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Perturbed Rotational Band Spectra of Some Two-Quasiparticle X~ =0-
States in Deformed Even-Even Nuclei*
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DePurtment of Physics, Collmbiu University, Eem York, %em York

(Received 15 April 1964)

In deformed nuclei two states with E'1~j.=—', and %2m.2= -',+ can couple to form a degenerate doublet with
projections 0 and 1.We have investigated the effect of the Coriolis force and the spin-dependent residual in-
teraction on such states. As a result of these interactions, the rotational bands are strongly mixed, and the
level ordering becomes quite complicated. For certain E=

& states, the lowest lying members of the rota
tional band resemble the Xm =0 bands observed in deformed even nuclei in that the band ordering is 1, 3, 5,
and the effective moment of inertia is signilcantly larger than that of the ground-state band. However, such
bandsareusuallyassignedas Zs =0 projections of X=3 (octupole)vibrations. Thus the difference in appear-
ance between the bands belonging to collective and two quasiparticle Km-=0 base states may in some
cases be less than previously suspected, and hence definite assignments should require more detailed exper-
imental data than the band ordering alone.

I. INTRODUCTION

' 'N even-even nuclei, principally in the regions A 154
~ ~ and A &226, states of low excitation energy ((1
MeV) with IIr=1 are systematically observed. The
branching ratios of the E1 radiations which de-excite
these levels to the ground and first excited 2+ states,
when compared with predictions of the collective model,
have led to their being assigned a E=O quantum
number. ' In some cases, states with I=3 and I= 5 are
observed which follow the rotational I(I+1) relation-

ship relative to the 1 states. No even-spin states are
observed in these bands. The moments of inertia com-

puted from the energy level spacing are approximately
1.7 times those computed for the ground-state bands.
These facts led to the suggestion that the states are
E=O projections of collective octupole (X=3) oscilla-
tions. ' Some force is added to this assignment by the
recent observation of strong electric octupole transitions
to the 3—states of these bands in Coulomb excitation
experiments using heavy ion beams, ' and strong excita-
tion of the bands in inelastic scattering. '

Recently an attempt has been made to understand
the X=3 oscillations from a "microscopic" viewpoint.
An examination of the wave functions of the E=0 com-

ponent of the octupole vibration shows that in some

nuclei the amplitudes of the two-quasiparticle compo-
nents of the states are very large. ' These calculations
have led us to consider whether it is possible to repro-

duce the properties of the Ex=0 bands, assuming
they are pure two-quasiparticle excitations.

II. THEORY

Rotational bands based on Em. =0 levels of X=3
oscillations contain no even-spin states if the nucleus is
axially symmetric. A well-known result is that their
effective moments of inertia should also appear to be
larger than those of the ground-state (EIr=0+) band
through their coupling to the X=3 oscillation with a
E=1 projection. In contrast, in bands based on Em.
=0— two-quasiparticle states, the even-spin states
exist, and the level ordering and apparent increase of
the moment of inertia must originate through residual
interactions. Thus the question we wish to investigate
is clear: if a Em=0 band base state is a two-quasi-
particle state, can residual interactions reproduce the
observed level ordering, effective moments of inertia,
and other properties? In the present paper we discuss
the results of this investigation.

Of the many possible residual interactions we shall
only use those which are known to affect significantly
the particle spectra in deformed nuclei. The types of
interaction which are empirically important, at least
with respect to the basis of the unified model plus
Nilsson Scheme' ' are the RPC (rotational particle
coupling' ") and the spin-dependent interactions which
are well established in deformed odd-odd nuclei "—"

As a starting point in the analysis we recall that
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TWO —QUASI PARTICLE Xm = 0 STATES 8877

occur in the neutron diagram and P50t] and I 420)]
in the proton diagram. In the remaining nuclei in both
regions, however, such configurations have much higher
excitation energies. These results suggest qualitatively
that only in the Ra-Th and Sm regions do low-lying
states exist which might have properties like those
observed. In the calculations discussed below we at-
tempt quantitatively to determine if this could be the
case.

