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Scattering of Pions by Light Nuclei*
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The scattering of pions by light nuclei is calculated using an approximate, high-energy, small-angle
multiple-scattering expansion which neglects oft-the-energy-shell scattering. The approximations needed
to obtain this expansion from an exact multiple-scattering theory are examined. It is found that the unknown
contribution of the oft-the-energy-shell scattering makes any calculation of pion-nucleus scattering unreliable
for large angles. Using pion-nucleon phase shifts and electron-scattering data, results are obtained for the
scattering of pions of about 80 MeV by lithium, carbon, and oxygen.

I. INTRODUCTION pletely. In the optical model, a definite choice for
(q'

~

l
~ q) off the energy shell is required in order to calcu-

late V, (r). The contribution of the off-shell amplitude
to the cross section is sensitive to the speci6c model
assumed, and is substantial. Since it tends to drop ofF
more slowly than the on-the-energy-shell scattering, this
makes al/ calculations of the large-angle pion-nucleus
scattering unreliable. An advantage of our procedure is
that the various contributions to the total amplitude
are separated and can be studied independently; if one
has a model for off-shell scattering, this can be included
also.

We begin in Sec. II by summarizing the approximate
multiple-scattering theory due to Glauber and a minor
modi6cation to the theory. In Sec. III we obtain this
from the exact multiple-scattering formalism of Watson'
and in Sec. IV we present the actual calculations and
results. We conclude with an Appendix which discusses
some of the approximations in detail.

S OME calculations' ' of the scattering of pi rnesons
by nuclei have used the impulse or single-scattering

approximation, without corrections for Coulomb or
multiple scattering. Others~~ have been based on the
optical model. The optical potential V, is obtained by
approximately summing a formal multiple-scattering
expansion, and the resulting differential equation is
solved numerically.

In this paper we will evaluate corrections to the im-
pulse term with a high-energy, small-angle approxirna-
tion obtained from a complete multiple-scattering ex-
pansion. The method, which is basically that of Qlauber, '
gives analytic results in reasonable agreement with the
measured scattering' ' ' of pions of about 80 MeV by
lithium, carbon, and oxygen; the parameters used are
those derived from pion-nucleon and electron-scattering
data.

The optical model has the advantage of not making
these approximations. A minor disadvantage of the
optical model is the necessity of solving numerically;
however, modern computers are quite adequate for
this task.

Nevertheless, we will see that the high-energy and
small-angle approximations are reasonable in this prob-
lem for angles up to the diGraction minimum at Op 70'.
A more serious limitation is the omission of off-the-
energy-shell scattering. Little is known about the be-
havior of the two-body scattering amplitude (q'~1 ~q)
for fq'f 8 [q[; the Glauber method neglects it com-

II. THE HIGH-ENERGY APPROXIMATION

Glauber' has developed an approximate method for
calculating high-energy, small-angle scattering. He con-
siders a wave P,=e"* incident upon a potential V of
magnitude Vs and range R. If Vs/E(q)((1 and gR))1,
little reQection or refraction occurs at the boundary, and
the wave inside the wall is approximately given by
iP, =e'"'l*. The corresponding scattering amplitude is
proportional to (&,Vig); this gives

f(Aq) =)
)

d'be 'a& s(e'«& 1g, —g 'l

. &2~st
(2.1)

where b is the impact parameter, l),q=q' —q, and the
integral is over a plane normal to q. The function x(b)
represents the total phase shift the wave suffers in
traversing V. If the potential is known, x(b) can be
calculated from

x(b) = —(1/&) V(b &)«;

t is the velocity of the particle. Equation (2.1) is not

ce e K. M. Watson, Phys. Rev. 105, 1388 (1957);Rev. Mod. Phys.30, 565 (1958); also earlier papers given here.
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expected to be accurate for large Aq in view of the
approximation for Pp.

If X(b) has azimuthal symmetry, with the definition

r(b) =expiix(b) j—1, (2.2)

the ratio of the triple scattering term of Eq. (2.4b) to
that of (2.4a) is (-', ) (A —1)/(A —2).

