type of triangle R OC~3 2, for example,
denotes a triangle formed by a central anion, a cation

(i) AEt/EttP& is quenched for 8=90' as the third ion
is moved away from the other two; this is apparent
from curves (a), (b), and (c). Also, AEr/Er"' decreases
rapidly with increasing PR.

(ii) Contributions from nonisosceles triangles in
either structure tend to cancel each other. For example,
consider the type ApCtAs (sodium chloride); there are
24 such triangles with 8=90' Lcurve (b)J and 24 with
8= 135' Lcurve (d) ). These two contributions are
practically equal and of opposite sign over the whole
range of values of PR. In. the same way, considering the
types ApCtAs and ApCtAs (cesium chloride), we note
that there are 24 triangles with 8= 125' 15' Lcurve (e)),
and 24 with 8= 144' 44' /curve (f)), which practically
cancel against 48 triangles with 8=90' )curve (c)).
The same considerations apply to the types A0C&C3,
A pA sCp, (sodium chloride) and to the type A,A,A,,
(cesium chloride) .

It is thus seen that the contributions from nonisosceles
triangles are small, of the same order As the two structures
and, moreover, that they tend to cancel each other in either
structure because of symmetry properties of three body-
interactions.

We will now undertake the stability analysis, restrict-
ing ourselves to the isosceles triangles of Table IV
(sodium chloride structure) and of Table U (cesium
chloride structure). A number of qualitative features of
the differences between the two structures with respect
to stability can already be obtained by comparing
triangles of Tables IV and V and applying symmetry
properties of three-body interactions. However, we will

postpone a more general discussion until after the
complete numerical results have been presented.

The stability analysis is carried out in the following
four steps:

(A) For each alkali halide ared for both structures we
determirEe the total three body energy (16-)for 1V cati ols and
1V atriorrs. The values of y and pR are taken from
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TAnLE VI. Total pair repulstion (column 1), total three-body
energy involving nearest neighbors (column 2), total three-body
energy involving next-nearest neighbors (column 3), for the alkali
halides in the sodium chloride configuration. All results are
expressed in units of nearest-neighbor repulsion o.l, except those
in column 2, where the unit is nq(1 —b). The parameter b stands
for the ratio between 6rst- and second-order pair interactions for
a triplet of nearest neighbors; b=0.5 approximately.

Alkali
halide

LlF
NaF
KF
RbF
CsF
LiCl
NaCl
KCl
RbCl
CsCl
LiBr
NaBr
KBr
RbBr
CsBr
LiI
NaI
KI
RbI
CsI

Sodium chloride configuration
Three-body energy

ir ApCgCI, ApA2A2,
sion COA1A1 COC2 C2

Pa
repul

11.68
6.30
6.82
8.09

10.21
37.23
11.06
7.20
6.96
7.03

55.33
14.56
8.31
7.55
7.16

75.50
18.49
9.65
8.30
7.47

4.36
0.24
0.64
1.48
2.64

18.46
3.32
0.83
0.72
0.53

27.47
5.06
1.47
1.04
0.83

37.59
7.13
2.20
1.39
1.00

—4.46—1.91—2.41—3.07—3.88—7.37—4.44—2.81—2.92—2.96—8.10—5.40—3.23—3.18—3.13—8.48—6.21—3.64—3.37—3.22

'P Cf. Y. P. Varshni and R. C. Shukla D. Chem. Phys. M, 582
(1961)j for detailed references.

Table III.To determine dZ for each triangle from (18),
we must know its tote/ pair energy, including contribu-
tions from van der Waals interactions, For rare-gas
crystals (see I) a pair potential function is taken as
basis, e.g. , a Lennard-Jones (12,6) potential, placing
nearest neighbors at a distance where the potential
has its minimum. For alkali halides such pair potentials"
are not known with precision. We estimate that, on the
basis of a Lennard-Jones (12,6) potential, the nearest-
neighbor distance may be taken between 0.850 and
0.90(I, where 0 is the distance for zero potential. The
ratio between repulsive and attractive interactions for
such a pair varies between —2.7 and —1.9. This
implies that Er"&+Eras& for a pair of nearest neighbors
varies between 0.63 E~"' and 0.47 El"'. We will write
for the total pair energy of the triplet Ert'& (1—h), with h

between 0.4 and 0.6, approximately.
On the other hand, if next-nearest neighbors are at

distances comparable to the nearest-neighbor separation
in rare gas crystals, then the relation E2&"=—2E&&')

holds, so that Et&'&+Es"&=—Et&'& in this case. Con-
tributions from triangles at much larger distances will
be neglected.

