
I' H Y s I C A I R E 7' I E 'N VOI UME 135, NUMBER 38 ta AUGUST

New Symmetry Group for Elementary Particles. I. Generalization
of Lorentz Group Via Electrodynamics*f)
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By using the detrition of the photon angular momentum a connection between the Lorentz group and the
unitary symmetry group of the strong interaction is established. The new group (to be called ILU4) is a
twenty-parameter group containing SU3 arid the inhomogeneous Lorentz group as its subgroups. The space-
time and internal symmetries of dynamical systems may be described by a single symmetry group. The new

symmetry group imparts a unitary content to every Lorentz frame of reference.

I. INTRODUCTION SU2. The only part of the isotopic spin group that corre-
lates with physical facts corresponds to rotations by
180' and 360'. In this sense "observed" isotopic spin
symmetry is isomorphic to the permutation group
rather than to the three-dimensional rotation group. A
further extension of the charge-independence hypothesis
(i.e. , hypercharge and charge independence), requiring
greater symmetry beyond that contained in the isotopic
spin group, needs the introduction of a larger group.
The symmetry group in question is the three-dimen-
sional unitary unimodular group, SU3. In this case also
only discrete SUB operations are relevant for elementary
particle events. Therefore the observed part of SU3 is
also isomorphic to a permutation group. In the existing
formalism there is no particular selection rule excluding
continuous operations in unitary spin space. The choice
of the observed part of the group is made as a result of
comparing the facts and the mathematical formalism. In
short, the group SU3 is not like the inhomogeneous
Lorentz group in which all Lorentz transformations are
physically acceptable.

In the following we propose a generalization of the
inhomogeneous Lorentz group to describe all symmetry
properties of all elementary particles as embedded in

only one symmetry group, ILU4. In this approach the
unitary properties of the elementary particle events are
not separable from their space-time properties. Every
I.orentz frame of reference, in addition to spin and
parity, shall assume finite dimensional unitary proper-
ties. It must be pointed out that what we propose to
discuss is only a certain symmetry group, not the actual
dynamics of the particles. As in the case of the Lorentz
group itself, to some as yet unknown quantum-mechani-
cal system of equations there will correspond a repre-
sentation of ILU4. The representations of ILU4 can, to a
large extent, replace quantum-mechanical equations.
This means that at this stage we do not know the
possible connections between observables at a given
instant of time.

HE role of symmetry principles in describing
elementary particle events has gained great

impetus from the recent generalizations of the isotopic
spin concept for strong interactions. The models used in
introducing larger groups are either Sakata's symmetri-
cal theory' of strong interactions or the so-called "Eight-
fold Way" proposed by Gell-Mann' and also by
Ne'eman. ' The invariance of the pion-nucleon inter-
action under unitary spin (or SUs) transformations has
replaced charge independence or invariance under
isotopic spin (or SUs) transformations of the forces
between nucleons, The experimental facts demonstrated
the conservation of two quantum numbers, hyper-
charge, and isotopic spin in place of the isotopic spin
conservation alone in Kemmer's symmetrical theory. 4

Despite the great success of the "Eightfold Way" it
suffers from the same drawback as its predecessor the
isotopic spin invariance of strong interactions. In the
6rst place, full unitary symmetry requires a mass
degeneracy, mass differences lead to symmetry-breaking
interactions. Furthermore, the introduction of fictitious
spaces like isotopic spin space or unitary space as dis-
tinct from the space-time structure of elementary
events has long been recognized to be quite unsatis-
factory for further progress towards a real understand-
ing of the dynamical principles underlying elementary
particle interactions. The group that describes the
isotopic spin symmetry is a continuous subgroup of the
full unitary group in two dimensions. It is denoted by

*This research is supported by U. S. Air Force OfEce of Scien-
ti6c Research, Washington, D. C., U. S. Air Force Contract No.
49 (638)-1260.

t' The basic ideas of this paper were presented in the 1963
Eastern Theoretical Physics Conference, at the University of
North Carolina in Chapel Hill. In its present form, the paper was
read at the Conference on Symmetry Principles at High Energy,
January 1964, Coral Gables, Florida (W. H. Freeman and Company,
San Francisco, 1964).

$ This work was begun at Argonne National Laboratory during
the author's visit there in summer 1963.

~ S. Salrata, Progr. Theoret. Phys. (Kyoto) 16, 686 (1956).' M. Gell-Mann, Phys. Rev. 125, 106'l (1962).' Y. ¹'eman, Nucl. Phys. 26, 222 (1961).
4 N. Kemmer, Proc. Roy. Soc. (London) A166, 122 (1938);Pro

Cambridge Phil. Soc. 34, 354 (1938).