The function (1';(b)) is needed. to evaluate F(hq). If
the nucleon density is p(r),

Eq. (2.1) becomes
&I';(b))= I';(b—b;)p(b, )d'b; (2.5a)

f(Aq) =
~

— Jp 2qb sin~ —
~

I'(b)bdb. (2.3)
&i , k2]

p(b') = p(b;, s;)dh;, p(r)d'r= i.

&r;(b)) = (2s) ' e'ss'r;(Aq)p(Aq)d'Aq, (2.5b)

Here q sin8 has been replaced by 2q sin(8/2), corre- 00

sponding to a more symmetric treatment of q and q', i.e.,
placing the b plane in (2.1) perpendicular to (q+q')/2
rather than to q.

In this approximation, the scattering of a particle by
A fixed scatters at r; is obtained by replacing x(b) by
P X;(b—b;), which yields where

F(~q,b;) r(aq) = e
—"p"r(b')d'b'= (2~i/q) f(aq),

~

~
~.-""(II;,"LI+r;(b—b;)j—1)d b

2~i) p p(~q) = —imp b' (bI)dsg

(2.6)

bLE. r.(b b)
q )

2e.ij
+p;, r;(b —b,)r, (b—b,)

+g;„„r;(b—b;)r;(b —b,)r,(b—b,)+" jd b.

This can be interpreted as a single-scattering term, a
double-scattering term, etc.

If the scatterers are nucleons, the expectation value
of F(Aq, b;) for the nuclear ground state yields the
elastic-scattering amplitude. Neglecting correlations,
i.e., setting

(r,(b—b,)r, (b —b,)&= (r,(b —b,)&(r,(b—b,)),

Glauber's conditions of qR)&1 and Vp/Z(q)«1 are
not well satisfied in our problem. However, Eqs. (2.4)
give a connection between two-body scattering ampli-
tude f and the many-body amplitude F which may be
accurate even if f itself cannot be adequately obtained
by these methods. Glauber has pointed out that the
single scattering term in F is identical to that obtained
from the impulse approximation, which is valid under
less restrictive assumptions, e.g., for large angles. We
will now examine the validity of the higher order scat-
tering terms by using Watson's exact multiple-scattering
formalism.

III. EXACT MULTIPLE-SCATTERING THEORY
Glauber obtains 6nally

where

s(b) =Z' &r')+E'( &r'&&r &

+P;„„(r;)(r;&&r„)+" . (2.4a)

In a series of papers, Watson' has developed an exact

fq
" t'8) multiple-scattering theory. We will brieQy summarize

F(hq) =
~

— Jp 2qb sin~ —
~

S(b)bdb, (2.4) its essentials, and then make the approximations needed
to obtain Eqs. (2.4) from this theory.

Consider a particle incident upon a nucleus of A

nucleons. The Hamiltonian is

We will see in the next section that a better approxima-
tion is the "modified" Glauber expansion,

H = [H~+Aj+Q V;=Hp+ V, —
i=1

(3.1)

s(b)=g, &r,&+2- p, p,„,. &r,)(r,)
+2 Z'Z. 'Z . (r')&r &&r )+ (24b)

Equations (2.4) will form the basis of our calculation.
The two forms for S(b) differ in the third and succeeding
terms by considerable factors; if all the (I';) are equal,

' For a discussion of this approximation, see Ref. 8, p. 394; also
M. A. B. Beg, Phys. Rev. 120, 1867 (1960); R. J. Glauber,
Physics 22, 1185 (1956).

where

T=V+Va 'T,

a= F. Hp+ie, —

(3.2)

and E,=E(q)+W~, where lV~ is the initial energy of
the nucleus.

where H~ is the nuclear Hamiltonian, h is the incident
particle's kinetic energy operator, and V; is the two-
body interaction. The scattering of the particle is
given by
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+ 't, . (3 4)

The terms of Eq. (3.3) correspond to sequences of scat-
terings such that no two successive scatterings are due
to the same nucleon.

The elastic scattering amplitude T, is the "coherent
part" of T. For an operator 0, the coherent part 0, is
defined by

A formal solution of Eq. (3.2) is

T=P; t +P; g,~r t,'a 't, '

+P, P;~; P&~, t,'a 't,'—a 't,-'+ -, (3.3)

where the bound two-body amplitude t satisfies

for t (on the energy shell) up to about 100 MeV. How-
ever, the first model cannot be made to 6t the data at
all angles. The second model, in a somewhat altered
form, fits if the six parameters used (real and imaginary
parts of n and 8, nuclear radius and surface thickness)
are varied suKciently from the usual values.

