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The D (n, p) 2e reaction is treated in a direct interaction framework wherein the phenomenological nucleon-
nucleon potentials of Gammel and Thaler are used to describe the perturbation interactions. Tensor forces
as well as central forces are included and 6nal-state interactions among the particles is considered. The Anal
state is pictured as a continuum deuteron plus free neutron or as a continuum dineutron plus free proton.
To the extent that this picture is accurate it is found that the main contributions to the cross section are
supplied by the doublet to doublet transitions. The calculations furthermore suggest a "best choice" for the
triplet —even parity —central potential. A comparison with the experimental results of Ilakovac and co-
workers at 14.4 MeV is presented.

I. INTRODUCTION

' N many nuclear reaction processes a non-negligible
- contribution is accrued through a direct phenome-

non in which the incident nucleon interacts with one, or
at least very few, of the nucleons in the target nucleus.
The reaction proceeds before the energy can be shared
among a large number of particles and consequently the
dynamics of the entrance channel become pertinent to
the reaction description. To more adequately describe
such a nuclear reaction mechanism then, direct inter-
action models have recently been utilized, and with
modest success, for example, in stripping reactions.
Some theoretical calculations have been made for direct
interaction single-particle emission processes but to date
little has been done on multiple-particle reactions.

One of the simpler of such multiple-particle emission
processes, which has been studied by several authors, ' 4

is the D(rt, 2rt)p reaction occurring for neutrons of
energy greater than 3.339 MeV. Komarov and Popova'
have treated the mirror process D (p, 2p)rt, which with
the exception of the Coulomb forces is essentially the
same reaction. In that process the experimental data
have prompted considerations of final-state interactions
between the two protons as well as between the neutron
and proton. Later work by Ilakovac, Kuo et a/. ' has
shown that analogous considerations have to be made
for the D( 2rt)pttreaction. These people, in like fashion
to Komarov and Popova, work with a delta function-
perturbation potential and a square-well interaction for
final-state wave-function computations. In the present

work, we will calculate the reaction cross section by
employing the phenomenological nucleon-nucleon po-
tentials of Gammel and Thaler' to represent the per-
turbation interaction and also to derive the final-state
deuteron and dineutron wave functions. The deuteron
and dineutron are spoken of in the continuum sense and
are intended to describe the final-state interactions
mentioned above.

In speaking of a perturbation interaction we are
utilizing direct reaction theory in which context the
Born approximation is used; the particle-particle inter-
action is treated as a perturbation on the system of
nucleus plus free nucleon and it is this interaction that
causes the transition, or nuclear reaction. The Born
approximation has been used by others' ' and its
justification' in this energy region and for this type
process seems not too unreasonable. For the general case
of a target nucleus consisting of 3 nucleons a more
accurate treatment of the incoming nucleon includes a
distortion of the plane wave representing the motion of
the incident nucleon. This distorted wave is usually
calculated with an optical potential to depict the in-
fluence of the total nuclear 6eld on the extra nucleon.
Here, however, the potential describing the cumulative
e6ect of all the nucleons present in the target nucleus is
merely V„„(Ir&—rs I)+ V „(Ir&—rs I), which is just the
perturbation potential. A distorted (incident) wave
calculation would therefore be superfluous.

From standard perturbation theory the expression for
the differential cross section for transitions into the
continuum is

do. = (2or!A.) I
II''I p(~r) (l)

where v is the velocity of the incident nucleon, p(Er) is
the density of final states, and By; is the matrix element
between initial and anal states, or transition amplitude;
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TABLE I. Potentials. Triplet even-parity potentials which fit the
binding energy and electric quadrupole moment of the deuteron
Pand scattering length 'a=5.39(10}" cmj and singlet even
parity potential which fits a singlet scattering length of about—23.74(10) "cm and a singlet effective range of about 2.65 (10) "
cm.

