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The E 0 system has been studied in a self-consistent manner, both to see if the 0 can be interpreted as a
T=OX bound state, and to study such calculations in a situation where only one two-particle channel need
be considered. We follow closely the method of Singh and Udgaonkar, and Pati, using for dynamical singularities
both a short cut due to single particle exchange and a self-consistently determined distant left cut. Only the
J=—,+ partial wave is considered. The main result is a curve relating the strength (called g') of the single-
particle exchange-forces to the position of a bound or resonant state. The binding energy is found to increase
with increasing g' until the mass of the bound state is about 1680 MeV. Further increases in g' have essen-
tially no effect. On the other hand, it is found that resonant states exist for g &0, so that the calculation as it
stands allows resonances with repulsive single-particle exchange forces. The calculation in its present form is
consistent with bound or resonant states for both T=0 and T= 1., the former at about 1680 MeV for reason-
able values of g . It is shown that the results are essentially independent of subtraction point, matching
points, and similar parameters. The dependence of the results on the short cut and on the distant cut is dis-
cussed. The manner in which calculations using only the Born approximation for the dynamical singularities
can give the same results as ours is indicated. The possible existence of two zeros in Re D, noticed by Abers
and Zachariasen, is briefly discussed. A second zero does appear in the present calculation at about 4 GeV. ,
but results from the phase shift decreasing through —,'~ rather than from the Abers-Zachariasen mechanism.
Thus, no alternative solution is found in the present calculation.

ities. It has a unitarity cut, built into D, and any bound
states will appear as zeros of D. The dynamical singular-
ities are those contained in E.

In the present calculation we follow Singh and
Udgaonkar' (SU) and Pati' (P) and take N to contain
a nearby short cut due to single-particle exchange, and
a distant cut. The latter is characterized by parameters
which are self-consistently determined. In the more
traditional bootstrap calculation one sets Ã equal to
the amplitude for single-particle exchange. Although
the two types of calculations give quite similar results,
from some points of view they appear to be quite
diHerent. Their relation is discussed in some detail
within the framework of our results. We also examine
the problem, recently noted by Abers and Zachariasen, 4

of two alternative solutions to our self-consistent
calculation.

Section II summarizes the details of the calculation.
The main results are given in Sec. III (Table I and
Fig. 1), and are discussed, along with the topics men-
tioned above, in Sec. IV.

I. INTRODUCTION

'HE X system, with strangenesss —3, is of
interest for two reasons. First, the recently dis-

covered' 0, with I'= —2, T=O, and J=—,'+, may
perhaps be considered dynamically as a T= OE bound
state in the ps~s partial wave. Second, it is a physical
system strongly coupled to no other two-particle
baryon-meson system, so that the results of a single-
channel calculation are of particular interest. In the
following we examine the E 0 interaction in a self-
consistent manner for both of these reasons.

The present calculation is a self-consistent one in the
following sense. Values for the position and residue of
the 0 pole in the pres amplitude are guessed initially
and used as input. Values for the same quantities are
then obtained as output from an N/D solution. The
new values are used as input, leading to new output
values, and the procedure is repeated (by a computer)
until the output and input values are the same, if
possible. It is not a true bootstrap calculation because
the left-hand singularities are Axed input information
(although the fixed parameters are varied over a wide
range to obtain some idea of their effect). Such a
bootstrap calculation is in principle possible since (for
example) the Z is perhaps partially a E bound state
held together by 0 exchange, just as the 0—is perhaps
a X bound state held together primarily by Z exchange.
Since E is coupled to xZ, mA, and XS, this is an
interesting multichannel problem which we do not
consider further.

The ps~s partial-wave scattering amplitude gt+ ——N/D
is characterized, from our point of view, by its singula

II. DETAILS OF THE CALCULATION

A calculation of this type has been carried out by
Singh and Udgaonkar' for the E* and by Pati' for the
*. Our treatment follows that of Pati quite closely;

the reader is referred to his paper for additional details.
For completeness we summarize the procedure to be
followed. It is assumed throughout that the 0 has
J=—',+, so only the pcs partial-wave amplitude will be
considered.