These models must assume that (3.10a) or (3.10b)
holds if Iql @Iq'I. There is no reason to believe that
this is true.

To obtain the approximation discussed in Sec. II, we
begin with Eq. (3.5) and make the approximation (3.7a).
Also, we write

=-P —tx~K(q) —L(q")]
I'(q) I.(q")—+i e I:(q) E(q")—

Hence and neglect the first term, corresponding to off-the-
(3 5) energy-shell scattering. Thus we obtain

The optical potential is defined by

T,= V,+V,a 'T. .

Neglecting excited nuclear states gives

(3.6)
(a'I T.

l a) == 2' &tl'I t'.'I q&

&q'I t' 'I a"&&a"
I
t .'I q&

The replacement of t' by the free two-body amplitude,
t, which involves neglecting the effects of nucleon bind-
ing on t, is essentially the impulse approximation.

Two models which have been applied to pion-nucleus
scattering are"~ "

and' '
&q'I tl e&=&el tl a&=v, (3.10a)

&q'I t
I q& o+ h(q —tl'), (3.10b)

where y, n, and 8 are complex constants known from
pion-nucleon scattering. These lead to

and
&rl V,f) Ayp(r)it (r) (3.11)

& I V.~l&--4 ( )0( )+~»[ ( )'V( )], (3.12)

respectively. The 6rst model assumes Eq. (3.8) is
dominated by p(Aq), and that the variation in t is rela-
tively unimportant; the second attempts to take into
account the dominant p-wave character of the two-body
interaction. Equation (3.10b) is a good approximation

"E. Auerbach (private communication).

(t 8 t rJ ty ' ')g=t g 0 tgg 8 ~4g ' '
i (37a)

for large A,

t a t,'. . (3.7b-)

Equation (3.5) now implies

T.=P t,.'+P t,.'a-'T. .

Hence, in this approximation, Watson obtains

(3.8)
where

&& &a"
I
t

I
tl&p(q" —a)q'd0"+

The angular integrations q"'dQ", . , in the second
and higher terms are equivalent to integrating d'q",
over the surfaces of spheres of radius q. If these spheres
are replaced by planes tangent to them at a lq+q'I,
and the relation

&q'I t
I q) = —f(Aq)/(2~)'&(q)

= —qI'(Aq)/(2rr) 'iE(q)

is used, we obtain Eqs. (2.4) and (2.4b).
In the Appendix, the double scattering term is studied

in detail for our model. There it is shown that the
on-the-energy-shell scattering given by the Glauber and
Watson expressions are equivalent in the limiting case of
high momentum and small angle, i.e., [1+cos(8/2)]=2.
For the actual parameters appearing in our carbon
calculation, the two differ by 15% or less for all angles.
This corresponds to about 10% in the cross section for
0&80. It also appears that the easily evaluated higher
order Glauber terms represent a fair approximation to
the corresponding complicated Watson terms. However,
since these higher order terms are relatively important
for 0&80, the results for large angles are not expected
to be very accurate.

The off-shell scattering contribution to the double-
scattering amplitude, which is omitted in the Glauber
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approximation, is found to be comparable to the above
errors for small angles. However, for large angles, it is
of the same order of magnitude as the total on-the-
energy-shell amplitude. Since its explicit value is sensi-
tive to delicate cancellations in the integral, it is not
possible to do more than estimate its order of magnitude.
This means a basic uncertainty of perhaps 10% in the
cross section at small angles, and of order 1 at large
angles. This is clearly true both for our calculation and
for the corresponding optical-model calculation. ' "'

IV. CALCULATIONS AND RESULTS

In order to calculate pion-nucleus scattering with
Eqs. (2.4), we must have an explicit form for

and
I"~(Aq) = (n+P) exp[ —Aqp/2q2(n+P)]. (4.2)

[The same result could have been obtained by "ex-
ponentiating" Eq. (4.1).] This will be referred to as
model A.

