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The dynamical or exact symmetry group of the nonrelativistic Kepler problem (a symmetry group in four
dimensions) is generalized to the Dirac equation and further to elementary particles, The former is a ten-
parameter group of rank two isomorphic to a group in 6ve dimensions, the latter a 16-parameter group of
rank four isomorphic to a group in six dimensions. Both groups contain the real Lorentz group and couple
the space-time quantum numbers with the internal quantum numbers. The 16-parameter group has a 15-
parameter simple subgroup and contains two three-dimensional rotation groups, one for ordinary spin and
one for isotopic spin. The concept of "inhomogeneous dynamical group" is introduced. The inhomogeneous
group contains two new additive quantum numbers to describe the hypercharge and the baryon number and
leads to a mass spectrum. The third component of isospin and the new additive quantum numbers commute
with all the six generators of the Lorentz group. A further generalization leads to a group where all three
isospin generators commute with the Lorentz group.

I. INTRODUCTION

Y an exact or dynamical symmetry group of a
quantum-mechanical system we mean a group

which, above and beyond the space-time symmetry,
gives the actual quantum numbers and degeneracy of
the system. It has been called in the literature variously
as the "hidden" or "accidental" symmetry. It has been
known for a long time that the dynamical group of the
nonrelativistic Kepler problem is a six parameter group
of rank two whose generators can be taken to satisfy
the commutation relations of the four dimensional
orthogonal group' ' or those of the Lorentz group. ' The
symmetric irreducible representations of this larger
group explain the e' fold d.egeneracy of the eth level of
the hydrogen atom. ' Similarly the dynamical symmetry
group of an X-dimensional isotropic harmonic oscillator
is the group U~, the E-dimensional unitary group, '
whose irreducible representations of dimension (1V+m—
1)!/m!(X—1)!explain the degeneracy of the eth energy
level.

In this paper we discuss the generalizations of these
dynamical groups applicable to the relativistic case„
the Dirac electron, and further to elementary particles.
We shall give to the concept of dynamical symmetry
a more fundamental meaning than a mere accident.
The underlying larger space may be thought to contain
beside the space time coordinates the internal coordi-
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nates (or alternately as some topological deviations
from the fiat space) which give rise to the observed
quantum numbers, just as the space-time coordinates
give rise to spin. In the simple cases mentioned above,
the H-atom or oscillator, the dynamical groups can be
explicitly constructed in terms of the position and mo-
mentum operators. However, a quantum-mechanical
problem may be completely defined by its dynamical
symmetry group, the class of representations which are
realized and by the connection between the energy (or
mass) and the invariant (Casimir) operator of the dy-
namical group. In this sense, in generalizing the dy-
namical symmetry groups to elementary particles we
shall be guided by the group structure and by the
quantum numbers one obtains; specifically the larger
group must contain the Lorentz group and, coupled to
it, all other observed quantum numbers. "

One generalization of the nonrelativistic dynamical
symmetry groups is the 16-parameter complex Lorentz
group with a real metric and has been discussed in
great detail elsewhere. " It contains the real Lorentz
group, the symmetry group of the three-dimensional
harmonic oscillator, U3, and as a limiting case, the sym-
metry group of the Kepler problem.

A second natural generalization is the subject of this
paper. We determine first a ten-parameter group gener-
ated. by the four Dirac matrices y„which is isomorphic
to the orthogonal group in five dimensions with the
metric (—,+, —,—,—). It contains the seven-param-
eter subgroup which is actually the dynamical symmetry
group of the nonrelativistic Kepler problem. We then
discuss the symmetry group generated by the 16 Dirac
matrices; it is a group isomorphic to the orthogonal
group in 6 dimensions with the metric (—,—,+, —.,
—,—). It contains two rotation groups, one for spin
and one for isospin, and the inhomogeneous group con-
tains beside the energy momentum operators two other

'OFor a discussion of the coupling of space-time quantum
numbers and the internal quantum numbers see A. O. Barut,
Nuovo Cimento 32, 234 (1964).
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additive quantum numbers to describe the hypercharge
F and the baryon number E. The third component of
isospin, as well as the two other additive quantum
numbers commute with all the six generators of the real
Lorentz group. The implications for the mass spectrum
of elementary particles are discussed, .