~ Supported by the National Science Foundation.
V. E. Barnes, P. L. Connolly, D. J. Crennell, B. B. Culuick,

W. C. Delaneg et ul. , Phys. Rev. Letters, 12, 204 (1964).

' V. Singh and B. M. Udgaonkar, Phys. Rev. 130, 11'l7 (1963).
We refer to this paper in the following as SU.' J. C. Pati, Phys. Rev. 134, B387 (1964).We refer to this paper
in the following as P.

4 E. Abers and F. Zachariasen, California Institute of Technol-
ogy (to be published).
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The kinematics for baryon-meson scattering has
been given in detail in the literature. ' We consider the
process

It(qi)+=(Pr) ~ lt(qs)+=(Ps) (1)

The four-momenta of the particles are given in the
parentheses. Defining the Mandelstam variables s, t,
and I by

s (Pr+qr)
t= —

(qs
—qr)',

(Ps

s+t+34= 2m +2t4,
where m is the mass and p the E mass, the baryon-.
meson scattering amplitude has the form

T= —A (s,t,34)+iy QB(s,t,34),

where Q=-', (qr+qs). The magnitude of the center-of-
mass three-momentum is given by

q'=
t $—(m+t )'XS—(m —

t )')/4$. (2)

H/'= s't" is the total energy in the center-of-mass system,
and with 8 the center-of-mass scattering angle, t= —2q'

(1—cos8).
Following SU and P we use the partial-wave ampli-

tude

a= 1+(2m'+2t4' —mrs —$)/2q' (7)

and in our notation g ~'= 15 (so that a factor 1/4s- has
been absorbed into the coupling constant). This gives a
cut from

to
$=LJ= (m' —t4')'/mz'=80m '

s= Ls= 2 (ms+t4') —mrs= 130m ',

and a cut for —~ &s~& 0. The short cut from I.j to I 2

is explicitly retained. The cut for negative s is replaced
by two Balazs-type poles, ' with Axed positions but with
residues to be determined. The procedure for doing
this is described in detail by Pati.

The exchange of higher mass states in the I channel,
and t-channel singularities, contributes other unphysical
cuts in the right half-plane, all of which we neglect, and
cuts for s&&0. The latter may be considered to be
contained in the Balazs poles.

The partial-wave amplitude is written in the form

g + ($)=&($)/D($)

The partial-wave amplitude then contains the term

gg+ (s)=g'{L(W+m)' —t4') (W—mz)Q3(a)

+ ((W—m)' —t4') (W+mr) Qs(a) }/8q', (6)
where

g,~= se»+ sm8, +/q' where, as usual, X contains all the unphysical singular-
= (L(W+m)' —t43)LAr+ (W—m)B,) iti.es and D contains the right-hand cut. We write,

+p(W —m)3 —t43)L—A,+ (W+m)B3)}/163rqs, (4) ignoring inelastic processes,

where

1

(A 3,B4)=— d (cos8)P3(cos8) (A (s,t,N), B(s,t,l)) . (5)
2 ] and

D($) =1—s—sp q'31V ($')
ds

~,l $'($' —s) ($' —sp)

The positions of the singularities of a general partial-
wave amplitude have been given by Kennedy and
Spearman, ' and for this particular amplitude they have
been considered in detail in the complex 8" plane by
Frautschi and Walecka. ' Discussions of the singularities
and approximations to them for the s plane are given
in SU and P. In particular, singularities arising from
single-baryon (Z or A in our problem) exchange, which
contributes terms of the form gs/(mz' 34) to —the
invariant amplitudes, have been retained. If the A and
Z masses were the same then g~+~ and g~+~ would be
identical, except for the coupling constant factor. The
sum of the two would be the same as g~+~ except for the
value of the coupling constant. We will work in this
approximation and thus retain only g~+, with a coupling
constant g' which characterizes the strength of the Born
approximation. We will always mean this more general
case when we refer to Z exchange. The value of g' will

be discussed later.

where

1V($) b3/(s+$3)+b4/(s+$4)+X ($), (10)

1 n3 Img, +z($')D($')
X„($)=— ds'

s —s

The 6rst two terms are the Balazs poles, with s3= 18m '
and s4= 720ns '. The determination of bs and b4 will be
discussed below.