Note that while F~(hq) and F&(d q) have the same
Aq dependence for small AtI, I'~ goes to zero rapidly
for Aq/))1 and F~ diverges. Nevertheless the corre-
sponding cross sections are essentially the same for
0&00 verifying that the nuclear density does dominate
in (I').

The lithium, carbon, and oxygen nuclei are (1p) shell
nuclei and are well described by a density function"

p(r) =pp[1+ (Z 2)r2—/3a2] exp( —r2/u2), (4.3)

(F'(h)) = F'(h —h') p(b')d'b' (2.5a)
p(cLq) = (1+dye q') exp( ——,'Aqpap),

d, = —(Z—2)u2/6Z,

where a is about 1.6 F according to electron-scattering
data. Thus, Eq. (2.7b) gives

F;(4q)—= (22ri/q) f,(Aq) . (2.6)

The function F
~
hq~ is known experimentally only for

~
Aq

~

&2q; to calculate its transform F(b) or to evaluate
(2.5b) requires that we know it for all hq.

Since (2.5b) contains the form factor p(Aq) which
drops o6 rapidly for large d q, the integral is presumably
not very sensitive to F(hq) for large arguments. This
suggests substituting into Fq. (2.7b) the 5 plus F-wave
form for pion nucleon scattering,

f(~q) =n+Pq «'/q'

2

(F.(h)) =
I

""("+~q-)
2~q]

X (1+d, hq2) e eP'"'4dshq—

Z

Jp(hqb) (cp+ cghq-')

g
X (1+dh&q2) e a"'"&qd&q—

3 S .$2i—2~—b'2/a2~ 'c=l

Here we have used

(4.4)

p Q 2-

1— (n+P) —=cp+ c22 q', (4.1)
2(n+l3) q'-

I(b,P,p) = Ip(yb)e "~2y» ~dy

and assuming its validity for all Aq. This we will refer to
as model 8, and to the corresponding (F) as (Fe).
Alternatively, we can argue that F;(b) has a short range;
if the nucleus is large enough, its precise form is unim-
portant. %e assume for convenience that I' has the form

1
L(d!d )" '( " "*)].= ~ ~ (4.5)

2$2p

and have defined the s; by

F~(b) =y exp[—b'/P]

and fit its transform F(hq) to Eq. (4.1) for small hq.
This leads to

s2
——(22/qa') [cp+4(c2+cpd2)/a2+32c2d2/a'],

$2= (82/qG [(C2+Cpd])+16C2d2/8 ],
sp

——(322/qa") [c,d,].
(4.6)

~=q(-+~)'/~,
P = 2P/q2(n+P),

"a Pote added in proof. It is possible to obtain Glauber's re-
sults by using an approximate form of the momentum space
Green's function, i.e., by using

q"=q+n, [nJ«Jqf
or

E(V) —E(V")+sp= —(q n/2p)+2p

One 6nds then that the contribution due to ofF-the-energy-shell
scattering by nucleon I and then by nucleon 2 is exactly cancelled
by the sequence 2,1.Thus, the o6-shell scattering is not neglected
but rather vanishes in this linear approximation. I vrould like to
thank Professor Glauber for a useful discussion of this point.

Since we have to treat both protons and neutrons, there
are two (Fz)'s, with s;2' and s;", respectively.

Substituting Eq. (4.4) into Eqs. (2.4) gives after
some algebra

F=QF F =Q) p F( (, (47)

F&, =(q/i)P;=&'"+'Q(l, mi)I(h ql/a'+m/a2 i). (4.8)

Here F„is the amplitude for m-fold scattering; F~, is the
amplitude for scattering by / protons and m neutrons;

"D. G. Ravenhall, Rev. Mod. Phys. 30, 430 (1958).
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lOOO—

l00

der
dQ

lO

«eo««««a Q
I

Q'
4A

used only to evaluate the multiple-scattering corrections.
So far we have not discussed Coulomb effects or

kinematics. If the Coulomb potential is included in
Sec. II, an additional F;=F~,„iappears in the multiple-
scattering expansion, Eqs. (2.4). We retain Fo,„l only in
the single-scattering term. Since the pion mass is not
negligible compared to the nucleon mass, we evaluate
the impulse term for the pion-nucleon center of mass
frame; since the remaining terms are smaller and more
isotropic, we treat the entire amplitude in this way. "