A. Energies of Two-Quasiparticle States

Soloviev has given tables of two-quasiparticle excita-
tion energies in the heavy-element region. "His calcula-
tions do not include much of this mass region, however,
because of the rapidly varying self-consistent-field
energies in the region of deformed nuclei with lower A.
Recently some corrections that should be applied to
his model have been pointed out. "' However, his esti-
mates of the unsplit IQt&IIsI doublet energies appear
valid for the observed states" to within his estimated
error of 15%, so we have used them for orientation
purposes. His calculated energies for Em=0—states
are greater than 1.5 MeV throughout most of the
region. A simple unsplit-doublet interpretation of the
states is clearly inadequate.

B. Forces Removing the Degeneracy
of the K=0, j. Doublet

1. The Rotational Llamiltoeiae aed EI'C

We consider an even-even nucleus which contains
two unpaired like nucleons; all other particles are
paired in the appropriate Nilsson orbitals. The two
unpaired particles have intrinsic wavefunctions x„(1)
and g„(2) where lr and ~' are the components of particle
angular momentum along the nuclear symmetry axis, s.
The parity of the rotational band based on these in-
trinsic states is m =7r(1)tr(2). When lr=K', we can com-
bine these two states to form both a K=0 and a K= 2~
band. The usual rotational wave functions are (for
total spin I)

I IPr, E.=0)
= ((2I+1)/16m')'I' Q;,' C~Dp (—)

&'—'I' S
X I:x.'(1)4-."(2)+(-)' '-"x-.'(I)&."(2)j

and

II,M,K=2~)
=((»+1)/16~')'" Z;; C;D; Ex.'(I)@.'(2)~ ..'

+(—)' ' "x-.'(1)4 ."(2)&~. s.'j. (2)

The C's and D's are expansion coefficients,

xn ——Q, C;xn&,

"T.Voros, V. G. Soloviev, and I. Siklos, Joint Institute for
Nuclear Research Report E—932, Dubna, 1962 (unpublished).

'7 S. G. Nilsson, Nucl. Phys. (to be published).
"The data on two-quasiparticle states in the heavy element

region are extremely sparse. This statement is based on the more
detailed comparison carried out in the rare-earth region.

TABLE I. Systematics of A-R =1—0 states in
the region A )208.a

Nuclide

Rn"8
Rn"'
Rn'~

Energies of rotational
statesb

3— 5

(800)
(650)
(610)

Inertial constants A'/2S
of rotational bands

(keV)'
E'm =0— E'7r=0+

R3220

Ra222
Ra224
Ra"'

Th224
Th226
Th228
Th230
Th232

U282
'U284

U'238

Pu238

(410)
242
217
253

246
230
327
503

1045

564
787
679

605

(289)
320

396
572

1095

630

724

7.2
6.7

6.9
6.9
5.1

6.6

14.1
11.3

9.6
8.8
8.3

7.9

75

a All data as are reported (with references) in the compilation of B. S.
Dzhelepov, L. K. Peker, and V. O. Sergeev, Academy of Sciences of the
USSR, 1963 (unpublished).

b Parentheses indicate assignments not definitely established.' Calculated from 1 —to 3 —spacing for the K7r =0 —bands and from
the 0+ to 2+ spacing from the Kx =0+ (ground state) bands. All values
have been given to nearest tenth of a kev.

Tape= —(I/28)LI+(jr+ js) +& (jr+ js)+3 (4c)

To is the simple rotationaj energy operator; T„„con-
tains the rotational particle-particle interaction; Tape
is the Coriolis contribution which connects the nuclear
rotation to the rotation of the individual particles. All
three operators are diagonal in I. Only Tape is capable
of connecting states of different E under certain
conditions.