Imgr+z($) is obtained from Eq. (6) to be

Img, +z($) = —s gs( L (W+ m) 3—ps) (W—mz) Pr (a)
+ )(W—m)' —t4') (W+ mr)P, (a)}/16q'. (12)

To avoid solving coupled integral equations we follow
Pati and in Eq. (11) for ll/(s) we write

D($') = 1—($'—sp)/(s~ —sp),

taking advantage of the knowledge that D($~) =0 and
D(sp)=1. This gives

5 See, for example, S. C. Frautschi and J. D. Walecka, Phys.
Rev. 120, 1486 (1960).

4,J.Kennedy and T. D. Spearman, Phys. Rev. 126, 1596 (1962).

(s)= P($@—s)J($)—Jp)/(sg —sp)

3 L. A. P. Balazs, Phys. Rev. 126, 1220 (1962).

(13)
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where

Jp=— Imgg+(s')ds',

Writing

1 ~' Img)+(s')
J(s) =— —ds'.

7l Z I S —$

we note that
1V„(s)~ const/s,

1 1t) $'
=—

I 1+—+
s' —s s 4 s s'(s' —s)

(14)

(15)

appear in the direct channel (pole in s) because of its
strangeness. A similar expression holds for A(s, t,u).

Again following SU and P, we retain only the first two
terms in Eq. (20). We note that (as emphasized in SV)
the fixed-energy dispersion relations will only be used
at a few discrete values of s. For a given Ez(g'), if the
P»& projections of terms neglected in Eq. (20) are small
compared to the p»& projection of Ez/(m' —u), at only
the few points in s where Eq. (20) is used, then the
neglect of such terms is justified. Their variation with
energy and the location of their singularities would not
be relevant. Xo further consideration will be given to
this approximation.

Thus, we take

for large s. Thus, following Pati, we expect that for
s) (m+t4)'= 168m ' we can write

N„($)= (by/($ —sy))+ (bp/($ —sp)) .

e+(s)=g~+'(s)+a+" ($),

where gI+ (s) is given by Eq. (6), and

(21)

Such a procedure is a convenient one, and it turns out
that one can indeed find bj and b2, depending on sg and
sp but not on s, for which Eq. (17), with s~ ——90m ',
s2=125m ', gives approximately the same results as
Eq. (13) for E if s) (m+p)'=168m '. Below threshold
we can use Eq. (13) for E„.

We then substitute E(s) from Eqs. (10) and (17) in
Eq. (9) for D(s), obtaining

p'f (W+ m) '—t4'j
g)+"($)=

(Wg —W)L(W, +m)' —)t '&
(22)

y' is the residue of g&+" at s=sg=mg' and is propor-
tional to the square of the E0 coupling constant.

Equating the two forms for g&+ we then have

L»/(s+»)+&4/($+$4)+&-($)]/

where

D(s) = 1—((s—sp)/~)Q b F(s,s,sp), (18) $—Sp 4

1— - x ; (s),s);,s,))

F ($)S)))$b) = ds' . (19)
)))+~)) $ ($ —$) ($ —$))) ($ sb)

v'[(W+m)' —u'j
=g)+ (s)+ (23)

(Wg —W) L (W~ —m) '—t4'g
e may also write

1)) t(s) =bp/(s+sp)+b4/(s+$4)

Dt, (s)=
S—Sp q"Xt,.(s')

ds
s'(s' —s) (s' —sp)

Finally one can use Eq. (18) in Eq. (11) to obtain an
improved expression for 141 (s).