On the basis of these estimates we can evaluate AE
for each triplet in terms of its total fi rst order pair -energy
E~&". To sum over the different triangles we must
relate their erst-order energies. Let 0.~ denote the pair
repulsion between nearest neighbors, n2 the repulsion

TABI E VII. Total pair repulsion (column I), total three-body
energy involving nearest neighbors (column 2), total three-body
energy involving next-nearest neighbors (column 3) and third
neighbors (column 4), for the alkali halides in the cesium chloride
configuration. All results are expressed in units of nearest-neighbor
repulsion nq, except those in column 2, where the unit is a&(1—b).
The parameter b stands for the ratio between first- and second-
order pair interactions for a triplet of nearest neighbors; b=0.5
approximately.

Alkali
halide

L1F
NaF
KF
RbF
CsF
LiCl
NaCl
KCl
Rbcl
CsCl
LiBr
NaBr
KBr
RbBr
CsBr
LiI
NaI
KI
RbI
CsI

Pair
repulsion

24.60
10.07
10.78
12.60
15.53
61.20
17.55
11.16
10.75
10.83
86.41
22.41
12.59
11.44
10.94

115.02
28, 17
14.45
12.46
11.33

Cesium chloride configuration
Three-body energy

ApCICI, ApA2A2. , ApASA3,.
CpA IA I Cp C2 C2 Cp C3 C3

—10.87—7.84—8.53—9.47—10.60—15.12—11.19—8.90—8.78—8.82—16.30—12.44—9.58—9.15—8.91—16.88—13.50—10.27—9.59—9.11

5.47
0.44
0.82
1.81
3.44

24.91
4.20
1.14
0.92
0.96

37.47
6.68
1.95
1.34
1.06

51.58
9.55
2.90
1.91
1.29

0 ~ ~

0.30
0.39
0.98
8.05
1.10
0.19
0.09
0.11

13.22
2.15
0.49
0.27
0.11

18.78
3.31
0.88
0.50
0.24

between next-nearest neighbors and o.3 that between
third neighbors in the crystal. We equate ns/nr and ns/nt
to the corresponding ratios between 6rst-order inter-
actions in the Gaussian model. Since El&" for any triplet
considered is a function of nl, o.2, and o.3, we can express
in this way E&&') for each triplet as a function of al only.

(8) The total fi,rst order pair en-ergy E(Z} is then

evaluated from (17) by adding to the Madelung energy
the sum of aH. pair repulsions as a function of nj, using
Gaussian ratios for distant neighbors.

(C) From (A) and (8) we obtain the sun' of all pair
and trip/et interactions as a function of nt for the two
structures. This sum, for the stable structure, is put
equal to the experimental value of the lattice energy as
determined by the Born-Haber cycle. We use this
equality to determine the nearest-neighbor repulsion O.i.

(D) With the value of nt obtained from (C), we
calculate the lattice energy of the other structure. The
energy difference between the two structures is then
used to evaluate also transition pressures from the
sodium chloride to the cesium chloride structure.

The results of steps (A) and. (3) for all alkali halides
in the sodium chloride and cesium chloride con6gura-
tions are reported in Tables VI and VII, respectively.
The Grst column of either Table gives the total pair
repulsion in units of the nearest-neighbor repulsion n~.
In the second column we list the total three-body
contributions from ApCrCt and CpAtAt triangles,
whereas the third column gives the total three-body



A 1022 E. LOM BARD I AND L. JANSEN

TAnr. z VIII. Diiierence in lattice energy, rsE, in kcal/mole be-
tween the cesium chloride and the sodium chloride configurations
for the alkali halides. Also given are calculated transition pressures,
Pz(calc) in kbar compared with the results of the Born-Mayer-
Jacobs theory Pz(B irl), a-nd experimental values Pz(exp). The
first column gives the values for the parameter b.

