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As an alternative to Eq. (A1), the interaction may be expressed in terms of singlet-even and triplet-odd poten-
tials LEqs. (8) and (9)].The matrix elements of the interaction in this form are given in Eqs. (10a) and (10b). The
ci's, 8's, and M's can be simply expressed as linear combinations of the quantities calculated in Eq. (A4),

As=-,'(As+At —As —As)
(A6)

with identical expressions for Bo, B3, Mp and M3.
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The photonuclear model which includes both scalar and tensor polarizabilities is refined by considering
small vibrations of the nuclear shape deformation. The effects of these zero-point vibrations on the structure
of the giant dipole resonance for elastic and inelastic scattering have been investigated in an adiabatic ap-
proximation. Illustrations are given.

I. INTRODUCTION

T has been established experimentally that there is
~ - a definite correlation between the giant dipole
resonance of the photonuclear eGect and nuclear
deformation. These resonances are appreciably narrower
in the closed-shell nuclei than those found in nuclei
situated between closed shells. For deformed nuclei, the
giant resonances broaden and even split into two peaks;
this is especially apparent in the rare-earth region where
the deformation is particularly large. For an ellipsoidal
nucleus having a positive intrinsic quadrupole moment,
the higher energy resonance is observed to contain about
twice as much area as the lower energy resonance, the
latter being always sharper than the narrowest reso-
nances found in spherical nuclei.

These results are all in accord with the predictions of
Okamoto' and Danos' that for a deformed nucleus the
dipole oscillations would take place with two character-
istic frequencies associated with the nuclear axes. The
order of magnitude of the ratio of these frequencies
follows from dimensional considerations, namely, a»/co&

=0.91Rs/Er as given by a detailed hydrodynamic
analysis, where E1 and E2 are the largest and smallest
radii of the nucleus. Recently Fano, ' and Fuller and
Hayward, 4 using tensorial techniques, derive a more
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Commission Contract AT (30-1)-2098.

t Based upon a thesis submitted by H. K. Q. to the MIT
Physics Department in partial fulfillment of the requirements for
the Master of Science degree, August 1963.' K. Okamoto, Phys. Rev. 110, 143 (1958).' M. Danos, Nucl. Phys. 5, 23 (1958).' U. Fano, Natl. Bur. Std. (U. S.) Tech. Note 83, (1960).

4 E. Fuller and E. Hayward, Nucl. Phys. 30, 613 (1962).

general theory which takes into account the dependence
of the photon scattering upon the spin orientation of the
nucleus with respect to the wave vector of the photon,
and thus includes three possible polarizability contri-
butions: scalar, vector, and tensor.

Many experimental absorption data of strongly
deformed nuclei seem to agree as well with the three-
resonance theory first proposed by Inopin. ' On the
basis of the hydrodynamic model within the framework
of the theory of axially asymmetric nuclei proposed by
Davidov and Filippov, Inopin showed that the res-
onance energies E; corresponding to the density oscilla-
tions along the three different axes are proportional to
1/E;. Any experimental results for deformed nuclei can
thus be interpreted by a three-line fit, for which two
resonance energies E1 and E2 may be allowed to
approach each other at a common value E1~. However,
we know that a nonaxial deformation is generated by
shape vibrations away from equilibrium axial sym-

metry, so called p vibrations, and it seems sensible to
assume that these vibrations might make more or less
important contributions to the photoeffect resonance. '

Those considerations motivate us to include, if only
for the sake of self-consistency of the collective model,
zero-point vibrations of the nuclear shape. Conversely
a successful interpretation of some aspects of the
photonuclear effect on this basis might be useful in the
study of nuclear structure, in revealing properties of
collective levels and estimates of the zero-point vibra-

E. Inopin, Zh. Eksperim i Teor. Fiz. 38, 992 (1960) LEnglish
transl. : Soviet Phys. —JETP 11, 714 (1960)'].

6 P. A. Tipler, P. Axel, N. Stein, and D. C. Sutton, Phys. Rev.
129, 2096 (1963).
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tions. Recently Danos and Greiner~ have developed a
dynamical model of the giant resonances in heavy
deformed nuclei in which the coupling between the
dipole oscillations and the quadrupole vibrations is
treated adiabatically. They have showed in particular
that the zero-point y vibrations give an appreciable
contribution to the pure giant resonance. Our work
offers an alternative treatment of the problem for both
spherical and deformed nuclei.