To find b3 and b4 we follow the procedure of SU and P,
equating g&4 (s) as given by Eq. (8), with g&+(s) as given

by Eq. (4). The invariant amplitudes in the latter are
given by a fixed energy dispersion relation,

We now use Eq. (23) at two values of s, s 4 and s p

(and so it need not be correct except at s, and s,), to
give two equations from which we can determine b3
and b4 in terms of y' and t/t/'g.

A computer program was written to accomplish the
following procedure: For a given g', sp, s „and s „

(i) Choose a y' and a W„;„,
(ii) Write Eq. (23) at s=s 4 and again at s=s p,
(iii) Solve the resulting equations for b p and b4 LNow.

D(s) is completely known. j,
(iv) Find the value of s~ for which

B(s,t,u) =
(v) Find y' from

ReD(sg) =0. (24)

1+-
(~t )'

1mB„(u',s)
4Eu' . (20)

The dots represent other terms which might be included,
for example A and I'~* exchange in the I channel, and
t-channel singularities in general, particularly vector-
meson exchange-pole terms. Note that the 0 can only

y'= —(1/2Wg)(1V ($~)/ReD'($~)) . (25)

(vi) Repeat steps (i)—(v), using y' and s~ as input
in step (i), until y'=y; ' and $~=$44;„( s~; and y; '
being the output from the immediately previous
iteration) to within some preassigned accuracy, if
possible.

(vii) Repeat steps (i)—(vi) for various initial guesses
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of y;„' and sg;, for various choices of so, s ~, and s~2,
and for various values of g'.

It should be noted that n parameters (such as
subtraction constants or additional left-hand-cut param-
eters) could in principle be determined self-consistently

by solving e equations from e matching points.

TmLE I. Some self-consistent solutions. The units for s are m ' and
the coupling constants are dirnensionless.

III. RESULTS

The results of the above procedure are presented in
Table I and in Figs. 1 and 2.

Table I gives an indication of the manner in which

It was found that the derivative of ReD(s) vanished
at approximately the same value of s I

s= (350+10)m 'j
for every stable, self-consistent solution, irrespective of
the values of the parameters in Table I. The column in
Table I headed D gives the value of ReD at its
extremum, a positive value being a maximum and a
negative value a minimum. Whether ReD had a max-
imum or a minimum, and its value at the extremum,
depended quite strongly on the other parameters in
Table I. Furthermore, some of the sets of parameters
did not give rise to self-consistent solutions (e.g. , for
sufFiciently negative g') and for some of these the
position of the extremum would change (e.g. , to
s= 220m '). The significance of these observations is not
clear, but the values in the column D are useful for
discussing the behavior of ReD. Note in particular the
dependence of D on g' when all other parameters are
Axed.

From Table I one can deduce that the self-consistent
results are essentially independent of the matching
points, the subtraction point, and the initial guesses for
y' and sg. A certain amount of care must be used,
however, as some combinations of parameters may lead
to trouble for apparently accidental reasons. For
example, with both matching points between the short
cut and threshold and g' 45, we were unable to obtain
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a self-consistent solution. For g'= 5 the same parameters
gave no difFiculty.

The last solution in the first section, with y; '=0, is
an amusing one, with gt+ initially absent from Eq. (23).

In Figs. 1 and 2 we show the self-consistent results for
sg and y' for s~~=75m& ) s~~ ——135m~', and so=50m~',
for a wide range of g'. The dots are actual results; some
are also shown in Table I. The smooth curves are
drawn for ease of visualization. The horitontal bars at
g'= 5 and g'=45 show the spread in output for changes
in s ~, s ~, so, and A. The particular shape of the g'
versus sg curve is discussed in detail in the following.
We note here, however, that self-consistent solutions
exist for g'=0 (no single-particle exchange) and g'&0
(single-particle-exchange repulsive). For g' &&—5 no
self-consistent solutions exist. We also point out that as
g' increases from 45 to 200 the binding energy increases
by only a few percent. One should notice, finally, that
self-consistent solutions with p'=0 do not occur for
any g'.