We calculate the matrix elements of (4a—4b) using
the wave functions (1) and (2). The results are

(I TeI)r, sr, x s= (I/28)I I(I+1)—2K +btybsg, (sa)

(I TOI)I, M, K 2~ (I/2&)I I(I+1)—«'+&t+4l, (Sb)

(I T~. I )r,sr.rr-o= (I/2s) 8 .vs (—)"'tt t~» (Sc)

and can be obtained from the Nilsson wave functions.
Since we are dealing with identical particles, both of
the above wave functions must be antisymmetric under
interchange of particles 1 and 2, although, for the sake
of brevity, this will not be explicitly shown.

The rotational energy operator is given by

T-t= (1/») I:(I—jt- js)'- (I—jt—js)*'j
+(1/2ds)(I —jt—js).'=Ts+T, „+TRpc, (3)

where

T,= (1/28) P'+ j,'+j,'+ 2j,,j, 2J,(j,+—j,),5, (4a)

T, ,=(1/»)(~.,~-+~. ~.,), (4b)
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and

(I Teal -&r,u, z ~. 0=.

considered further. The matrix element of T„„ is

(5d) nonzero only when K=0 and ~= —,'.
The only nonzero matrix element of TRpf: is

In the above, we have used

b'=E IC I'J(i+I)

a, = —p (—)&'+'"(1+~2)lc;l'

with similar expressions for b2 and a2. The a's are the
usual decoupling parameters. The terms involving b~

and b~ arise from single particle operators which may
be absorbed in the self-consistent field and will not be

(I, ~, Z=olZ'»olI, cV, @=2.
&

1
= ——b..~~2(I(I+I))'"La2+(—)"'a~j (6)

2d

TRpg is off-diagonal in E; it contributes only when
~=-,' and mixes the resulting E=O and E= 1 bands. If
the total Hamiltonian were given by T„t alone, then
the energy levels could be obtained by diagonalizing
the symmetric 2 g 2 matrix,

LI(I+1)—2»' —8, , (~2(—) aga2j —8„,~~2(I(I+1))'~'La, —(—) a,$
2uA =-

~ ~ ~ LI(I+1)—6~']
(7)

One must also include the effect of the residual particle-
partic]e interaction which would be different for the
two bands. Only the contribution due to the two un-

paired particles must be included. Before considering
this additional complication, a few remarks regarding

Eq. (7) are in order.
Since the spectrum of any band is limited by the

condition I)E, there will be only one level for each
integral I, 0&I(2~. Each of these will correspond to
K=O and is given by Eqs. (5a) and (Sc) (E" of our

matrix). Even for I& 2a, the matrix of Eq. (7) will be
diagonal unless ~=~ (2~=1). Band mixing via RPC
arises only in the latter case when we have E=O and
E=1 bands. This is precisely the situation which we

wish to investigate since the strong repulsion of energy
levels is capable of appreciably altering the effective
moment of inertia.

Z. The Ees~dla/ Ieteracti orI,

As a residual interaction, we choose

V=u..V..+a&.V&. ,

(l Ul &r, x=2 =~,PIO+nr, ,3f3. (10b)

The +(—) sign is used in Eq. (10a) when I is even
(odd). Expressions for the A. 's, B's, and M's are given
in the Appendix

Since the available experimental data are so sparse,
there is little point in varying parameters so as to
obtain a best fit. We choose instead to fix our param-
eters at reasonable values and see where our model
leads us. For simplicity, we take V to be Gaussian
LU exp( —r'/X')j. Consequently, we have a model
with five parameters: o,„and o.t.„interaction strengths;
A.„and X~„characteristic distances of interaction; and
v, the harmonic-oscillator length parameter used in
obtaining radial shell-model wave functions.

For the interaction, we employ the parameters of
the Gaussian e-e potential used by True and Ford,
a„=—32.5 MeV, n~, =0, and P„=1.85F."These same
authors also obtain an estimate for v based on a classical
turning-point argument,

v'=R'/(21-, +3),
where

and

U„=-', (1+8~)(1—og og) V„(rg2), (9a)
where R 1.22'"(F), and I-, is the largest orbital
angular-momentum state which is occupied.