I

where
f=+, X,pA;, (i=1, 2, 3),

+
E;+bra+i Ay, E, ha) iViy, — —

&«'I'IW&, (3)
where

I Py) stands for the intrinsic wave function of the

M. Danos and W. Greiner, Phys. Rev. 134, 8284 (1964).'A. Bohr, Kgl. Danske Videnskab. Selskab, Mat. Fys. Medd.
26, 14 (1962).

II. THE SCATTERING OPERATOR IN THE
ADIABATIC APPROXIMATION

The scattering operator in the electric dipole approx-
imation can be expressed as

f=r h(II+5m)) —'r u+r u(H —Ace')
—'r. R (1)

where the different factors are defined as follows: r,
radius vector from the center of mass of a nucleus to
the center of its charge; Ace, f2~', energies of the incident
and scattered photons; R, u, unit polarization vectors
of the incident and scattered photons. In the energy
denominators we will assume that the ground-state
energy of the nucleus is taken to be zero and the Hamil-
tonian operator, when operating on the intermediate
states, introduce imaginary parts to take account of
the damping effects. In (1) other possible contributions,
such as Thompson and Delbruck scatterings, have not
been considered; their inclusion would not affect in any
way the conclusions of the present study.

Ke shall be using an adiabatic approximation to
calculate the scattering. That is to say, we make use of
the fact that the time for the giant dipole scattering,
which is characteristic of many MeV, is much shorter
than the time for collective motions, which are charac-
terized in general by less than one MeV. This means
that we can first calculate the scattering with the system
frozen as far as collective motions are concerned. Then
the elastic scattering and the inelastic scattering to the
collective states will be given as matrix elements of the
scattering operator taken over the collective coor-
dinates. For the case of quadrupole collective motions
the convenient coordinates are those used by Bohr, s

i.e., the deformation parameters P and y and the
Euler angles 0;. The scattering can then be calculated
for a fixed P, y, and 8;.

The above operator f can be written in the intrinsic
nuclear coordinate system as

f=PI (—)9„p,A„+X,p„A„'],

v= —1, 0, +1,
Ap ——A„ Ap'= 0,
A~=-A =-', (A.+A„) A~'=A '=--,'(A, —A„).

A simple transformation will give the polarization
vector products in terms of the polar angles (8,&)
referred to the laboratory fixed axes:

l,~ .(8'~') =2 T;.(8~)D.o'(8,)c(»j; —), (5)

X,y, (8'g') =-Q T;.(8&)D.,2,'(8,)C(11j;vv), (5')

with

T .(84) =2 ~(11j'~o ~)& —~w~(84') (6)

The angular dependence of the scattering is given
entirely by the tensor T; (8,&) from which the angular
distribution corresponding to different values of the
an.gular momentum transfer j can be calculated. If we
restrict ourselves exclusively to the cases where the
incident gamma rays are unpolarized, and no polariza-
tion a,nalysis is made after scattering, the angular
dependence can be expressed in simple forms'

G, (8,&) =g T,,T;,*=—'(1+cos'8), j=0
= —,,'(2+sin'8), j= 1

=—,', (13+cos'8), j= 2 (7)

where 0 is the photon scattering angle.

system for fixed values of P and y, and where the
energies of the incident and scattered photons have
been assumed to be equal.