A further generalization to the orthogonal group in
7 dimensions with the metric (———+ ———)
leads to the case where all three generators of isospin
commute with all the generators of the Lorentz group.
It should be remarked that a dynamical group should
give an exact mass spectrum and is therefore different
than symmetry considerations based on compact groups,
such as SU3, independent of the Lorentz group, which
can only give a very approximate or broken symmetry.

II. THE LIE GROUP GENERATED BY
THE DIRAC MATRICES

Let us consider the four Dirac matrices as generators
of a Lie group. What is the group? The commutation
relations of these matrices lead to new generators. For
example, in the representation in which

(2 1)

the following 16 generators":

0 L2 L3 L1'
0 E1 E3M'„„=

0 ~ = —M,„;
2

0,
SPP 352 3f3 M1

g11 U1 U3
~V»

%33.

(2.6)

with the commutation relations

[M„.,M„„]= g„.M„—c g„cM—„.+g„.M„a+g„cM„„
[N„„,N, c]=g„.M„c+g„cM„.+g„.M„c+g„cM„„(2.7)

[Mu. N c]= g-~'4—.+g~cN-+g"N" g.cN'—u'
If we set in these commutation relations the generators
U and N;; (i= 1, 2, 3) identically equal to zero, we obtain
again the commutation relations of the Lie Algebra of
the Dirac matrices. In other words, the underlying
complex space is such that only the x' component has
an imaginary part: x'+iy'

It will be shown now that, alternatively, the Lie
group of the Dirac matrices is isomorphic to the five-
dimensional real "Lorentz" group with the metric
(—1, +1, —1, —1, —1).For this purpose we introduce
the following antisymmetric set of generators

where

( c) (c (2.3)

[a,,n,]=2iAb, (zj k cyclic); [~„P]= 2B;, (2.2)

M b
——

0 iSco
0

iaaf 2 i%3
L2 L3
0 E1

0

iaaf 1~

L1
EB
E20.

These ten independent generators n, P, A, 8 now form a
Lie algebra because their commutation relations do not
give anything new:

1
2

—
Vp

0
Pl P2

V&1 VP72
0

0

73
+p+3
VA1
7372

0

(2.8)

[A;,B;]= 2iBb, [A;,A;]= 2iAb,

[B~~Bi]= 2iA b

(ijk cyclic) .
(2.4)

Then the commutation relations become

[MabyMcd] gbcMad gadMbc+gacMbd+gbdMac

a, b=1, 2, 3, 4, 5; g, b= (—1, +1, —1, —1, —1), (2.9)

1
R=—A;

2i

1
M= —8; L= ——,'e, Noo= iP (2.5)— .

2i

Then R and L, and also R and M, satisfy the commuta-
tion relations of the Lorentz group with R being the
generators of the subgroup of three-dimensional
rotations.

We now show the relation of this group to the group
of complex Lorentz transformations A satisfying
AtGA. =G, where G is the diagonal matrix with elements
(+1, —1, —1, —1). This latter group is generated by

Moreover, as seen from (2.4) the 6 generators A and 8
form a subalgebra or generate a subgroup. Let us in-
troduce the new generators

Mac= 2 O'B'c ga„) s la= ya/2 (2.10)

with the commutation relations

[t„,f,]=M„„,
[M„„,/, ]=g..l„—g.„l„, (2.11)

[M",M"]= g-M- g-M-+ g.—-M"+g "—M".

which are the commutation relations of the real
"Lorentz" group with the metric g b. We shall discuss
the structure constants and the invariant operator of
this group in connection with the larger group in the next
section.

A third convenient way of representing the generators
is by means of an antisymmetric tensor M„„and a four-
vector /„
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we have again the commutation relations

[Mab&Mcd] gbcMad gadMbc+gacMbd+gbdMac q

a b=1 2 ~ ~ ~ 16e) ) )

g.b= (—1, —1, +1, —1, —1, —1),

(3.1)

(3.2)

which are those of the Lorentz group in six dimensions
with the metric (—1, —1, +1, —1, —1, —1). The
structure constants are given by

(Cab) d gbc(ga gd ga gd ) gad(gb gc gb g )
+g-(gb'g" gb'gd')—+gbd(g'g' g'g. ')— (3 3)