The coordinate system and Hamiltonian description are
essentially those of Bethe and Gluckstern. ' From an
interpretation of the final state as a continuum deuteron
plus free neutron or as a continuum dineutron plus free
proton we will write the transition amplitude as a sum
of the (e,p) amplitude and the (e,ts') amplitude. In
other words, the reaction process is viewed as prog-
ressing through both an (N,p) mode and an (tt,e') mode.

p +
(10"cm ')

r.+ V.+
(10 "cm) (MeV)

Vt,
(MeV}

p~
(10» cm-~)

Triplet
1.2183
1.9554
2.2754

87.724
726.69

1593.5

0.4 272.87
121.04
52.435

1.2183
0.97772
0.75847

II. POTENTIALS AND WAVE FUNCTIONS

For the energy range to be considered here we will
make the calculations assuming l=0. The choice of the
phenomenological potentials of Gammel and Thaler to
describe the interactions V„and V „may seem some-
what arbitrary in view of the several other (e.g. , Ref. 10)
descriptions of nucleon-nucleon forces; however, argu-
ments for the selection of one potential description over
another are not impelling. It was felt that the G-T
potentials were a satisfactory description, although
Gammel and Thaler point out that the status of the ts-p
interaction is not satisfactory. These potentials are
spin-dependent, parity-dependent, of Vukawa shape,
and possess a hard core. With the assumption It=0 we
will be interested only in the even parity components
which are listed in Table I. The original work. lists
several possibilities for the triplet interaction, three of
which are given here.

The ground-state deuteron wave function has been
chosen disregarding the tensor force contribution and is
of the Hulthen type, that is

Singlet
1.450.4 434.8

continuum deuteron plus free neutron and a continuum
dineutron plus free proton. The 0 's result from an ex-
pansion in partial waves, that is

- ~4(y)
I'i(cos8).

L=O

This expression becomes

%=A ptjbp(y)/y with the restriction i=0.
We also subject pp to the boundary conditions

/=0 at y= rp

y= sin(ky+t)) at y= ~ .
By requiring that &I asymptotically approach the wave
function describing an incident plane wave and a
scattered spherical wave we get A p

——ex p(i )t)/k

Since the continuum deuteron can be either in a
singlet or triplet spin state we have 0'I,"', the triplet
state, and +A,"', the singlet state. For the dineutron we
have only +I, ', the singlet state. The momentum nota-
tions are hk", Sk"', and Sk', which are conjugate to the
coordinates r, —4r—x/2, and x—r/2, respectively (see
Fig. 2 for further explanation of k's).

The spin portion of the wave function can be calcu-
lated with the help of the Clebsch-Gordan coefficients.
In a representation in which o-, is diagonal, the spin--,
eigenfunctions are

4p(r) =
1VLexp (—nr)/r7 (1—expL —p, (r—rp) 7), (3)

where
2 (+~.)(2 +~.) '"

X=exp(nrp)

(4)
n = (ME p/Ir')'f', Ep

——2.226 MeV,

p, =p, from Table I,

n*= XVs'"(i) =
oil( ds

+k'+bLexp( —f y)/f y7 14'p(y) =0
kdy' )

in which the potential b exp (—py)/py is the appropriate
G-T central component. For the 6nal state we use

es„,t= I.—'f'{exp(ik'. x)+I,"(r))

(5) and

b'=Xrss ' '(i) =
Ii1)

For the initial state it is best to couple first the spins of
particles 1 and 2 in the deuteron and then couple the
resultant angular mom, entum to the spin of the neutron.
Consequently for the deuteron

Xr (1,2) =P C(s pI; s, m s)x,~
(1—)sx ~, 't(2), (10—)

(6)or

4's t=L p~'{expLik"' (—fr—x/2)7@I|iv(x—r/2)),
which is the description referred to earlier, that of a and for the deuteron-neutron system,

x~sr=g C(-',IJ; mt, M —fn,)x„,"&(3)xrsr-"~(1 2). (11)' T. Y. Wu and T. Ohmura, Quantum Theory of Scattering
(Prentice-Hall, Inc. , Engelwood Cliffs, New Jersey, 1962).

and rp ——0.4(10) " cm. In the description of the final-
state continuum deuteron and continuum dineutron the
radial wave function is a numerical solution of the
equation
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TABLE II. Spin+space wave-function combinations. '

+(deuteron)
Mag-
netic
sub-
state

Spin Space
func- func-
tion tion

0'(dineutron)
Mag-
netic
sub-
state

Spin Space
func- func-
tion tion

J 3 ~

27

for I=1
or I'=1

J 1 ~

for I=1
or I'=1

=3mj=2
mj=2
m'= ——1j 2

m = —aj 2

1mj=2

X1

X2

xt +'(d)
X4

X5

xe @'(d)

mj-
mj=
mj=
mj=

3
2
1

1
2
3
2

1
2

1
2

@'(din)
X2

Xs

X4

X5
xe' e'(din)

tn; =$ xr 4"(d) nt; = -', xr' 4'*(din)
for I'=0 m;= —

2 xs m; = —~2 xs'

a The superscript on the space wave functions denotes the singlet, s, or
the triplet, t, combination of the two nucleons in the two-body particle.