To make an estimate of the region of validity of our
results we note two criteria which have in the past been
used, and which give approximately the same result.
First, inelastic effects should become important near
the pion production threshold, which is at s=196m '.
Second, Martin and Wali' chose to allow a zero of ReD
imply a resonance or a bound state only for s roughly
in the region from the short cut to the peaks of the
principal-value integrals, 130m '& s ~& 190m ' in our
case. Thus results with sg & 190m ' are to be interpreted
with caution. In particular, we note that the self-
consistent solutions for g'&5 are outside this region.

IV. DISCUSSION

The Q—as the Result of a Dynamical Calculation

We have seen in Sec. III that the E system can be
expected to have a bound or resonant state, at a mass
which depends on the strength (g') of the single-
particle-exchange contribution to the scattering ampli-
tude. If g'=22 and if the state has isotopic spin T=O,
then it is identical with the recently discovered' member
of the SU3 decuplet representation at about 1680 MeV,
the 0, and may reasonably be identified with it. If, in
addition, no other partial wave can be bound, then the
assumptions of the present calculation would imply the
existence of the 0 . The question of the isotopic spin of
the bound or resonant state is particularly interesting,
since the K state with T= 1 can only be placed in a
27-fold representation of SU3, and at present there is
no evidence, experimental' or theoretical, ' for the
existence of the 27 in any spin state.

In the approximation that m~= m~, the present
calculation can include both the A and 2 exchange in

the crossed channel and give a result for the X T=O
or T=1 state, merely by adjusting the value of g'.
We have

g =3gzz= —gzx=-

g =gIrz=- +gza=- ~

That is, Z exchange is attractive for both T=O and
T= 1 while A exchange is attractive for T= 1, repulsive
for T=O. If we use the SU3 symmetric coupling con-
stants given by Martin and Wali, ' we put gzz-. '=15,
0~&grcq-. '~&3.2, so g'(T=O)=42, g'(T=1)=18. Then
from Fig. 1 we predict a T=O bound state at about
1660 MeV and a T= 1 bound state at about 1700 MeV.
If, however, we use one-half these values, we find at
T= 0 bound state at 1680 MeV and a T= 1 resonance at
1825 MeV. The interested reader may try to sharpen
these estimates.

One should also include an estimate of the effect of
Vt* exchange (from the point of view of SUs this is
necessary for self-consistency) and of vector-meson
exchange. On the basis of analogous considerations for
the +XX* system, however, these effects are expected
to perhaps be of quantitative but probably not qualita-
tive significance.

Thus we conclude that the present calculation
predicts a J=23+K™bound or resonant state for both
T=O and T=1. Because we do not know the value of
g' we cannot make a definite prediction for the masses
of these states, but for reasonable values of g' the T=O
state could have (from Fig. 1) a mass of about 1680
MeV.

It seems possible that a modified calculation, includ-

ing inelastic effects, could have an effect on the g'
versus sg curve mainly for s~& (m+p)' (which, from
Fig. 1, corresponds to small and negative g'). That is, it
would be surprising if a change in our approximate
treatment of left-hand singularities had any effect on
Fig. 1 for s~ above threshold. But our neglect of inelastic
effects should begin to affect our results in just this
region. If the pion production channel had a repulsive
effect the g' versus sg curve would become more
rectangular. Then values like g~~-. '=8, g~~-.'=0 could
give a T= 0 bound state at about the Q mass, while for
T= 1 they give D(s) AO and therefore no T=1 bound
or resonant state (as is the case now for g'&~—5).

Furthermore, suppose one imagined" that in the real
world all forces (left-hand singularities which appear in

X) are as strong as possible, meaning by this that the
system is unaware of a further increase in their strength,
while it would notice a decrease. One would then 6nd
it remarkable that, according to Fig. 1, such a phenom-
enon is (approximately) observed. This would allow
us to predict the 0 mass (the real world) to be the

' A. W. Martin and K. C. Wali, Phys. Rev. 150, 2455 (196&);
Nuovo Cimento 31, 1324 (1964).