V,.=-,'(1—P~) (3+~~ ~2) «.(r12). (9b)

I'Jvl is the two-particle space-exchange operator. The
subscript se (to) refers to the singlet-even (triplet-odd)
projection operator which is explicitly shown in Eq. (9).
Singlet-odd and triplet-even operators do not enter
since our wave functions are totally antisymmetric.
Matrix elements of V taken between rotational states
conserve both I and E. Such an interaction con-
tributes only to the diagonal terms in Eq. (7).

The matrix elements of V may be written as

(l Vl)r, x=o=n..(~o+Bo)+~~.(~3~B3) (10a)

III. RESULTS

A. Heavy Element Region

l. I'rotor Orbitals

The proton orbitals (660$) and (530'') form the only
low-lying E~=0 state of interest in the Ra-Th region.
Both particles have it, =-', and can form bands with
E=O and E=1. All bands based on these states will
have odd parity. Using 2 =226 and l,„=6,we obtain
v=1.88 F. The parameters v and X enter only in the
combination f= (p/X)', which in our example has the

"W. True and K. Ford, Phys. Rev. 109, 1675 (1958).
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value )=1.04. These parameters have been used to
calculate the level spectrum for various values of
nuclear distortion, g=2, 4, and 6. For the case q=4,
we obtain

Ao= 0.0075, Bo=0.0071, M =0.0059,
A 3=0.0134 ) B3——0.0026 ) M3 ——0.0137.

The matrix elements of the residual interaction are

(l I
l )reven, z'=s=

(I I'I)"«,x=o = —474 keV,
Ld

000

800"

600-

0

to

3

and

(l vl), ,x=,= —191kev. 400.-
2
6
4

Thus the main eRect of the residual interaction is to
depress the odd I states of the E=O band relative to
311 other levels. Using the level spacing of the ground
state K=O band of Ra"', we obtain a value for the
inertial constant,

(1/2g) = 11.27 keV.

If this same constant is used for the two-particle ex-
cited state, we are now in a position to diagonalize the
total energy matrix (rotational plus interaction). The
lowest levels have I= 1, 3, and 5 in that order. From a
simple rotational model we would expect Er I (I+I)
or

(Es—Er)/(Es —Er) = (30—2)/(12 —2) = 2.8,

This should be compared with a value of 2.89 obtained
from our model.

If our energy levels are interpreted as a simple rota-
tional band, the eRective inertial constant is

(1/28) =8.19 keV,

about 3 of the corresponding quantity for the ground-
state band. "Also one should notice that the low lying
I=1, 3, and 5 levels are predominantly composed of
E=O components (98, 94, and 87%%u~, respectively)
which might lead to their identification as a If=0 band
by virtue of their gamma branching ratios. The next
state in the spectrum is not the usually expected I=7
level, but rather I=4, followed by I=2 and 6. These
states are predominantly X=1 (70, 81, and 64'Po)'.

Similar results have been obtained for other values
of q. The corresponding spectra are plotted as a func-
tion of rf in Fig. 2. (A similar plot for the case of no

'0 In order to obtain a better estimate for the moment of inertia
of the two-quasiparticle state, we should probably have used the
empirical fact that for two-quasiparticle states in deformed even-
even nuclei the moments of inertia, d„(2), seem to be best Gtted
by the relationship d«(0) &d«(2) &d«(0)+68&+682. In this ex-
pression s„{0)is the moment of inertia of the ground-state rota-
tional band and ding and da'2 are the incremental moments re-
sulting from the odd-particle motion (see Ref. 9). Since roughly
&p~n, (n, is the number of nodes along the axis of symmetry
of the odd-particle state), and n, is large for all the E=~ states of
interest here, we can quite reasonablygexpect that the eifective
moments of inertia of these bands should be considerably larger
than we have calculated assuming 8„(2)=y«(0).

200-.