The presence of only one type of intermediate state
Ii) in the expression (3) is a consequence of the basic
assumption made in this study and in the preceding
ones. That is to say that each of the three operators r;
will excite a giant dipole resonance characteristic of the
motion along the axis i. Of course these are not eigen-
states of the system and the widths which occur in the
denominator are meant to take account of the damping
to more complicated motions. In the absence of better
information v e shall assume that the three p, are equa, l.
The energies E, will of course depend on i and in fact
this will be the main point at which the dependence of
f on P and y can enter. The matrix elements (PyIr, Ii)
can be written down explicitly if we assume that the
oscilla, tor strength in the present model is XZn/A,
where the factor o. 1.4 takes account of the effects of
the exchange forces in the nucleus

I(nP r,
I
i) I'= (5'/2ME;) (XZ/A)u.

Returning now to Eq. (2), we re-express f in spherica, l

coordinates as fo]lows:
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We now reach the final form of f:
f=Z T;.(~~)(D' (0')o:;

+~;.(D. '(~')+(-) D.. (0'))~ &, (8)

8;(p,v) =Z(—)"~(11j; —)A.(p,v), (8')

o: (P,v) =&(11j;«)A '(P,~) (8//)

This operator explicitly separates the three 2&'-pole

polarizabilities, namely, scalar, vector, and tensor,
which correspond, respectively, to the three possible
values of the angular momentum transfer j=o, 1, 2.
In the present formalism, as a direct consequence of
symmetry properties of the Clesbsch-Gordan coeS-
cients, the vector contribution vanishes identically.
In the second term of (8) the simple geometrical
restriction ~21

~ ~&j rules out the scalar and vector
contributions leaving only the tensor term j=2.

f depends, on the one hand, on the geometrical
factors of the scattering through the Clesbsch-Gordan
coefficients and the tensor 1";,and, on the other hand,
on the various dynamical factors such as charge distri-
bution, photon energy, and shape parameters through
the functions A;. The A, in eGect, can be considered as
functions of P and y through the resonance energies,
which vary in inverse proportion to the radii associated
with the corresponding axes. The proportionality
constant is estimated to be 82r2 (MeV-F) with r2 taken
to be 1.2—1.4 F.

In the present context we assume that P and 7

oscillate about their equilibrium values Pi and yi. The
equilibrium shape parameters Pi, &1 can be estimated in
the first approximation by relations derived in the
liquid-drop model, or more realistically by using meas-
urements from Coulomb excitation experiments. The
dependence on P, y of f can then be simplified consider-
ably by an expansion in powers of (P—Pi) and (y —yi).
Of course the equilibrium value of p for vibrating
spherical nuclei is zero, and for deformed nuclei we
will take the conventional view that y oscillates about
zero even though in some cases the amplitude is rather
large.

III. QUADRUPOLE OSCILLATIONS IN
NUCLEAR MODELS

The surface boundary of a nucleus in which only
quadrupole deformation is considered may be rep-
resented by the expression

R (0',/t ') =R2{1+ (5/167r)'/2PPCOSy (3 COS'0' —1)
+3 sing sin'0' cos2&']), (9)

where 7 can take on values from 0 to 127r, and P, denoting
the total deformation, varies from —~ to +~. The
above expression also gives the sizes of the three nuclear
radii when 8/, P' assume appropriate values.

E;=82(1+(5/167r)'/2P cos(y —i27r)$ 2=1, 2, 3. (10)

A. Spherica Nuclei

The wave functions of the ground state, first excited
state, and triplet states are given, respectively, by

Ep
4'o = exp( —p");

(8~2) 1/2

/p 2- 1/2

2 W2

n, M exp( —P"); Xi——1
(8~2/5) 1/2

&2,J +5
+~s= $g C(22J; mM —272)n2 n2, 2r $— p02bg 2 exp( —p");

L8&2/(2 J+1)j1/2 m

p i2-1/2
E22=—1

4 V2)
(13)

where the normalization constant E's are associated
with P- and y-dependent parts only; the parts depending
on the Eulerian angles 0; are normalized separately.
The variable P' is just the ratio (P/P, ) where P2'
= (27//BC) is related to the zero-point vibrations. The
variables n2 are given in terms of p, y, and 0 in the
usual manner. '

In the following, the function A, (P,y) will be averaged
over the various nuclear shapes using the above wave
functions re-expressed in the intrinsic nuclear system.