This leads to a set of spin functions X,(i= 1—S) of which
four are quartet states, two correspond to an I=1
deuteron coupled to a spin -,'neutron to give a 7=-',
state, and two states correspond to an I=O deuteron
coupled to a spin--', neutron.

To explicitly display the symmetry or angular mo-
mentum coupling of particles 1 and 3, we first couple the
spins of particles 1 and 3 and then couple the resultant
to the spio of particle 2.

III. CROSS SECTION

Ke shall be considering transitions between states of
sharp angular momentum of the "composite" nuclei,
here the two-particle nuclei; in the initial state the
deuteron and in the final state a deuteron and also a
dineutron. Not only does the I= 1 to I'= 1 (I or I' is the
angular momentum of the two-body particle) transition
lead to the reaction we are considering but also the I= 1
to I'=0 transition. The cross section therefore consists
of two parts;

do =do (I=1,I'=1)+do (I=1,I'=0). (12)

In other words, the spin of the two-body particle is
treated as a good quantum number and therefore the
I=1 to I'=1 and 1=1 to I'=0 transition rates are
computed incoherently. Since we will not be observing
magnetic substates and since we will be working with a
statistical distribution of spin orientations in the initial
state we must average over initial spin directions and
sum over the final spin states.

In Table II we have delineated the spin and space
functions to be associated with the particular substates
indicated in the cross section expression.

Since, as was mentioned earlier, no triplet dineutron
states exist, do. (1,1) contains for the final state only
+ deuteron From Eq (2)I

IIr, = gg*vtntrtr;dr

=&(I/~2) (1—Pi g»)+rxr I v-(I ri3I) I

X (I/~2) (1—P„g„)e,X,)

+((I/~2) (I Ptagte)+fXf
I V"( I

r»
I ) I

x (1/v2) (1—Piagi3)+, X,). (13)

The operator (1/U2)(1 —P»g») antisymmetrizes the
wave function to account for the indistinguishability of
the two neutrons. The operator P~3 permutes the space
coordinates and Qi3 the spin coordinates of the neutrons
1 and 3. As pointed out by Bethe and Gluckstern the
perturbation U must be the interaction between the
particle described as free in 4', , or P~3+;, and the other
two. This yields

II '=&(I/~2)(1 —P g )+ X I(1/~2)(1 —P Q )
xLV„„(l»,l)+v„„(lr»l)]le, x,

=&(1-P g )~ x
I v-(I "I)

+V-.(lr I) I+'x')
since (1—Pi3Qi3) is Hermitian and (1—Ptagis)'
= 2 (1—Ptigt, ).

The perturbation potentials U„„and U„„are de-
pendent on the spin states of particles 1 and 3 and
particles 2 and 3. The X; will therefore have to be ex-
panded to display the requisite spin orientations. For
i= 1 to 4, for example, all pairs of particles are in triplet
states. This means that only the triplet component of
the perturbation potential will be effective in these spin
states. The two sets of spin functions mentioned earlier
explicitly show the spin coupling of particles 1 and 2 and
of particles 1 and 3. In a similar fashion one can con-
struct another set to explicitly display the spin coupling
of particles 2 and 3. The spin functions in any set can
then be expanded in terms of the spin functions in any
other set. This expansion allows one to associate the
correct perturbation potential with its component in the
wave function.