QA. H. Rosenfeld, University of California Radiation Labora-
tory Report UCRL 10897 (unpublished).

"This is perhaps related to the work of G. F. Chew and S. C.
Frautschi. See S. C. Frautschi, Regge Poles and 5-Aviatrix Theory
(W. A. Benjamin, Inc. , New York, 1965), and references given
there.
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value of s& for which the system becomes unaware of
further increases in g', s)r=(1680 MeV)'. The corre-
sponding value of g' would, of course, be that found for
the 7=0 state in a totally self-consistent calculation.

The Effect of the Dynamical Singu1arities

It was noticed by Pati in his calculation that the
contribution of the short cut (E„)was apparently small
compared to that of the cut for s~&0. That this is also
the case here is clear from Table II, where g&+~, g„,

TABLE II. Results at the matching points and at sg for a self-
consistent solution for g =45, s~1=75 m ', s~2 ——135 m, and
sg=13'7.6 m '. Nh, Ny, g1+, and g1+" are in units of m ', D is
dimensionless, and D' is in units of m

s g&+" g&+ Nh Nj ReDn

s 1 2.77 0.14 0.35 1.87 10 4

s~2 101.7 3.97 0.33 3.79 7 X10 4

sg . - 0.31 3.84 0.01

ReDy ReD„' ReDy'

0 24 i ~ ~ ~ ~ ~

0 94 o ~ ~ ~ ~ ~

0.99 10 4 0.047

and D„, all of which come from Z exchange and are
proportional to g', are a small fraction of gi+", E~, and
D~, respectively. The latter quantities depend on g' in a
more subtle manner, from solving Eq. (23) at the
matching points.

It is clear from Fig. 1, however, that our results are
quite sensitive to g'. We have not found the mechanism
at the source of this apparent disagreement. The
following considerations do, however, explain how our
calculation (with a far left cut), and a calculation (such
as that of Martin and Wali, who also find an 0 self-
consistently) based on using for X(s) the Born approxi-
mation to the amplitude, can give similar results.

As can be seen from Eq. (11), 1V contains only the
short-cut part of g)+, and as shown in Eq. (16), E„
vanishes like constant/s. If we replace 1V„by gt+

and put X~=0 we Qnd two effects. First, beyond thresh-
old g(+z is an order of magnitude larger than 1))T„(see

Fig. 3). Second, g)+z vanishes like g'/W (the unitarity
limit on g)+ is 8/W). So noting that

(
dsi

i
=20,

( )& s f 4 (I+~) $1
and combining the two effects, we see that ReD~ could
easily increase by an amount sufij.cient to allow ReD= 0
even with ReDJ =0.

Further, it is apparent from Fig. 3 that E(s) and

g~+z(s) are quite different, so that X(s) is not being
self-consistently determined to equal g(+z(s), even over
some small region. But this is misleading because of the
difference in asymptotic behavior. To have the same
effect on D, S would, in fact, have to be several times
g~+~ near threshold. Thus, from the point of view of
their contribution to D(s), it is reasonable that cV~+E„
and g~+.

~ can have the same effect, though their magni-
tudes are quite difI'erent near threshold. It is their high-

energy behavior which leads to their equivalence. A
physical reason for their equivalence and for the strong
dependence of Ã~ on g' has not been found. We note,
however, that Eq. (23), used at the matching points,
does in fact determine XJ in terms of g~+~ and g~+".