This calls for the substitution of the shape variables a
by the parameters P and y, and. the Euler angles 8,.

The above wave functions app1y to even nuclei. The
wave functions for an odd 2 nucleus include in addition
to the part describing the nuclear core of the general
form (11), (12), and (13) another part. representing the
last uncoupled nucleon. The calculations for this case
are similar to the calculations for an even-even nucleus
and will not be considered further.

We now proceed to derive the probabilities of occur-
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rence for the processes: (1) elastic scattering 0 ~ 0;
(2) inelastic scattering 0 —+ 2 and 0 —+ 0', 2', 4. This can
be done by taking the square of the magnitude of the
scattering amplitude averaged. over the variations of

p andy.

the cross section:

(e '(L3+cos'9)—(0~2)=I—
dQ (c ( 60

&«'l(1I 8 lo)+2(1I & 'lo) I',

dy sin3ye —'/'"t'0' (16)

p cosytz', (p,y)
'

—slny(Xz (p)y).v2

The only contribution comes from the tensor term,
j=2, which could be revealed in laboratory measure-
ments by its almost isotropic angular distribution,
(13+cos'8)/12, and should characterize the experi-
mental observation of the transition. Further, as a
result of both geometry and deformation, expressed by
the presence of the deformation parameters, azo ——P cosy
in the first integral and tzzz= co, z= (1/~2P sing in the
second, all three directions do not contribute equally.

do. e '(1+coszg—(0~0)= —
I

dn c k 6

where

dp sln3+(0I Q, pl 0)=arroz dPP4

3. TrarIsitiorIs 0 —+ O', Z'

1. Elastic Scatteri rI,g
82

The matrix element /pl fifo) yields just one term, (1I lo)=sVBro p'dp

j=0. We should note, however, that the presence of pure
scalar or pure tensor is a consequence of the particular
example we are taking, namely, nuclei with zero-spin
ground state. For other cases with nonzero-spin ground

state there is mixture of scalar and tensor polarizabil-
ities. The differential elastic scattering cross section
can now be obtained by squaring (f) and using the
explicit expression G, (0) in (7):

Xc-'~') ~ 'tf, (P,y).

Using the definitions of A„and 3; given previously,
Eq. (14) can be reduced to the familiar form:

da e' XZ '/1+ cos'8
~+2

dQ Mc' A k 2

The scattering amplitude for the transition to the
two-phonon state with J=4 vanishes in accord with the
usual conservation of angular momentum. For the
transitions to the two other states, the cross sections are
given by J=O'

da. e 4 1+cos'0
I&'I(20l aol0) I',

dQ c 6
where

p P ' I„zyy 'yz(2y )g-
x (ol- p o

3 (+.z +2+ .z)z+ (2 )2+2 ( o
I
ep 0)—XpA zp P dP dy sin3y7 4

~.

We rediscover here the usual dipole angular distribution
and the explicit fact that the oscillations along each of
the directions transverse to the quantization axis
(v=+1) have the same "weight" as those along the
longitudinal direction (v=o). This is so because Rp is an
equal combination of the three.

The absorption cross section for an unoriented system
is proportional to the imaginary part of the scattering
amplitude in the forward direction.

1 (8.=4~x —
I

— z'(olzm8, , lo) .
v3 kc

J=2'

1 g5
&& ))' 0')& "'~'p )pv)

E4 22 0,2,y 0

+(22I ~to'(p, y)I 0)I', (1g)

(22 I I0)=1VzzNp p'dp dy sin3y
0,2'

—(2/7) "'P' cos2y Sz
X 2/2/pp2

(2/7) ')'P' sin2y 6t z'

Z. Transition 0~ Z From these formulas it is expected that the transition
probabilites for the processes 0 —+ 0' and 0~ 2' show

The scattering amplitude for this process is obtained features similar to those found in 0 ~ 0 and 0
by taking the matrix element (% I f I%'o) which leads to respectively.
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We should remark that these inelastic cross sections
are only nonzero in virtue of the dependence of A2(P&)
and A2'(Py) on P and y. These functions have the
properties that

A2'(W) = o at y=0,
A, '(Pq) =A, (Pq) =0 at P=o,

and if the resonant frequencies were independent of P
and y they would remain zero. This is where we have
put the essential coupling between the dipole and
quadrupole motions.