Neglecting, for the moment, the tensor force and
performing the spin sums we get

d~ ~ e I &(1—P»)+i"'*(r) exp( —ik''x) I'V„n(l x+r/2 I) I +o(r) exp(ik'x)) I'+ e I
&+~"'*(r) exp( —ik''x)

I
iU

+iU „I0'e(r) exp(ik x))—&Pic q '*(r) exp( —ik' x)
I

—tUn„+tU„„[%'e(r) exp(ik x)) I'

+el/I, '*(r) exp( —ik' x) I
2U„+3U „lpe(r) exp(ik x))—&P»III,"'*(r)exp( —ik' x)

I
—,U„„

+4U„„[fe(r)exp(ik x))+&It q "*(x—r/2) exp(ik"'. L~r+x/2]) I iU„„+eU„„IIIo(r)exp(ik. x))
—&Ptstirq "*(x—r/2) exp(ik"' L43r+x/2])

I

—3U„„—5U„„[pe(r) exp(ik. x))[', (15)
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where
tU„„=-,' 'V„„(Ix—r/2I),
1U y a V y(I «+r/2

I
)+-', 'V.,(I «+*/2

I ),
,U„„=v3/4'V..(I x—r/2I),
2U.„=—-', 'V„„(Ix+r/2 I),

aU = —V3/2 'V„„(Ix—r/2I),
aU-y= ~3/4('V-y(I «+ r/2 I)—' V-.(I «+ r/2 I))
U„„=—v3/2 'V„„(Ix+r/2 I),
,U„„=—vS/4('V„, (I x+r/2I)+'V„„(I x+r/2I)).

Performing the indicated permutations we get

d~" a I
It—I2I + a I aIt+2I2+ aI3+-'I7+4I»

I +3 I (~3/2) (2I,—2I4+-', I,+-,'I8—Ia+Ito) I',

where

It= Pq"'*(r) exp( —ik' x)'V „(Ix+r/2I)[fa(r) exp(ik x)]drdx,

Is— ft. '*(x—+r/2) exp( ik—' [rar —x/2])'V„y(I«+r/2I)[fa(r) exp(ik x)]drdx,

Ia= pq '*(x+r/2) exp( —ik' [ear —x/2])'V„„(Ix—r/2I)[pa(r) exp(ik x)]drdx,

I4 PA,. "*(x———r/2) exp(ik"' [ear+«/2])tV„„(I x—r/2I)[fa(r) exp(ik x)]drdx,

Ia fq"s*(r) ex——p( —ik' x)'V„„(Ix—r/2I)ge(r) exp(ik x)5drdx,

Ia ft,"'*(x+r/——2) exp( —zk' [-,'r —x/2])'V„(I x—r/ I2)[f (er) exp(ik x)]drdx,

I7— IPjg'*(r) exp '(—ik' x)' V„„(
I
x+ r/2

I )[Pa(r) exp (ik x)]drdx,

Ia pg, "s*(r) exp( —i——k'. «)[3V (Ix+r/2I) —'V „(Ix+r/2I)][pe(r) exp(ik x)]drdx,

Ia Pt. "*(x—r/2) exp——(ik'" [sar+«/25)[aV„(I«+r/2I)+'V„y(I«+r/2I)][/&&(r) exp(ik x)]drdx,

Ito= pt, -s*(x+r/2) exp( —ik' [-,'r —x/25)'V„„(I«+r/2I)[fa(r) exp(ik x)]drdx,

It], lP/g '*(r) exp( —ik' x)'V„„(
I
x—r/2

I )[P,(r) exp(ik x)5drdx

In I~, I2, I7, Is, I~0, and Ij~ one can make the substitu-
tion r= r and x+r/2=y, the Jacobian of this trans-
formation being unity. In I4 and I5 one can make the
transformation r= r and x—r/2= y, the Jacobian again
being unity. These transformations allow one to inte-
grate over angles and over one of the radial variables
and we are left with a single radial integral in y or r.
This remaining radial integration was performed nu-
merically on the IBM-7094 computer (see Appendix).
A transformation does not simplify the integrals I3, I6,

or I9, and these integrations were likewise done nu-
merically. The limits on the radial integration are from
ro, the radius of the hard core, to ~.

Let us now consider the tensor force contribution to
the cross section. We have

Vny= ( Vny)central+ ( Vny)tensor q (19)
where

( V y) tensor= Vt[exp( p t&)lyte]& j(20)'
and where i, j denote the interacting particles (2 and 3
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in our notation). Also

S,;=S„=3(e,n)(e, .n) —(e,.os),

where n is the unit vector along the line joining the two
particles. In the spin representation chosen here o-, is
diagonal. If we choose the vector direction q (q= k' —k)
as the polar or Z axis, we have the coordinate system
displayed in Fig. 1.