The invariant or the Casimir operator of the homo-
geneous group can be derived from the structure con-
stants by 6rst constructing a "metric" tensor in the
space of the generators defined by"

gab, aP (Cab)cd (CaP)ef

with the result that

(3 4)

III. THE LIE GROUP GENERATED BY
DIRAC-CLIFFORD MATRICES

We now consider the 15 Dirac matrices as generators
of a Lie group. If we order these matrices in the form

Again a convenient way of representing the gener-
ators is in terms of one antisymmetric tensor M„„
=

S (ale"t ga„) 'tWO fOul-VeCt01'S /a= Spa, /a = 2+b'ra,
and one scalar E=yb/2 with the commutation relations
(2.11) between M„„and l„plus the following:

[M„„)l.']=g,.l„' g,„l—„',
M„„

[l„,l„']= g„„E,—

[E,/„]= /„',

[E,/a'] = —/a,

[E,M„„]=0.

(3.12)

The CliRord algebra has actually 16 elements. But
one generator commutes with all others and is equal to
a multiple of identity in every irreducible representation.
The remaining 15-parameter group is simple. This situa-
tion is exactly the same as in complex Lorentz group. "

Finally, we discuss the inhomogeneous group. There
are six generators for the translations. Four correspond-
ing to space-time coordinates must be identi6ed with
the energy momentum vector of the composite system,
k„, and two others which we denote by h» and h2. The
commutation relations are with k, = (/tr, /ts, k„),

[M.b, k,]=g.,/'t b
—gb,k. ,

[h.,hb] =0. (3.13)

The invariant of the inhomogeneous group is no longer
k2, but

gab, aP= COnS(tgaPgba gaagbP) ~ (3.5) h'+/trs+/ts' ——C. (3 14)

We see that
det(g. b p)~0, (3.6)

The same commutation relations (3.2), (3.13) hold
in the case of larger group in 7 dimensions.

so that the group is at least semisimple. The Casimir
operator is then given by

Ps (gaPgha gaagbP)M

= 2 tr(MGMG),

or, in terms of the generators (2.8) by
Ps =2(Ms+Lb —Rs —+sos

Mls +Mls M14 Mlb Mls ) ~ (3.8)

In the case of the 10-parameter group it takes the form

p~= 2(Ms+Lb —Rs —Q ~) (3.9)

which is indeed the limiting case of the invariant
operator of the complex Lorentz group. "

A second invariant operator is given by

G4= tr (MGMGMGMG) (3.10)

which reduces, in the case of the 10-parameter group to

G'= —(M.R)'—(R L)'+ [XssR—(M && L)]'. (3.11)
»G. Racah, Institute for Advanced Study Lecture Notes

(1931) (Reprinted CERN 61-3); W. Pauli, Lecture Notes,
CERN-31; A. Salam in Theoretical Physics (International Atomic
Energy Agency, Vienna, 1963).

IV. THE PHYSICAL INTERPRETATION
OF THE GENERATORS

According to general principles of quantum theory,
extended now to the larger dynamical symmetry group,
the infinitesimal generators of the group will be identi-
fied with the quantum-number operators whose possible
values will be determined by their eigenvalues in a
given irreducible representation.

As we mentioned before the generators 3E„„in Eq.
(2.10), or the generators R and L in the notation of
Eq. (2.8) span the real Lorentz group. This is the space-
time subgroup of the dynamical symmetry. Accordingly,
we must identify the three-dimensional rotation group
generated by R with the spin or angular momentum
group. This particular subgroup is common to all prob-
lems, in particular, all special systems mentioned in the
Introduction. The remaining generators correspond to
quantum numbers of dynamical origin from the usual
point of view. Thus, the generators M describe the
Kepler problem together with R and Ebs. In the rela-
tivistic case we add to these the remaining generators L
of the Lorentz group. The resultant 10-parameter group,
discussed in Sec. II, is of rank two. That is, there are
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two mutually commuting generators, which can be taken
as the third component of angular momentum E3 and
Epp. The energy levels will then be given in terms of two
quantum numbers as is well known. We note that in the
nonrelativistic case (L put identically equal to zero),
Epp commutes with all the six generators R and M and
therefore it is equal to a multiple of identity in any
irreducible representation. The remaining group is
simple and of rank two.