B. Deformed Nuclei

In strongly deformed nuclei it is possible to separate,
in their energy spectra, excitations of the rotational
type from those of the vibrational type. This experi-
mental result corresponds to the separability of the
wave function:

P(IMK IepIii, ) = ((2I+1)/Sm')"'D~xr(0;)
Xf. ,(P)g.-,(~) (»)

with the P and y wave functions given by:

f„(x)=X„(+~2 "e!) 't'e '~'—"H„((2s)"'x).
x= (P Pi)/Pi —(2o)

(~) g 1(~&~2/P)-', )c[p—ra'yt2A

XI'(—-', I+-,'
) K); t&)+1; (~'v'/&)), (21)

do- e 4(1+cos'e
z4I&ool o', loo&l'.

dQ c E 6
(25)

Transition to the first excited state:

da. e 'i13+cos'8
z41&001 e loo&f'.

dQ c E 60
(26)

Transition to the first P excited state (0 —+El=0,
Ir 0, ep=1):——

same rotational band (imp
——v~=0), or scattering to

levels of the first P vibrational band (ep ——1, e,=o),
while the second describes, for example, scattering to
the first y vibrational band (ep=o, m~= 1). Further, as
before, the vector contribution is completely absent
and only the tensor polarizability contributes to the
transition to the p band. Finally, all processes which
do not satisfy the "triangular" rule

I,Io i I
&—I~ &Io+i

vanish, which implies for example that transition from
the initial states with Ip=0 to final states I~ are
forbidden unless If= j, thus limiting the final spin If
to the values 0 and 2.

In detail, for this simple case Ip ——0, I~——j, various
cross sections are given by the following expressions:
Elastic scattering: (Io——Eo——0 ~ Ir E~ 0)————

where H„(Z) are the Hermite polynominals, F(a;b;c)
the conQuent hypergeometric function, and two new
parameters s and 3 depending, respectively, on the P and
y potential strengths p and q:

(27)E4 10 0',p 00

s= (pP,'/h/8)"' t= (Pi/2A) (98)"'.
Transition to the rotation on the first P excited state

(22) (0~Er 0, If 2, ep=——1):——
The derivations of transition probabilities proceed

in the same way as before. In terms of the general
wave function (19), the matrix element of f between
the initial state (IpMpEO) and the final state (IfM~Er)
can be obtained and leads to the cross section:

do. p 4(13+cos'8
~'I(10I o'2loo) f'.

dQ c i 60
(2g)

Transition to the first y excited state (0 —+Ef 2, ——
If 2, N, =1):——

do- e 4 E4
2 G, (e)(lc(IojI~,'Eoo)(fl o', lo&l

dQ c 2Ir+1

+ ~C(I,JI, ; E,2)(f~ O,,'~O) ~'), (23)
Absorption cross section:

E4 0& O,2' 00 2 (29)

where the notations for the matrix elements have the
following meaning:

(fi 8;io&=—(cpm, z; f!e, i!spic,~, o)

2.=4~~ —— Z'(00~ ZmO, , ~OO& .
K3 c

IV. DISCUSSION

(30)

dP dv2vfr(P) gf(v) &~(Pv)fo(P)ao(v) (24)

The formalism separates explicitly transitions between
states of the same E from transitions between states
of E's differing by two units. The first type includes
such processes as the scattering between levels of the

In the form of A (P,y) expanded in powers of P, the
zeroth-order term corresponds to a static spherical
nucleus, while higher order terms introduce corrections
due to shape vibrations.