Alkali
halide

nE P, (calc) P, (B M) P-z(exp)
b kcal/mole kbar kbar kbar

LiF
NaF
KF
RbF
CsF
LiC1
NaCl
KCl
Rbcl
CsCl
LiBr
NaBr
KBr
RbBr
CsBr
LiI
NaI
KI
RbI
CsI

0.6
0.6
0.6
0.4
0.4
0,6
0.6
0.5
0.5
0.4
0.6
0.6
0.5
0.5
0.4
0.6
0.6
0.6
0.5
0.4

33.3
7.5
6.0
2.2
3.2

14.4
8.1
2.1
1.05—0.6

11.0
7.8
2.3
0.94—0.82
6.9
5.7
2.8
0.9—0.95

1.060
158
83
25
31

221
95
18
7.7

140
78
17
6.1

67
44
17
4.8

300
200
88
68
35 (not

140
74
74
39

(not calc)
105
53
59
30

(not calc)
68

49
22

(not calc)

~ ~ ~

9-15'
observed) '

~ ~ ~

~ ~ ~

19.6
4.9

~ ~ ~

18
4.5-5.0

~ ~ ~

17.85
4.0

a See Ref. 21. Ne~v experiments on cesium fiuoride have been announced
by these authors.

interactions for triangles COC~C~ and ADA~A~ in either
structure. Finally, in the fourth column of Table VII
we list the contributions from triangles ADA323 and
CDC&C3 in the cesium chloride configuration. From
Tables VI and VII we draw the following main
conclusions:

(I) The three-body interactions for triplets involving
nearest nezghbors (AoCtCr and CoAtAt) increase the
attractive forces in either structure. The contribution is
larger for the cesium chloride configuration, which zs tjzms

favored by these tyPes of lriazzgles.

(II) The three-body interactions for triplets involv-

ing next nearest neighbo-rs (AoAsAs and CoCsCs) in the
sodium chloride structure, and next-nearest as well as
third neighbors in the cesium chloride structure
(AoA2A2 COC2C2 AOAoAs and CoCoCz) increase the
repulsive forces in either structure. The contribution is

smaller (less repulsive) for the sodium chloride conftgura-

tion, tvhiclz is lkus favored by these iypes of triangles

(III) When the ions become more dissimilar in size,
i.e., when y increases, the three-body interactions
involving next-nearest neighbors become increasingly
more important with respect to those involving first
neighbors.

(IV) In addition to the difference in Madelung
energy between the two structures, the stability is deter-

nzined by a balance betzveen pair repulsions, three body-
attractive and three body repulsive f-orces; these different
components of the crystal energy depend on the va1ues
of PP and y. For large values of 7 we predict the sodium
chloride structure to be the stable one. As will be shown,
this jnQuence of y explains the difference in crystal

structure between cesium fluoride (y=3.5) and that of
the other cesium halides (y between 1.1 and 1.4).

(V) All the above conclusions are independent of zxt,

the pair repulsion between nearest neighbors, and of the
parameter 6 which measures the ratio between second-
order and first-order pair interactions for a triplet of
nearest neighbors.

Finally, fonowing steps (C) and (D) of the analysis,
we determine the difference in static lattice energy be-
tween the sodium chloride and the cesium chloride con-
figurations for the alkali halides. In addition, we esti-
mate the transition pressures for those halides which
exhibit sodium chloride structure at normal pressure,
following the simplified treatment given by Born and
Huang. "

In Table VIII, the numerical results are given for the
difference in lattice energy dE between the cesium
chloride and the sodium chloride structures. A positzve
value of DE implies that the sodium chloride structure
is the stable one. Also included in the taMe are values
for the transition pressure, Pz(calc), the corresponding
results of the Born-Mayer-Jacobs theory Pz(B M), and-
the experimentap' " values, Pz(exp). The precise
numerical values for the paramber b are not of impor-
tance for the sige of the difference in lattice energy.
However, the transition pressures are a sensitive func-
tion of b. The values listed in Table VIII give the best
agreement with experimental results on transition
pressures. It is important to observe that b varies
regularly and in the same manner for all the alkali-
halide crystals.

DISCUSSION OF RESULTS

It is seen from the results reported in Table VIII that
by introducing three-body exchange interactions be-
tween the ions, all the main aspects of the slability problem
for alhalz halide crystals c-an be derived on a zluantztative
basis. Specifically, the theory accounts for the stability
of the cesium chloride configuration for cesium chloride,
bromide, and iodide. Moreover, the theory reproduces
the pressure values of experimentally observed transi-
tions from the sodium chloride to the cesium chloride

configuration. Further, it is of particular interest to note
that the theory agrees with recent experimental in-
formation" according to which rubidium Quorice is less
stable in the sodium chloride structure than cesium
fluoride.