Whereas with the central force the off-diagonal ele-
ments were zero (i.e., m quantum number conserved)
we now get a finite contribution to the cross section from
some of them. Upon calculating the tensor force-matrix
elements it is found that the only nonzero terms appear
in d&r (quartet). Since interference terms between central
and tensor forces are proportional to the trace of S;, (in
spin space) and since this trace is zero, the tensor force
components are incoherent with the central force
elements.

In general, the tensor force induces quartet to doublet
and doublet to quartet transitions as well as quartet to
quartet transitions. However, doublet to doublet transi-
tions do not occur. This latter statement can be verified
by direct calculation but can also be proved in the
following manner: The tensor force can be written as a
scalar product of a tensor operator of rank two (oper-
ating in spin space) and the spherical harmonic of second.
degree. " Applying the Wigner-Eckart theorem" to
matrix elements involving such an operator we get

(i '~'I T~M Ii ~&=C (Pj';~~~')(i

Illa''~lli

') (21)

x+ r/2

FIG. 1. Coordinate system for tensor force integrations.

2J+1 tr 1
d&tenspr ~

2(2I+1) (27+1 mt j mt
(22)

Thus, after performing the indicated spin sums,

This C coeflicient vanishes unless the triangle condition
h(j Ij ') holds; i.e., C(s2s; mMm') =0. For J= rs, then
J' must equal ~ or ~. Since we are here considering 1=0,
total angular momentum conservation forbids the
quartet-doublet and doublet-quartet transitions. We are
left then with only the quartet-quartet transitions and

d«,„... -', XxrX(4I((I—Z»)q, V.„""-(Ix+r/2I)L3 cosst —Ijq,&ls

+2I((1—~»)+f 'V. "'"'"(Ix+r/2I)L exp(» o) v3 sin'ttjq' &I'

+2
I ((1—Pre)+r 'V„„""'"(Ix+ r/2

I )Lexp( —2io)%3 sin'ted%, &
I'

+2
I ((1—&re)q r 'V„„""'"(

I
x+r/2 I )Lexp(io)2v3 sintt costtjq;& I'

+2I((1—Pre)qf 'V„,""'"(Ix+r/2I)I exp( io)2%3—sintt costtjq, &l'). (23)

After making the change of variable r = r and x+ r/2 = y
the direct integrals in the last four elements vanish in
the integration over the azimuthal angle v. To incorpo-
rate further the approximation that we are concerned
only with s-wave encounters, we now need to expand the
plane wave functions in a Rayleigh expansion. For
example,

comparable substitutions are made for the other plane-
wave functions. Now in similar fashion with the direct
integrals the exchange integrals in the last four elements
vanish in the integration over the azimuthal angle v.
The other integrals vanish in the integration over p.
Thus do tenspr = Oe

e p(t'q'y) = Z(t')'(2I+I)~ («stl)j (qy)
i-0

where e is the angle between q and y, Pt(cos8) is the
Legendre polynomial, and j t(qy) is the spherical Bessel
function. This plane wave becomes, in our approxi-
mation,

exp(iq y) =sinqy/qy;
"M. Verde, in Handbuch der Physik, edited by S. Fliigge

(Springer-Verlag, Berlin, 1957), Vol. 39, p. 164.
's M. E. Rose, Elementary Theory of Angular Momentum (John

Wiley K Sons, Inc., New York, 1957). FIG. 2. Velocity vector diagram.
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g
IV

"deuteron" system about the c.m. and v'= velocity of
the scattered neutron about the c.m. to correspond to
the earlier notation. Then v2

———v'/2 and since v"'= v2—v", the velocity of particle 2 in the laboratory system
1s

vi~b= v +v . .= v2 —v +v/2,
or

and

k"'= —k'/2 —k",
(2&)

k„=ki,b(particle 2) = —k'/2 —k"+k/2. (28)

We also need v' (or k' ), but

FIG. 3. Coordinate system for integration over dO' .
or

2 v' = v' —(v2+ v")=
2

v' —v",

k' =-'k' —-',k".

(29)

Referring now to Eq. (1), let us rewrite the cross
section formula to allow a comparison with the experi-
mental data. We have

From these equations we can express, where necessary,
k' and k" in terms of k"' and k'».