As a numerical example we take Sm'", an even-even
nucleus located at the border of the region of strongly
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Letting the vibration amplitude increase we observe
a second effect no less interesting: the curve around
the resonance energy spreads and evaentually splits

II

b

II

b

IO 12 14 IS
Photon Energy (hteV)

t

18 20

FgG. 1. Elastic scattering for Sm" at 90' calculated for different
values of the deformation Pp. Curve 1 corresponds to the static
shape, curve 3 corresponds to the correct value of Pp=0. 148. The
three other curves numbered 2, 4, and 5 give the predictions for
igp =0, 10, 0.17, and 0.20, respectively.

10 12 14 IS
Photon Energy (MeV)

FIG. 3. Probability of transition to the first excited state of Sm'"
for the first two orders in an expansion in powers of P.

Average radius

Vibration amplitude

Resonance energy

Half-width

Eo——5.4 F,
po= 0.148,

E„=16MeV,

Ay= 2.5 MeV.

The elastic scattering curve (Fig. 1) shows that the
second-order correction, proportional to Po' lowers
somewhat the maximum and increases contributions
at the tails. The zero-point vibrations cause appreciable
broadening of the resonance. For the value of Po ——0.148
calculated from the measured values of E2 and C2, '
this broadening Al'/I' is estimated to be of the order
40%%uo. To show the relationship of the deformation to
the width broadening, AI'" is calculated for various
values of Po (Fig. 2).

deformed nuclei. In this transition region, the nucleus
is particularly soft to positive parity vibrations. It has
the first 2+ level at 0.337 MeV and 0+ level at 0.685
MeV. The following parameters are used in the numer-
ical calculations:

g ]bl
II

CD

b

10 12 14 IS
Photon Energy (MeV)

Ie 20

FIG. 4. Probability of transition to the zero-spin triplet state of
Sm'" at 90' in the lowest order of the expansion in powers of P.

1.00

g +.50

I

~10
1.20

FiG. 2. Estimates
of the width broad-
ening of the res-
onance of photon-
scattering from Sm'"
for diferent assumed
values of the total
deformation of the
target nucleus.

. Plea
II

CD

U

b

10 12 14 IS

Pho ton Ener gy ( Me V)

18 20

K. Alder, A. Bohr, T. Huus, B. Mottelson, and A. anther,
Rev. Mod. Phys. 28, 432 (1956).

The width broadening AI' is defined here and in the following
by comparing, at half-width, the curve corresponding to the
static shape with the curve in which P and y vibrations are taken
into account.

FIG. 5. Relative magnitudes of the probabilities of transition to
different states of Sm'" at 90'. Curve 1 gives the predictions for
elastic scattering. Curve 2 corresponds to transition to the first
excited state, normalized for better comparison by multiplication
with a factor of 3.77. The transition to the two-phonon states has
much lower probability, as shown by curve 3 (transition to zero-
spin level, normalized by a factor of 10) and curve 4 (transition to
spin-two level, normalized by a factor of 100).
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TABLE I. Effects of collective vibrations on the giant resonance
for the case of Sm'" (pa=0. 148).

Transitions Width broadening Relative magnitudes

0~0
0 —+2
0 —+0'
0 —+2'

40%%uo

40'%%uo 0.25
0.045
0.006

into two distinct maxima (Fig. 1). As the originally
spherical nucleus becomes softer, it behaves more and
more like an axially symmetrical deformed nucleus, and
leads to the characteristic two peaked spectrum. Critical
to the observation of this feature is the resonance width;
if the latter is large enough, it can screen small varia-
tions with energy. So that, with good resolution meas-
urements, the splitting of this photonuclear effect
curve can serve as a criterion for shape deformation of
the target nucleus.

The transition to the second 0+ level (Fig. 4) which,
it is recalled, depends only on the scalar term, varies
essentially in the same ways, with the expected (Ps)'
order of magnitude smaller, 4.5/~.