Considering the values of the parameter b, which
stands for an average ratio between second- and hrst-
order pair interactions for a triplet of nearest neighbors,
it is seen that these vary regularly and in the sa~ne
manner for all alkali halides; the limiting values of 0.6

"Reference 1, Chap. III, Eqs. (13.18) and (13.19)."P. W. Bridgman, TIze Physics of High Pressure (G. Bell and
Sons, Ltd. , London, 1952)."G. J. Piermarini and C. E. Weir, J. Chem. Phys. 37, 188/
(1962).
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and 0.4 can be explained by analogy with potential
functions .between rare-gas atoms. To illustrate the
sensitivity of the results with respect to changes in b, we
find that, taking b=0.5 instead of 0.6 for potassium
fiuoride and iodide, the values for AE and I'~ change
to 3.8 kcal/mole, 53 kbar, 2.2 kcal/mole, 13.5 kbar,
respectively.

The relative magnitude of the total three-body inter-
actions, with respect to the crystal energy of the stable
structure, lies between —1.6 and +3.3% for the
fluorides, between —2.8 and +3.6% for the chlorides,
between —2.2 and +3.5% for the bromides, and
between —2.6 and +2.3% for the iodides. The total
pair repulsion varies between 7 and 18% of the crystal
energy, in good agreement with the Born-Mayer theory.

Other attempts have been undertaken in the litera-
ture to introduce many-body interactions in alkali
halide crystals; these have, however, no bearing on
stability. Apart from Lowdin's first-order calculations, '
which we have already discussed, we mention a semi-

classical analysis by Dick and Overhauser, " and by
Dick. ,

'4 based on electrostatic interactions involving
"exchange charges" in terms of which the first-order
repulsion between two closed-shell atoms was inter-
preted. Four-body interactions are then introduced by
considering electrostatic forces between two exchange
charges associated with two zzozzoserlupping pairs of
atoms or ions; three-body interactions arise from forces
between an exchange charge and distant ions. Finally,
ColwelP' has attempted a detailed analysis for the
specific case of cesium chloride in terms of the various
possible contributions to the crystal field, starting from
explicit expressions for the electron wave functions.
Unfortunately, it is impossible to estimate the reliability
of such a calculation.

There are two aspects of the theory of alkali-halide
stability, presented in this paper, which we like to

za 8. G. Dick, Jr. and A. W. Overhauser, Phys. Rev. 112, 90
(1958).

~ B. G. Dick, Jr., Phys. Rev. 129, 1583 (1963)."J.F. Colwell, thesis, Cornell University, 1960 (unpublished).

emphasize. First, the essential simplicity of the original
Born-Mayer theory, which has been so successful in
interpreting many properties of alkali-halide and other
ionic solids, is retained. The reason why the Born-Mayer
theory fails to account for stability of the cesium
chloride structure is that the gain in Madelung energy
in going from the sodium chloride to the cesium chloride
configuration is overcompensated by an increase in
pair-repulsion energy for all alkali halides. Three-body
exchange interactions for triplets of smallest dimensions
in the two structures introduce a net attraction in favor
of the cesium chloride structure, which effect in some
cases suffices to render this configuration the stable one.
The three-body interactions are of short range, strongly
structure-dependent, and they exhibit simple symmetry
properties. Second, the stability problems of rare-gas
crystals and of alkali-halide crystals are resolved oe the

same physical basis. For ions of comparable size, i.e. , for
values of 7 not too different from one, the ions can be
replaced by the corresponding isoelectronic rare-gas
atoms. Because of the compression of the crystal due to
the Madelung energy, nearest neighbors repel each
other. Compared with rare-gas crystals, the sign of the

three-body irjteractiorls is mom reversed. For 'ions of very
dissimilar size, i.e. , for values of y much larger than one,
we can, in the limit, replace the smaller ion by a point
charge and the larger one by the corresponding rare-gas
atom. The sign of the three-body interactions for the
larger ions, which dorniszate stability, in then the same as
izz t/ze case of rare gas crystals-. It must be expected tha, t
the stability of other classes of ionic solids, e.g. , the
zincblende-wurtzite relative stability, can be explained
on the same basis.
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