For sr -p scattering, neglecting the spin fhp term,

ger„= (as+2al)/3,

gj9o —(2+88+1331+4+13+21811)/3 j

for K -S)
gQ~=G3 ~

gPo = 21183+t331 ~

Here a,=exp(ib;) sin5;, and the 88r, ss are the usual
phase shifts. For sr+ scattering, cr„&+e„and-p„~ p„.
We have used the 8; obtained" from Anderson's empiri-

I
3

I

80
I I

20 40 60 IO0 l20

FIG. 1. 80-MeV m on carbon, u= 1.6 F, Anderson phase shifts.
The impulse approximation and multiple-scattering corrections
through fourfold scattering using models A and 8 and the Glauber
series (2.4a). Cross sections are in millibarns.

l000

03B
gSB

~iB

I is defined in Eq. (4.5).For the original Glauber series 5
defmed by Eq. (2.4a), the Q's satisfy the recursion
relations

Q(l,m, i) = L(Z—l+1)/lj p Q(l—1, m, i j+1)sso-
=L(&—m+1)/mj Z Q(l„m —1, i—j+1)s,-,

l, m&1. (4.9)

Here j is summed to the lesser of i and 3. Also,

do
dG

IO—

Q(o,o,i) =0,
Q(1,0,i) =Zs;o,

=0
7

Q(0, 1,i) =1Vs;",
=0

i&3
i&3
i&3
i)3.

(4.10)

If S is defined by the modified Glauber series, Eq.
(2.4b), then the factors in brackets in Eqs. (4.9) become
complicated. An approximation which gives an error of
order F„/A for N&3 is obtained with the replacement of
these factors for 88&3 by L(Z—1+81,t)(l+m)/2lj and
L(tV—1+81,~) (l+m)/2nzj, respectively.

Similar results are obtained with model A with

cp~ cp, el~0, 18 ~ G +P.
The single scattering or impulse term Q F;(Ag)p(hg) is
taken to be the same as in model 8; the function I'~ is

I I,Ii I ri1 I

20 40 60 80 IOO l20

FIG. 2. 80-MeV x on carbon, a=1.6 F, Hull-Lin phase shifts.
Modiffed Glauber series (o) and unmodified (o.) for model B. o.eo
and oes differ by 1% or less for e(70'; the former is shown here
only for 0)85'.

"G.P. McCauley and G. E. Brown, Proc. Roy. Soc. (London)
71, 893 (1958}.

"H. L. Anderson, Proceedings of the Sixth Annual Rochester
Conference on High Energy Nuclear -Physics (Interscience Pub-
lishers, Inc. , New York, 1956},pp. 1—20; M. H. Hull and F. Lin
(private communication).
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IOOO

HULL- LIN PHASES

ANDERSON PHASES

o * l.5&

a « l.6&

o «l,lf

IOO IOO

do.
dG

IO IO

I

20 40 60 80 IOO I20 20
'L't

60 eO

g/

!20

FIG. 3. 80-MeV m. on carbon, a=1.6 F. f75& plotted
with Anderson and Hull-Lin phase shifts.

Fn. 4. 80-MeV m on carbon, Hull-Lin phase shifts.
a.sg for radius parameter a =1.5, 1.6, 1.'I F.

l000

cal formula and also a newer set found by Hull and I.in
which divers slightly in the energy range under
consideration.

The results are remarkably insensitive to the choice
of model A or 8, the Glauber or modified Glauber series,
and the Anderson or Hull-Lin phases. Let 0 ~ be the
cross section for model A including all terms in the
Glauber series through n-fold scattering, let 0- ~' be the
same cross section without the Coulomb amplitude, and
similarly for model B. Let 0 be the same quantity for
the modified Glauber series. Figures 1 to 4 are plotted
for 80 MeV x on carbon, with the radius parameter
a= 1.6 F. Figure 1 shows that 0-& and 0-& are nearly equal
for 0&80, i.e., both forms for I' give similar results.
Although the different weights in the Glauber and
modified Glauber series make 0-3~ and 0.3~ differ, Fig. 2
shows that the total effects nearly cancel. Figure 3
shows that the Hull-Lin phases and Anderson phases
give results diGering by a few percent.