Transitions to the spin-two states (Fig. 5) show
markedly different features. For excitations to the 6rst
2+ level, the curve is considerably narrower than in the
0~ 0 case, by about 30%.The probability of occurrence
rises sharply at resonance. At this point: P vibration has
a dehnite effect in lowering the curve. Similar effects
may be observed in the transition to the second 2+

level. As for the relative magnitudes of these transitions
they vary as Ps. The above results are summarized in
Table I.

n

b-
'Z7

I4 IG I8
Photon Energy (MeV)

20

FIG. 7. Probabilities of transition to the erst P excited state
in Er" in the two lowest orders.

As an example of a deformed nucleus we choose Er'"
a rare-earth nucleus with a particularly large intrinsic
deformation. The parameters used in the calculations
are the following:

Average radius: 7.70 F,
Resonance energies: E~2=15.5 MeV, 83=12 MeV,
Half-widths: Ayg2= 2 MeV, Ays ——1 MeV,
Deformation

parameters: Pr =0.28,
s=3, t=17.82 (y, ,=0.1676).

In elastic scattering (Fig. 6), the cross section is
lowered at peak-points by zero-point P vibrations; the
width broadening hardly observable at the higher
energy line (61's= 13%), is more pronounced in

gyu

b

II

b

I4 IS I8
Photon Energy (MeV)

20

FIG. 6. Elastic scattering for Er'" at 90'. It is given by curve 1
for static deformation (Pq ——0.28 and yq=0). The P vibrations
lower the peaks and broaden the widths especially at the lower
energy resonance (curve 2). Curve 3 shows the effects of y vibra-
tions together with P vibrations. The dashed curves, which corre-
spond to static deformation, are drawn to facilitate comparison.

I4 IS
(MeV)

20

FIG. 8. Transition to the lowest state of the y-vibrational
band in Er" in the two lowest orders.
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c&
1II
b

energy spread of the higher energy (DI's ——22%, and
Al'i ——54%, for combined effects of P and y in lowest
orders). Even more significant is the shift to a higher
energy of the low-resonance line: p and y vibrations
deform the nucleus in such a way that the contributions
from oscillations along the symmetry axis become
relatively larger.

The transition to the first excited level gives an idea
how the tensor term would contribute to the elastic
scattering since the two differ simply by a geometrical
factor. The characteristic feature is that the two

IO I4 I6
Photon Energy (MeV)

RO

FIG. 9. Relative magnitudes of the probabilities of transition to
different states of Er'" at 90'. The figure shows their very irregular
variations with gamma energy. Curves 1 and 2 give the predictions
of transition to the two lowest states of the ground-state band.
Curves 3 and 4 correspond, respectively, to the two lowest states
of the P vibration band, and curve 5 to the first y vibrational state.
The last three curves are normalized by a factor of 10 to facilitate
comparison.

the lower energy line (DI'& ——46%). These effects reflect
the strong dependence of P vibrations on the energy
corresponding to a classical oscillation along the
symmetry axis. Zero-point y vibrations also increase the

tlI
'0

b

IO I4 I6
Photon Energy (MeV)

FIG. 11.Probability of transition to the first p excited state
in Os'" in the two lowest orders.

II

CD

b

'Z

b

I

IO 14

(MeV)

FIG. 12. Probability of transition to the first p excited state
in Os" in the two lowest orders.
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FIG. 10. Elastic scattering for Os'" at 90'. Curve 1 corresponds
to static deformation (P&=0.20 and pi=0); curve 2 shows the
effects of p vibrations and curve 3 gives the predictions when y
vibrations are introduced. The dashed curves redraw the probabil-
ity of transition for the case of static deformation. The effects of p
instability of the target nucleus can be seen by comparing this
figure to Fig. 6.

peak energies now largely spread can be no longer
distinguished.

For transitions involving final p excited states, the
first nonzero terms are linear in (p—pt)BA/Bp and
hence ProPortional to R,BR;/BP: the inequality Rs) Ri
and the larger rate of change of Rs with respect to p
explain the difference in magnitudes at the two res-
onances. The widths are also observed to be narrower
than in the above case. Zero-point vibrations seem to
accentuate maxima and minima of the curve by
amounts too small to be detected experimentally
(Figs. 7—9).