0e»

I'zo. 2. Energy spectrum versus deformation p for proton states
L6601'$ and L530i'j. The parameters characterizing the residual
interaction are n„=—32.5 MeV and &=1.04. Energies are shown
relative to the lowest Im =1—state. The position of the unsplit
doublet is indicated by the dashed line.

residual interaction is given in Fig. 3.) The low-lying
states (I=1, 3, 5) maintain the same ordering and
roughly the same spacing throughout the range of dis-
tortions considered (2&ran&6). The ratio (Es—Er)/
(Es—Er) varies from 2.84 at rf = 2 to 2.96 at rf =6, which
again should be compared with the simple rotational
value 2.80. The corresponding inertial constants are
9.1 and 7.3 keV, approximately 0.81 and 0.64 times the
corresponding quantity for the ground-state band
(11.27 keV).

Contrary to the remarkable stability of the low-lying
states with respect to variation of g is the sensitivity
of ordering of higher states. The important point here
is not the definite order for any particular value of g,
but rather that even-spin states and one additional
1=1 state make their appearance at relatively low
excitations (Er—Et&0.5 MeV). Whereas the three
lowest states would be experimentally determined as
Kz-=O, these higher states (except for I=7) would
be largely ICm= 1—.

The dependence on t has also been investigated.
Calculations were performed for the range 0.8&&&1.3
(t = 1.04 was used for the previous part of the calcula-
tion). The predominantly E=O odd spin states are
relatively unaffected by small changes in t; their
energies relative to the lowest I=1 state fluctuate by
about 10% over the range in question. The positions
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600-—

600—

l2

l0

I0

0

bands are so thoroughly mixed that for p=4 the lowest
state has I=5. These intrinsic states seem entirely
incapable of producing the desired spectrum.

B. Rare-Earth Region

1. Proton Orbitals

We have investigated the proton states L550$j and
$420$]. Using /=0. 91, we have calculated the energy
levels as a function of deformation (Fig. 5). The result
is similar to that obtained for the two-proton state of
the Ra region. The lowest lying states have I=1, 3,
and 5, respectively, all predominantly with E=O. At
excitations of about 600 keV relative to the Ix=1-
level, even-spin states begin to make their appearance.
The spacing of the low-lying odd-spin states is again
compressed yielding an inertial constant which is about
one-half of that found for the ground-state band
(I/28 20 keV).

Z. NeutrorI, Orbi tais

0-—

The neutron states in this region are the states
L660$] and L530l'$, which are the proton orbitals in
the heavy element region. Although the parameters of
the Nilsson scheme change between the two regions,

600"

FzG. 3. Energy spectrum versus deformation q for proton states
[660$] and [5301). No residual interaction has been included.
Energies are shown relative to the lowest Im= j —state. The
position of the unsplit doublet is indicated by the dashed line. 400"

of the other levels depend much more sensitively on f
since their location is determined largely by the re-
sidual interaction.

By increasing the strength (n„) of the residual inter-
action, we increase proportionately the E=0, I= ].

splitting which signihcantly aGects band mixing. If,
however, one correspondingly reduces the range of the
potential (e.g. , keeping the volume integral of the
potential constant), then the spectra are not signifi-

cantly affected. Small admixtures of a triplet-odd re-
sidual interaction do not change the qualitative results
of this section.

Z. NentrorI, Orbi tats

200"

~ ~

Qei

-200."

0,2

C

2

5 ei
3

The spectrum which is obtained when using the
neutron states L640&j and L770&$ is illustrated in

Fig. 4. The same interaction parameters have been
employed as for the previous discussion and /=0 914.
Since the decoupling parameters of these two states
both have the same sign, they tend to depress the even
I states below those of odd I. (Also the Coriolis inter-
action is strongest for even I.) This works against V
which tries to depress I odd. relative to I even. "The

"In the previous case of two unpaired proton states, the states

FIG. 4. Energy spectrum versus deformation q for neutron
states [6401) and [770''j. The parameters characterizing the
residual interaction are ~„=—32.5 MeV and &=0.914. Energies
are shown relative to the lowest Ivf = 1—state. The position of the
unsplit doublet is indicated by the dashed line.