Furthermore since

P
I (Er)dEr=

h' (22r)'

d '" dp'» dk"'dk'»
X (24)

k„=k'"+k/2,
dk~=dk'«=k 2dkgQ =k (M/A2)dE„dfI„.

(30)

We will be calculating an energy spectrum of the
emitted protons and thus the use of k"', the wave
vector for the proton. In observing the proton we will be
fixing the angle and energy, i.e., fixed k"'; the magni-
tude of k' is determined from the energy equation and
the remaining degrees of freedom (direction of k' ) are
removed by integrating over dQ' . We can write there-
fore

p(Er) = (ki»)'dQ" (Bk"/BEy)2".pdk"'/(22r)'g, (25)

where we can deduce

(Bk'»/BEr) i," =M/2h2k'»

O
4O

e

30

o .

E

20

IO

Vc 1593.5

c = 2.2754 Svt
C

from the energy equation

$2 (P«') 2 $2 (Pi») 2

+ (26)

kpf (Io) cia)

Fxo. 5. The differential cross section as a function of the triplet
potential strength.

THEORY

0 EXPERIMENT

l5

X~

L

~IO
E
CL

LLI

w 5
ly

.2 ' .3
kp& ~IO) c

FIG. 4. Energy spectrum of protons emitted at 4' lab and com-
parison with experimental data.

To transform to the laboratory system consider the
vector diagram in Fig. 2. We let va ——velocity of the

Thus the "inelastic neutron emission" cross section
becomes

22r&" t'2M
(~r, [2«'-

2' E3fik (2I22) (22r)'

1 (M 2k k'»

6(22r)'kfi2
(31)

where we have divided by a factor of 2 to account for
the indistinguishability of the two neutrons. In a
quantum mechanical treatment there is included in the
inelastic scattering calculation those processes wherein
the "target" neutron is ejected into the solid angle dQ

and so (in the strict sense of the inelastic process where
the incident particle emerges with a degraded energy)
we must include this factor of 2 to compensate for the
fact that we have included tao "neutron emission"
possibilities. Of course experimentally, if one observes
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"neutrons, " one will not be able to distinguish their
origin, and therefore to compare experiment with theory
one needs to multiply the "inelastic neutron emission"
cross section by 2. The differential cross section per
unit solid angle per unit energy then becomes

do. 1 tt'M 'k k'»

dQ„dE~ 6(2s)'kk' k

The coordinate system for the integration over dQ' is
shown in Fig. 3. We want the 6nal expression in terms
of the angle between k and k„and so use

l5

lp

W
'l3

Co

5

90~

k k'"=kk"'cos(k, k"')=k k„——,'(k k) (33) kp( (Ip) cm ) .7 .8 .9

and Fro. 7. The diiferential cross section versus angle (k,k„).
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Fro. 6. The differential cross section versus angle (k,k~).

From the energy equation we have

or

where

(k"')'+-;(k' )'= k' ——,'(M/A') XEs

(k'»)'= s(Es—(k '+k'/4 —k k ))

It.'= k' —-'(M/A') XEs.

(35)

In constructing an energy spectrum of emitted protons
at a given angle (k,k„), we let k„vary from zero up to a
maximum

1V

cos(k,k' )= = cos(k, k"') cosQ
kk'v

+sin(k, k"') cosg sing. (34)

orders of magnitude than the doublet-doublet matrix
elements, however the doublet transitions mentioned
above are of the same order of magnitude. Therefore,
the present treatment does not allow one to neglect the
do (I= 1, I'= 1) doublet contribution. This result is to be
contrasted with the work of Komarov and Popova. '

In Fig. 4 we compare the present theoretical calcula-
tions with the experimental data of Ilakovac et aL ' This
6gure displays the energy spectrum of protons emitted
at an angle of 4' in the laboratory system and an inci-
dent neutron energy of 14.4 MeV. No attempt has been
made to smear the theoretical calculations in this com-
parison. Figure 5 shows the dependence of the cross
section calculations on the choice of triplet —even-parity—
central potential. The behavior of the two peaks in the
spectrum, that is their dependence on the triplet —even-
parity potential, is as expected since the high-energy
peak (k' = 0) corresponds to the neutron-neutron inter-
action, which is singlet only, and the low-energy peak
(k"= 0) corresponds to the interaction between neutron
and proton, which is both singlet and triplet. There is
some contribution to the high-energy peak from the
neutron-proton interaction and thus the increase indi-
cated in Fig. 5. It is readily seen from these results that
the best agreement with the experimental data is

k„(max) =k/2 cos(k,k„)
+f k'/4 cos'(k, k~)+ (E'—k'/4)) "' (36)

and determine k'» from Eq. (35).