GIANT DIPOLE RESONANCE

I

Average radius: 6.85 F,
Resonance

energies:
Half-widths:
Deformation

parameters:

E1= 1.5.50 MeV, E3= 12.75 MeV,
hy1= 2 MeV, Ay3= 1 MeV,

s= 4.0, t= 4.20.Pt=0.20,

The relative magnitudes of different transitions given
in Table II vary irregularly, differing considerably at
the resonance points.

As a 6nal example we consider Os'" (Figs. 10-13)
with which the periodic table finishes the deformed
nucleus region to begin the transition region. It has an
rms value of y of about 19', corresponding to a t value
of 4.20.

TABLE II. Effects of collective vibrations in the case of a strongly
deformed nucleus Kr'~.

Transitions

0~0
0~2
0~0' (P)0~2' (P)
0 —& 2" (y)

Width broadenings
sr, /r, nr, /r,

46% (P) t4% (o)
~4%%uo (v) 22% (v)

Relative
magnitudes

at E3 at EI

0.56 0.22
0.17 0.044
0.15 0.005
0 0.010

14 t6
Photon Energy (MeV)

20

FzG. 13. Relative magnitudes of the probabilities of transition
to different states of Os"' at 90'. Curves 1 and 2 correspond to the
two lowest states of the ground-state band; curves 3 and 4 to the
two lowest states of P rotational band; and curve 5 to the lowest
y vibrational level; the last three curves being normalized by a
factor of 10.

TABLE III. Width broadening of the giant resonances in some
deformed nuclei due to collective quadrupole oscillations.

r3 ~1
(expt) rp (expt) rp

P Lrg/ra (MeV) (MeV) Ar&/r~ (MeV) (MeV)

Er" 10' 0.28 0.55 2.8 1.85 0.22 5.2 4.2
Ho' " 19' 0.28 0.55 2.8 1..85 0.22 5.2 4.2
Ta'"b 15 0.23 0.50 4.5 3.00 0.30 9.5 7.3

a See Ref. 6.
b E. G. Fuller and B. Hayward, Phys. Rev. Letters 1, 1507 (1958).

In elastic scattering the broadenings due to P vibra-
tions are DF~ ——28%, 61'8= 20%, and to P and y vibra-
tions combined 61'~' ——36%, hl'3' ——30%. These results
corroborate with the remark made before: while Er'",
because of its strong intrinsic deformation, gives large
broadenings in the lower line, the y-unstable nucleus
Os"' leads to large broadenings in the higher energy
resonance. These relative effects of P and y vibrations
on the two resonances are again observed in the magni-
tudes of the probabilities of transitions to P and y
levels.

In conclusion, the contribution from shape oscillations
seems to be large enough to give an appreciable broaden-

ing to the original resonance width, which is due to the
damping of the dipole motion. Thus the experimental
values of the resonance widths, which measure both of
these effects, cannot be applied without corrections to
the zeroth-order terms in P and y of such quantities as
A (P,y). It is easy to estimate for these terms the widths
corresponding to the nuclear static shape from the
known values of the width broadenings. A few examples
are shown in Table III.

In Table III, we are rather conservative in making
the estimates of the relative width broadening, BF/I',
by using the experimental value of the width instead of
its value corresponding to the static shape of the nucleus
which, in general, is smaller. Moreover, for a smaller
experimental width, the ratio AV/P will increase further,
which, in effect, is the case of erbium for example: in
Ref. 4, the authors use F3=2 MeV and I'1 ——4 MeV to
fit the experimental data. In numerical calculations, the
zeroth-order size and width of the resonances depend on
the data we use. Relative magnitudes and width
broadenings should, however, remain unchanged for a
given nucleus. In particular, we expect that the width
broadening rather than the width itself varies systemat-
ically with nuclear deformation.
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