had decoupling parameters of opposite sign so that both the
Coriolis and residual interactions tend to lower the states with
odd I.
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I000-

800"

600-

400--

200"

Oe ~

I l

Fn. 5. Energy spectrum versus deformation p for proton states
L550$] and L4201']. The parameters characterizing the residual
interaction are n„=—32.5 MeV and f=0.91. Energies are shown
relative to the lowest Im. =1—state. The position of the unsplit
doublet is indicated by the dashed line.

the qualitative results are clearly the same as shown

in Fig. 2. It should be noted, however, that none of
the E=—,

' states in the rare-earth region have been
experimentally identified in the low-energy spectra of
deformed nuclei, in contrast to the well-established

appearance of the (530$) state in the heavy region.
This fact implies that the two-quasiparticle states
should only appear at relatively high excitation energies.

IV. CONCLUSION

Our results indicate that over the mass region of
deformed nuclei it is not in general possible, assuming
reasonable residual interactions, to obtain low-lying
two-quasiparticle states that have the properties of the
Em-=-0 bands observed for example in Ra . How-

ever, in special cases, possibly in Ra"', it is possible to
reproduce both the effective moment of inertia of the
observed band and the ordering of levels [but not an
enhanced B(E3) should it be found) with a specific
two-quasiparticle state. In this case, our calculations
indicate that a complicated group of odd-parity levels
should be observed at somewhat higher energy than the
IzE=5 —0 state. These states should be observable
experimentally, although the even spin states would

not have been observed in the n —decay experiments

(where the odd-spin states were found) because of the
parity selection rule in n decay.

The recent calculations of Soloviev, Vogel, and
Korneichuk' indicate that it is possible to reproduce the
energies of the observed A-E = 1—0 states in the de-
formed region assuming they are octupole excitations.
Enhanced B(E3)'s to the 3 states are of course ex-
pected in this interpretation, although actual numbers
have not as yet been calculated. These authors have
also not attempted to calculate moments of inertia for
the observed bands, so there is also no check other
than the collective model estimate on this point.

Our results support the general view that the IxE
= 1—0 states are collective excitations, in that we find
it generally dificult to get low-lying configurations
which reproduce the observed moments of inertia. VJe
think these results emphasize the need for clear experi-
mental definition of the properties of the states of this
type before they are assigned as collective vibrations.
In addition, because the states whose properties we
investigated are in the spectrum, our calculations indi-
cate that the interpretation of odd-parity states, par-
ticularly at the beginning of the deformed regions, may
be more difficult than previously suspected. This is
especially true since the levels of the bands in question
apparently need not follow any simple angular mo-
mentum ordering.

We wouM like to thank the Columbia University
Computer Center for making their facilities available
to us.

APPENDIX

The single-particle Nilsson wave functions may be
expanded in terms of eigenfunctions of total angular
momentum,

Xa=Z, &;aX,a,

or in terms of eigenfunctions of orbital angular mo-
mentum,

Xa=gi~ atjaXi~a

(A. is the component of orbital angular momentum
along the symmetry axis. ) In dealing with the residual
interaction, the second expression is the more useful.

If the residual interaction is taken to be

V = & (rrs) [Uo+ UtI'sr+ Ustrt ' trs+ Us~utrt " trs], (A&)

then the matrix elements with respect to the basis
states given by Eqs. (I) and (2) are

(I I I&z=o=&oUo+&iUt+~sUs+&oUs
+ ( )[BU +B U +B,U,j (A—2)

"It should be noted that no systematic information about the
properties of the bands exists, at least as far as we are aware. (I VI)res. =MoUo+MtUt+MsUs+MoU, , (A2')
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where
Uo= Uo —

o (Ui+3Uo),
Ug ——Ug ——,

' (Uo+3Ug),
Ug= Ug ——,'(Ug —Uo),

and

Uo ——Uo —
~o (Uo —Ug) .