IV. COMPARISON WITH EXPERIMENTAL
RESULTS AND DISCUSSION

l5

C
lp-

U 5

l60.

The major contributions to the cross section come
from the doublet transitions, namely do(I=1, I'=0)
and the J'=-,' portion of do(I=1, I'=1).The quartet to
quartet matrix elements are smaller by at least two

kp( (lp) cm ) ~ &

Pro. 8. The differential cross section versus angle (k,k„).
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l)0 angular momentum encounters with the resulting
tensor and spin-orbit contributions to the cross section.
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APPENDIX

kp((I0)' cm)

The problem as presented to the IBM 7094 consisted
of evaluating the following expression:

FzG. 9. The differential cross section versus incident neutron
energy. The cross section (ordinate) is to be multiplied by the
factor in parenthesis for each energy value.

where

do—=2xk'vk
A =0

attained with the first of the three sets in Table I, that
is 'P,+=87.72 MeV and 'p,+= 1.2183 10" cm ' It is
to be noted that quantitative as well as qualitative
agreement with experiment is achieved in the present
treatment. Furthermore, the marked quantitative de-
pendence of these calculations on the strength and range
of this potential suggest the possible use of these reac-
tion data in the phenomenological approach to the
nucleon-nucleon interaction.

Proton energy spectra have been calculated at several
angles and the results are shown in Figs. 6—8. These
particular calculations have been performed with the
above "best fit" potential parameters and at an incident
neutron energy of 14.4 MeV. One observes that the
high-energy proton peaking prevails in the backward
directions as well. This result is in agreement with
recent calculations by Ferroni and Wataghin, " for
example, but in disagreement with the experimental
results of Ref. 14.

The dependence of the cross section on the incident
neutron energy is shown in Fig. 9. As the neutron energy
is decreased these calculations are perhaps not expected
to give good results due to the present description of the
reaction mechanism. The complications of the three-
body problem are more manifest when the momentum
of the incoming particle is comparable to the momentum
of the particles in the deuteron.

In summary the present calculations seem to give
fairly good agreement with the experimental data
although one needs to ascertain the effect of neglecting

'2 F. Ferroni and V. Wataghin, Nuovo Cimento 28, 2888 (1963).
'4 K. Ilakovac, L. G. Kuo, M. Petravic, I. Slaus, and P. Tomas,

Nucl. Phys. 43, 254 (1963).

and

H(&) =
2 (Hr)'+ 2 (H2)'+4 (Hg)',

(H, )'= (Ir —I2)',

(H2) = (4I1+4I7+ 2I2+ 4I2+ gIll) )

(H, )'= a'+b' 2ab COS(71—2—714),

a= -',Is+—,'Is+ —2Is+Irg,

b= 2I4+Ig.

The arguments p& and g2 represent the asymptotic
phases, respectively, of the singlet dineutron and singlet
deuteron.

As mentioned in the text, some of the integrals are
simplified by transformations and can be reduced to a
single integral over a radial variable; however, I3, I6,
and I9 cannot be so simplified and thus require integra-
tion over the six-dimensional product space of x and r.
The l=0 approximation is further manifested by re-
placing the plane wave functions by their spherically
symmetric Rayleigh expansion components Lsin(kx)/kx,
etc.j, thus reducing the six-dimensional integration to a
two-dimensional one.

The Runge-Kutta method was used to solve the radial
part of the wave equation describing the final-state two-
body particles LEq. (5)j.The final-state wave functions
and the initial-state wave functions were then tabulated
as functions of their spatial arguments; for the final-
state wave functions %~" and %~iv, the tabulations were
also made as a function of the energy parameter k'" and
k' '. The potential functions were similarly tabulated as
functions of their spatial arguments. Thus the integrals
involved products, the factors of which were all
tabulated.