In Fig. 4 the effect of varying the radius parameter
a is seen to be large only for 0&00.

At small angles, Coulomb and multiple-scattering
corrections are considerable and tend to cancel for'x
but add for x+, as is seen in Figs. 5 and 6. Thus a simple
impulse approximation fits fairly well for m but not x+,
as was found by %illiams et al.'

Figures 7 to 10make further comparisons of the calcu-

a e s gIS

~ss———0ss

der
dQ

~ ~
I i' I

2& QO 60 SO IOO I20

FzG. 5. 80-MeV x on carbon, u=1.6 F. Hull-Lin phase shifts.
Cross sections without (e ) and with (e.) the Coulomb amplitude.
Note tendency of Coulomb and multiple-scattering effects to
cancel. Data are from Baker et at. (Ref. 5).
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IOO I 000

do
dQ

I 00

IO

do
dQ

IO—

I
I I

20 50 40 50 60 70 80 I
20

I

40

~o
oo oo

00

I / I I

60 80 IOO I20
I

I40

Fze. 6. 78-MeV ~+ on Li, a = 1.7 F, Hull-Lin phase shifts. Cross
sections with and without Coulomb amplitude. Data are from
Williams et at (Ref. 2). .

FrG. 8. 87.5-MeV ~ on carbon, a=1.6 F, Hull-Lin phase
shifts. Data are from Edelstein et at. (Ref. 5).

IOOO

I GOO

Se 6S

da
dQ

IOO—

ddo

dQ

IOO—

+\

O~
\

IO—

IO—

/
/

I

20 40 60 80 IOO I20

FIG. 7. 69.5-MeV m on carbon, a= 1.6 F, Hull-Lin phase
shifts. Data are from Kdelstem et at. (Ref. 5).

I I

20 40 60
I I t

80 IOO I 20

FxG. 9. 87.5-MeV m. on oxygen, a=1.6F, Anderson phase
shifts. o 6g is plotted. It does not differ much from 0.4g or 0.4g. How-
ever, the modified series does not seem to converge well, indicating
probably that the multiple-scattering corrections are too crudely
approximated for this large a nucleus.
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I oo( E;; is given by

do
dQ

4B

(« —« )s(« «")&&—(s'-s")'&'&—(s—s")'&'

X (E E—"+ie) 'd'q"

( 8 '(f))'
EBX' &r)XJ

where E=E(q), F"=E(q"),and

(A3)

(0
J(P,) ') = exp[—(«' —«")'V—(«—«")9]

X(E—E"+ie) 'd'q"

= 2n- exp[—q'(),+X')j
0

(2q"A)-
sinh

(A4)

Xexp[ —q"'(X+X')j(E—E"+is) 'q"'dq",

A =
I «x+ q') '

I
.

J is of the form

I
I

20 40 60 ~ ~BO IOO
' l20

I'ro. 10. 78-MeV ~ on lithium, a=1.6F, Hull-Lin phase
shifts. Data are from Williams et al (Ref. 5),. for e(55' and from
Baker et af. (Ref. 5) for 8 &40'.

2 f(y') (s' —y'+ie) 'dy
0

CO ( ]
f(y") Fl —i~&(s' —y') dy

Ess ys

lated cross sections with experimental data. %e note
that the calculated curves are in general agreement with
the data for f)&es, differing by about 20% at some
angles for carbon. This is consistent with our estimate
of the errors, i.e., about 10% each for the multiple
scattering approximations and the unknown off-the-
energy-shell scattering amplitude. The fit is better for
lithium and poorer for oxygen, as we might expect.
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4)r+ exp( 2s2)R—(2i+2 j+1)
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CF,;(y,x,s)—F' (s,*,s)l(y' —s') 'dy

+ (in./2s) F;;(s,x,s), (A6)

x= Iq+q'IR, y=q"R, s=qR,

Thus a double-scattering term is of the form

(«' If,a 'f, I«)=$; c;c;)K /q'&* +&)"''
(A2)

APPENDIX

In this appendix we will discuss in somewhat more
detail the approximations made in the double-scattering
terms. Our models A and 8 are both expressible as