II. THE UNITARY GROUP IN ELECTRODYNAMICS

In this section, to prepare the ground for the intro-
duction of LU4 (homogeneous part of ILU4), we shall

give a different discussion of the basic elements of SUq
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which is somewhat less ad hoc and also more pedagogical
in nature than the usual treatments of this subject.
Especially, it is rather heart warming to see that electro-
dynamics can manifest some aspects of the unitary
symmetry group as it did in the case of Lorentz group.
All that is required consists in recasting the equations
of electrodynamics in terms of a spinor quantity or
complex vector 8+iK where 8 and K refer to electric
and magnetic vectors, respectively. It is a well known
fact that the wave equation for a free photon uses the
complex three-dimensional vector g= 8+iI'. as a wave
function of the photon. ' A group theoretical motivation
for introducing the complex vector g was discussed in
connection with the three-dimensional complex orthogo-
nal group. '

The six angular momentum operators J„„of the
photon can be written in the form

and the supplementary condition

(v rf)l@)=0,
where

H=cK p, p= i—AV,

(II.6)

and l%) is the state vector of the quantized elect:ro-
magnetic Geld. A detailed discussion of this quantiza-
tion procedure can be found in MQT, p. 307 (see also
Chap. II). From the above it follows that at any instant
of time, the space and time components of J„„can be
written as

(~IE'ln&d'~, Q'= (~IH'ln)d'*, (II.7)

rt, , i=1, 2, 3) is quantized and satisfies the wave
equation

ih(8/r)t) l r)) =H
l rt), (II.S)

(rtl (x„B„~ x„B„r)Elr—t)do&, (II.1)
2g

where the energy momentum tensor of the electro-
magnetic field is introduced by

where

F,=L;+AE;, H; =x,p4 x4p, +i—AK;, (II.S)

Q, =&,4.

T„.= —;(xl B„„l x&, 1, v= 1, 2, 3, 4. (II 2)

Here the column vectors
l x) and

l rt) are given by

X]
lx)= x, , (xl =[x,*,x,*,x, '], lx)= (8 E)"'lg&,

A=photon energy, and the ten 3&3 matrices B„„can
be defined as

~Pv ~vP y 8;4——.P4,——E;,
B44= K4, Bu =K;K,+K;K,

i j=12 3 (II.3)

0
Eg —— 0

0

0
E3= i

0

0 0
0 —i
i 0
—i 0

0 0
0 0

E.=
0 0
0 0

0

1

) E4= 1344= 0
0

0
0

0 0 (II.4)
0

0

i.e., as bilioear combinations of the generators of
infinitesimal rotations in three dimensions (or spin-1
matrices),

The Hermitian operators T, and Q; are a set of genera-
tors for the homogeneous Lorentz group.

Now let us consider the properties of the 8 matrices.
By using the commutation and anticommutation
relations

[E;,K;]=i e,, tEt, ,

K,E;E(+K(K;K;=6;,K(+6;(K;,

we further obtain the commutation relations

[K,,B,t]= t,(eo,B.)+e„),B„),

(II.9)

(II.10)

(II.11)

$K,,B,(]+= b,,K(+h, )K, , (II.13)

[Bv,B(,]+=8;(8,,+3,.3,(.
('@std@'lm+4lkej gm) Blew ~ (II 14)

Hence

l K,,B&,]=~(3,,e, )„+8,)e,,~+8;,e;(~+8;ge,„„)E~.(II.12)

Hence, the system of Hermitian matrices 8„„is closed
under commutation. The commutator of any two of
8's is a linear combination of the 8's. These matrices
are a set of generators of nine-parameter continuous
group of unitary transformations. '

The 8 matrices further satisfy anticommutation rela-
tions of the form

The do r in (II.1) represent the four-dimensional surface
(d+2d+sd+4 d+sdx'id+4 d+ld+2d+4 dx'ld+2dxs) ~

In (II.1) the wave function ltd) (or in vector notation

trace(B,,B~,) =2(8,t5;,+8;,5, ~)
—8g6~, . (II.15)

s In connection with the three-dimensional complex orthogonal
representation of the Lorentz group, these matrices were first
introduced by the author in Ref. 6. See also MQT, Chap. VIII. A
representation used more frequently in the SU3 literature employs
the normalization Norm (Be') =1, Norm (B;4') =1, and trace
(B; ) =0. In this case the above definitions can be replaced
by Be'= ,'(g$)(B;; ;gg), B;4'=-Er/v2, —B—44'=B44/V3. The B„„
satisfy the same commutation relations except for the factors I/vT
appearing on the right-hand sides of (II.9), (II.11),and the factor
3/4 2onvthe right-hand side of (II.12). For the present discussion
the normalization of the 8's is not relevant.