The A' s, B's, and M's are themselves matrix elements
which may be written as

Llll' L2L2' p vk

(V /(2k+1)') (—)"+",.—...+. . .—.. .+.

XC(I&1&'k) 00)C(lolo'k; 00)C(l&I&'k; z —p, p —~)C(lolo'k; —K vq K+v),

(Vo/(2k+1)')«, ,—,ai, .+,au „,a~;,.~,
LQL] 'L2L2'Pvk

XC(l,lg'k;00)C(lola'k; 00)C(lyly'ki K p) K+ )vC(l211kj & v, p K) I

Ag= —2 Q (V~/(2k+1)')a~, g„ai,, „~va&, „+ a, tv, , „+ +v„+pC(o, 2)1. j p, p)C(2, o, 1i v)
—p —p+v)

L1L&'L2L2'kp, vp

XC(l,l, 'k; 00)C(l,lg'k; 00)C(I&I&'k; &—
pi

—&—P)C(1212 k j K v, p+v+p+&) p

(VI/(2k+1)')( —)"+"«g,z—valg, z+valg', a+ pated', z+v+v+ p

LI L1' L2L2' p v p~

XC(o, 2, 1;p, p)C(o, 2, 1; v, —p —v —p)C(lily k; 00)

XC(lglg'k; 00)C(l&Ig'ki r. p, ~+p+—v+p)C(12l, 'k; —~—v, —~—p), (A4)

Bi=~ P (Vp/(2k+1)')a(, „„at,,, „+pa);„+„ai,,
L&L1'L2L2'pvk

XC(lyly k) 00)C(lglg k) 00)C(lyly k) K p, v K)C(lql~'k; —~—v, p+~),

Bg= —2m Q (Vp/(2k+1)')a), , „„a(,,„~„a(, ,„pat,.,„„„v
L1L1'L2L2'p v pk

XC(q, 2, 1
& p, p)C(o, o, 1; v, —p —p —v)C(lili'k; 00)

XC(lplo'k; 00)C(lilx'k) ~—p, K p)C(lzlo'k; ——z—v, p+v+p —z) &

Bo= —21r g (Vp/(2k+1)')( )v+"a(,
, „va[—, , „+„a[,,„,aI, „„„,

L1L1'L2L2'pv pk

XC(-,', -'„1;p, p)C(—,', —,', 1; v, —p —v p)C(lzlz'k; 0—0)

Mp —=Ap,
XC(loll k; 00)C(I~lo k; ~—p, p+v+p K)C(lol~'k; ——g —

iv&
~—p),

L1L1'L2L2'p, vk

M2=——A2,
XC(I&Io'k) 00)C(Iol&'k) 00)C(l&lo'k) K—pt) v K)C(lyly k) K vi) p K),

M3= —2
L1L1 L2l2 pvpk

(Vk/(2k+1) )( ) atl, K vatnK Vali', ll+—p—a, l2'K v & P, ———

XC(o, o, 1;p, p)C(o, 4; 1, v, p v p)———

XC(I~Io'k; 00)C(loI~'k; 00)C(lqlq'k& ~—p, p+ v+p ~)C(lqI~—k; ~—v, —~—p).

The Vk and Vk are matrix elements,

Vg ———,
' f (21g+ 1)(21g'+ 1)(2lg+ 1)(2lo'+ 1)]'"(2k+ 1)

X rPdr, ,'dr, R.„,(1)R., „(1)R.„,(2)R...„(2)

dpi',

(p) V (~ r, r, ~) (AS)—

Vo =
o L(21g+ 1)(2lg'+ 1)(2lg+ 1) (21,'+ 1)]'I'(2k+ 1)

rPdr]roodrgR„, t,,(1)R„;$;(2)R„g(,(2)R, $., (1) dpI'I, (p)V(~ rr —rg~).
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As an alternative to Eq. (A1), the interaction may be expressed in terms of singlet-even and triplet-odd poten-
tials LEqs. (8) and (9)].The matrix elements of the interaction in this form are given in Eqs. (10a) and (10b). The
ci's, 8's, and M's can be simply expressed as linear combinations of the quantities calculated in Eq. (A4),