The Second Zero of D(s)

It has been suggested by Abers and Zachariasen4 that,
in a p-wave bootstrap calculation, if ReD(s) has a zero
on one side of threshold it is likely to have one on the
other side as well. A second zero is indeed found in the
present calculation. Some examples are shown in the
last part of Table I. However, the residue y' at the
second zero is negative. This is because X(s) is positive
everywhere to the right of the short cut for our calcula-
tion, while ReD'(s) necessarily changes sign between
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the two zeros. This is equivalent to the statement that
the phase shift is decreasing through —,'x at the second
zero, because the derivative of the phase shift is
proportional to (—ReD'/1V). Thus, our second zero is
not due to the Abers-Zachariasen mechanism, and no
alternative solution of the Abers-Zachariasen type is
present.
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Possible Connection Between Gravitation and Fundamental Length*
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An analysis of the effect of gravitation on hypothetical experiments indicates that it is impossible to
measure the position of a particle with error less than Ax& Q 6=1.6X10 "cm, where 6 is the gravitational
constant in natural units. A similar limitation applies to the precise synchronization of clocks. It is possible
that this result may aid in the solution of the divergence problems of field theory. An equivalence is estab-
lished between the postulate of a fundamental length and a postulate about gravitational field Quctuations,
and it is suggested that the formulation of a fundamental length theory which does not involve gravitational
effects in an important way may be impossible.

I. INTRODUCTION

HE presence of divergences in quantum field
theory leads one to consider the possibility of

modifying the formalism by introducing a fundamental
length into the theory. Although the proof by Kallen'
has recently been questioned, ' ' it still seems not un-

likely that the renormalization constants of quantum
electrodynamics and other 6eld theories are indeed
infinite. Although the renormalization theory permits
one to get finite results for physically observable
quantities in any order of perturbation theory, the
existence of the infinite quantities makes one feel some-
what uneasy about the theory. Moreover, in the model
proposed by Lee,4 it has been shown' that the infinite
coupling constant renormalization leads in an exact
solution to the existence of physically unacceptable
"ghost" states, which destroy the unitarity of the 5
matrix; and it may be' that similar difriculties are
contained in the more realistic field theories as well.
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associate at Br'ookhaven National Laboratory, Upton, New York.

t Address, September 1964 to September 1965: Birkbeck Col-
lege, University of London, London, England.

G. Kallen, in Handbuch der Physik, edited by S. Flugge
(Springer-Verlag, Berlin, 1958), Vol. V, Part I, Chap. VII.

s K. A. Johnson, Phys. Rev. 112, 1367 (1958).' S. G. Gasiorowics, D. R. Yennie, and H. Suura, Phys. Rev.
Letters 2, 513 (1959).

4 T. D. Lee, Phys. Rev. 95, 1329 (1954).
G. Kallen and W. Pauli, Kgl. Danske Videnskab. Selskab,

Mat. Fys. Medd. 30, No. 7 (1955).
6 L. D. Landau, in Eiels Bohr and the Development of Physics,

edited by W. Pauli (Pergamon Press, Inc. , New York, 1955),
pp. 52—69.

It is often stated that the divergences arise from the
concept of a point particle. This is true, but in a some-
what indirect sense. In the present theory, due to the
possibility of pair creation, a single particle cannot be
localized more closely than its Compton wave length
without losing its identity as a single particle; i.e., if the
mass of the particle is m, its position will be uncertain
by hx&1/ns (Thro. ughout this paper we use natural
units: A=c= 1.) Therefore, it might be more accurate
to say that the divergences arise from the assumption
that field quantities (such as electric field strength,
charge density, etc.) averaged over arbitrarily small
space-time regions are observable in principle, thus
making it physically meaningful to make use of local
interactions in the theory. The work of Bohr and
Rosenfeld~ ' tells us how these quantities can be meas-
ured in the case of quantum electrodynamics using test
bodies equipped with springs, etc. However, these
authors assume that test bodies having any desired
properties can exist in principle. It is clear that the
average of a field quantity in a volume V cannot be
measured by a test body unless the test body itself is
known to be located in the volume under study. It is
therefore possible to state that the divergences in a
field theory arise, not from the assumption that the
particles being studied in the theory are point particles,
but from the assumption that point (or arbitrarily
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