The full 16-parameter group of Sec. III is of rank
four. One of the generators is however again equal to
the identity so that the 15-parameter simple group has
three mutually commuting generators or quantum
numbers. Furthermore, we notice that the generators
&~2, —i3E~3, and —iM 23 span another three-dimensional
rotation group disjoint from the spin group. We can
identify it with the group of isotopic spin I.

Although both the complex Lorentz group and the
group presented here are 16-parameter groups of rank
four with a 15-parameter simple subgroups with a lot of
generators in common, there are some differences. One
generalizes the Kepler problem, the other the oscillator
type of problems. In the case of the 7-dimensional group
the isotopic spin generators all commute with the
Lorentz group.

The identification of the dynamical symmetry group
is only part of the problem. The more important task
is the determination of energy or mass levels in terms
of the quantum numbers determined by the group. This
question is discussed in the next section.

M' —R' —Xss', but Xss can be chosen to be the identity.
From the commutation relations of M and R one finds'
that the eigenvalues of M' —R' are —(222 —1) so that
the eigenvalue of the invariant operator in (5.4) is
Ii'= —e'. The occurrence of Epp therefore of the seven-
parameter dynamical group is thus essential in account-
ing for correct degeneracy and the correct value of the
energy levels.

In the case of the Dirac electron the explicit form of
the Eq. (5.1) is not known. We are checking this relation
within the Hamiltonian formalism in terms of the in-
variant of the 10-parameter group discussed in Sec. II.

We write Eq. (5.1) for relativistic bound-state prob-
lems conveniently in the form

ni'= f(F'-), (5 5)

where m is the rest mass of the system. We can under-
stand the occurrence of this fundamental relation by
requiring an invariance under the ivhomogeeeous dy-
namical symmetry. In the case of relativistic mass
points the dynamics is really contained in the inhomo-
geneous Lorentz group. The subgroup of translations
leads to the concept of energy momentum fourvector.
Now we have an invariance with respect to transforma-
tions in a larger space. If we introduce translations in
the space-time coordinates x& alone and not the remain-
ing "internal" coordinates, the square of the energy
momentum vector k' would be an invariant and no mass
quantization can be obtained. It is thus natural to in-
troduce the full inhomogeneous group in which case the
invariant is

V. THE ENERGY AND MASS SPECTRUM $2+Q2 —tit2+ /Z2
—Q (5.10)

In nonrelativistic problems where one can explicitly
construct the generators in terms of the variables enter-
ing the Hamiltonian the energy, being a number in a
given irreducible representation, is a function of the
Casimir operator of the homogeneous dynamical group:

E=f(P2)

Thus, for a rotator one has trivially

E=J',

(5.1)

(5.2)

in proper units; for the two-dimensional isotropic
harmonic oscillator

E= 2X (P+ 1/4)'" X= fico (5 3)

(the dynamical group in this case is U2, the four gener-
ators of U~ can be grouped into the three angular mo-
mentum operators J and one other generator which is a
multiple of identity). For the Kepler problem one
obtains' '

E=)p(M2 —R' —I) ' )'=Z'e tn/ti2. (5.4)

The Casimir operator in this case reduces by (3.9) to

where A,
' is the square of a four-vector for the complex

Lorentz group, "of a two component quantity in the case
of the group of Sec. III, Eq. (3.14). The two generators
bi and h2 commute, by Eq. (3.13), with all the six gener-
ators of the Lorentz group. They correspond, to additive
quantum numbers and can be identified with the hyper-
charge and baryon number. The inhomogeneous group
has other invariants involving the generators of the
homogeneous group. An irreducible representation of
the inhomogeneous group is characterized by fixed
values of these invariants; then it would be possible to
determine the eigenvalues of A,", and consequently, by
Eq. (5.10), the quantized mass states of the composite
system. This is the program proposed to determine the
energy and mass spectrum of quantum mechanical
systems once the full dynamical group is known. It would
lead, if successful, to an alternate formulation of
quantum theory with no Hamiltonian or space-time
coordinates. "

22 For phenomenological mass formulas resulting from (5.5)
see A. O. Barut, in Proceedings of the Conference on Symmetry
Przneiptes at High Energy (W. H. Freeman and Company, New
York, 1964).