As=-,'(As+At —As —As)
(A6)

with identical expressions for Bo, B3, Mp and M3.
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Effect of Quadrupole Collective Motions on the Giant Dipole Resonance*
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The photonuclear model which includes both scalar and tensor polarizabilities is refined by considering
small vibrations of the nuclear shape deformation. The effects of these zero-point vibrations on the structure
of the giant dipole resonance for elastic and inelastic scattering have been investigated in an adiabatic ap-
proximation. Illustrations are given.

I. INTRODUCTION

T has been established experimentally that there is
~ - a definite correlation between the giant dipole
resonance of the photonuclear eGect and nuclear
deformation. These resonances are appreciably narrower
in the closed-shell nuclei than those found in nuclei
situated between closed shells. For deformed nuclei, the
giant resonances broaden and even split into two peaks;
this is especially apparent in the rare-earth region where
the deformation is particularly large. For an ellipsoidal
nucleus having a positive intrinsic quadrupole moment,
the higher energy resonance is observed to contain about
twice as much area as the lower energy resonance, the
latter being always sharper than the narrowest reso-
nances found in spherical nuclei.

These results are all in accord with the predictions of
Okamoto' and Danos' that for a deformed nucleus the
dipole oscillations would take place with two character-
istic frequencies associated with the nuclear axes. The
order of magnitude of the ratio of these frequencies
follows from dimensional considerations, namely, a»/co&

=0.91Rs/Er as given by a detailed hydrodynamic
analysis, where E1 and E2 are the largest and smallest
radii of the nucleus. Recently Fano, ' and Fuller and
Hayward, 4 using tensorial techniques, derive a more

~ This work is supported in part through U. S. Atomic Energy
Commission Contract AT (30-1)-2098.

t Based upon a thesis submitted by H. K. Q. to the MIT
Physics Department in partial fulfillment of the requirements for
the Master of Science degree, August 1963.' K. Okamoto, Phys. Rev. 110, 143 (1958).' M. Danos, Nucl. Phys. 5, 23 (1958).' U. Fano, Natl. Bur. Std. (U. S.) Tech. Note 83, (1960).

4 E. Fuller and E. Hayward, Nucl. Phys. 30, 613 (1962).

general theory which takes into account the dependence
of the photon scattering upon the spin orientation of the
nucleus with respect to the wave vector of the photon,
and thus includes three possible polarizability contri-
butions: scalar, vector, and tensor.

Many experimental absorption data of strongly
deformed nuclei seem to agree as well with the three-
resonance theory first proposed by Inopin. ' On the
basis of the hydrodynamic model within the framework
of the theory of axially asymmetric nuclei proposed by
Davidov and Filippov, Inopin showed that the res-
onance energies E; corresponding to the density oscilla-
tions along the three different axes are proportional to
1/E;. Any experimental results for deformed nuclei can
thus be interpreted by a three-line fit, for which two
resonance energies E1 and E2 may be allowed to
approach each other at a common value E1~. However,
we know that a nonaxial deformation is generated by
shape vibrations away from equilibrium axial sym-

metry, so called p vibrations, and it seems sensible to
assume that these vibrations might make more or less
important contributions to the photoeffect resonance. '

Those considerations motivate us to include, if only
for the sake of self-consistency of the collective model,
zero-point vibrations of the nuclear shape. Conversely
a successful interpretation of some aspects of the
photonuclear effect on this basis might be useful in the
study of nuclear structure, in revealing properties of
collective levels and estimates of the zero-point vibra-

E. Inopin, Zh. Eksperim i Teor. Fiz. 38, 992 (1960) LEnglish
transl. : Soviet Phys. —JETP 11, 714 (1960)'].

6 P. A. Tipler, P. Axel, N. Stein, and D. C. Sutton, Phys. Rev.
129, 2096 (1963).