(«'I f. I «) =2' c'(~qlq)" exp( —~q'R') (Al)

and the first few K@ are

Fso
——sinh(2yx) exp( —2y') y/x,

F»——F„=C
—sinh(2xy)(y' —s'+ra)+yx cosh(2xy)$

Xexp( —2y')y/x, (A7)

F» = Csinh(2xy) C(y'+s'+ ')' —s'+y'x'1
—2yx cosh(2xy)(-', +y'+s'+s'/x') J

Xexp( —2y')y/x.
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The corresponding result in the Glauber theory is
obtained by integrating the 8-function part of (A3) over
a plane tangent at (q+q')/2 to a sphere of radius q.
The result is a set of functions G„similar to the F„.
Gpp is obtained from Fpp, for example, by setting

sinh(2yx) = sinh(2
I q+ q'

I
qR')

= sinh( 4q'R' —Aq'R'/(1+ cos0/2) )
=—,

' expL4q'R' ——,'Aq'R'],
and

s/a= qR/(q+q'(R=1s.

This is clearly a good approximation for qR»1 and
(1+cosiJ/2)=2; however, if we plot Fpp and Gpp for
qR 1, we find that Fpp and Gpp differ by 15%%uo or less
for all angles. Ii p~ and Gp~ differ a bit more; the other
terms, which are less important, have not been com-
pared explicitly.

Evaluation of triple scattering terms in the %watson

expansion is di%cult fol. this model. However, if t, has a
radius parameter R, f,u 't, has R/V2. Thus, f,a '(t.u 't, )
is qualitatively similar to the above integrals but with
one radius reduced. Hence the triple scattering and
higher Glaubt'. r terms are useful only as rough estimates;
for 8& ep, where they are relatively important, our calcu-
lation is not reliable.

The off-shell scattering, which is omitted in our calcu-
lation, is given by the integrals in Eq. (A6). We have
evaluated the o6-shell Parts of Epp, Ep], and E~l numeri-
cally. If the integrals are split into y&s and y) s parts,
we find that the two are comparable in magnitude and
opposite in sign. If the c; in Eq. (A1) are given a (q"/q)"
dependence and included in the integrals, they change
greatly. Typically the oR'-shell amplitudes for model A
are 10 or 20%%u~ of the corresponding on-the-energy-shell
scattering amplitudes for small 0, but are often of the
same order or larger for 0&op. The off-shell amplitudes
for model 8 are somewhat larger.
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Many new energy levels are located in the odd-A molybdenum isotopes and spin and parity values are
assigned. In particular, it is found that the ground-state spins of Mo ' and Mo' ' are both ~+. Occupancy
numbers and relative single-quasiparticle energies for the 2d5&2, 3s1&2, ig»2, and 2ds» single-quasiparticle
states are obtained. The single-quasiparticle energies for Mo, which are equal to the single-particle energies
because Mo" forms a closed shell, differ only little from those in the isotone Zr". In spite of this, the
quasiparticle energies are much lower and the mixing much stronger in the more neutron-rich molybdenum
isotopes than in the corresponding zirconium isotopes. A pairing-force calculation revealed that the com-
paratively small shift in the single-particle levels between zirconium and molybdenum could not account
for this completely diferent behavior of molybdenum and zirconium.

I. INTRODUCTION

&)URING the last few years, many nuclear proper-
ties have been successfully described by means of

the superconductivity model, or pairing theory. ' ' For
instance, the model accounts for the odd-even mass
difference, the energy gap in even-even nuclei, and
nuclear transition probabilities. With some refinements
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GP-2211.

$ On leave from- The Nobel Institute of Physics, Stockholm,
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it is also possible to calculate the energy of the 6rst
excited 2+ and 3 states as well as their enhanced
transition rates with good accuracy. 4' The calculations
are based upon a knowledge of the unperturbed energy
levels of the average shell-model held. Due to meager
experimental information, most calculations have, until
now, been based upon theoretical estimates of the
position of the single-particle levels. Since the result of
the calculations depends very sensitively on the single-
particle levels, and since the theoretical estimates do not
reproduce the finer details of the single-particle IeveIs
very well, experimental information on this point is
very valuable. In previous papers from this laboratory,
single-particIe levels have been located in the zir-

' M. Baranger, Phys. Rev. 120, 957 (1960).' S, Yoshida, Nucl, Phys. 88, 380 (1962).