' B. Kuryunoglu, Jtt/Iodern Quantum Theory (W. H. Freeman and
Company, San Francisco, 1962). This will be referred to in this
paper as MQT.

6 B. Kursunoglu, J. Math. Phys. 2, 22 (1961).
r We shall use the usual Lorentz metric g„,(gg = Bg, —

g;4 ——g4;=0, g44
——1), for raising or lowering indices. Throughout

this paper Greek and Latin indices run through I, 2, 3, 4 and
1, 2, 3, respectively. The notation is the same as in MQT.
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From the definitions (II.3) and (II.4) it follows that the particular set of generators for V2 is given by

O763

0 0
0 1 0
0 0 1.

0 0
8~2= 0 —1 0.0 0

'1 0 0
$33= 0 1 0

.0 0 (II.16)

r0

823—— 0
.0

0 0
0 —1

0.

~oo ~0 —1O
0 0 0, Bi2—— —1 0 0

.—1 0 0. . 0 0 0.

U'= e"U (II.18)

where U is a unitary matrix of determinant 1. This
decomposition (i.e., U2= U1XSU2) of the group U2 can
be obtained by forming two traceless linear combina-
tions «&pl ~22 ~33.

Under a Lorentz transformation of the coordinates
we can obtain the corresponding transformations of the
8„„.Thus if L is a Lorentz matrix the corresponding
transformations are

(II.19)

and 8;4 E, as d—e—fined by (II.4). Because of the identity

+44 ~11++22+~22 i

there are only nine linearly independent matrices. The
latter fact is an expression of the well-known property

Trace (T„„)= T44—Tii —T22 —T22 ——0. (II.17)

Thus the 8 matrices defined via the definition (II.2) of
T„„could not have been a complete set of generators for
infinitesimal unitary transformations without the
Lorentz-invariant property (II.17). In other words the
unitary symmetry would be broken without (II.17).
The 8 matrices as described above belong to the Lie
algebra of U3. For any unitary member of the group, one
can put

cannot be established if one adheres to the usual
representation where the generators of SU3 are involved
in the elementary particle interactions as a linear array
of 8 matrices rather than as the components of tensor
operator B„„asdisplayed by (II.20) and (II.21). The
same 8 matrices also appear in the definition (II.1) of
the photon angular momentum operator.

The integral of (II.2) for the quantized
~
2j) will consist

of a sum of terms of the form
Ci

S„„=—2'(u
( 14„„i a), i a) = a2

ia3i
(II.22)

where the three-dimensional oscillator operators a;
satisfy the commutation relations

L444)44j ] ~jj (II.23)

The operators S„„as defined by (II.22) satisfy the
commutation relations (II.9), (II.11), and (II.12).
Hence we see that the Fock representation (see Chap.
VII in MQT) of the three-dimensional harmonic oscil-
lator provides, via the definition (II.22), a representa-
tion of the three-dimensional unitary group U3.

In order to exhibit the Lie algebra of SU3 in a
convenient form we can begin with the following repre-
sentation of the I.ie algebra of SU2. Consider the four
Hermitian operators

(II.24)

for the coordinates, and

lx')=RID) (II.20)

where the 2; (i=1, 2, 3) are the usual Pauli matrices and
24 is the 2X2 unit matrix. The symbol ~X) refers to the
coordinates of a two-dimensional oscillator

for ix), where R belongs to the group of complex
orthogonal transformations. " Thus there exists a
correspondence between L and R transformations such
that

RtB„„R=I.„~l.„j'8 p. (II.21)

The relations (II.21) do not represent a connection
between Lorentz and unitary groups since both R and L
correspond to the different representations of the same
group. Furthermore, translations of the coordinates do
not appear in (II.21).However, all that (II.21) suggests
refers to the fact that the Lie algebra of U3 can, in con-
nection with the transformation properties of the elec-
tromagnetic field, appear in Lorentz-covariant state-
ments like (II.21).This rather suggestive representation

I
Io

(II.25)

The elements of the Lie algebra of SU~ can be repre-
sented in the form of a 2&(2 matrix, where only the
usual ladder operators appear. %e form a traceless
operator by putting

S2= 2 tl'ace(r"I„) r"Ip, —
where

r"I„=r4I4 —riIi —7 gI2 —r3I3.

Hence, using (II.24), we obtain
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where I+=a„+a„, I =a„+a» Ie———,
' (a„+a„—a„+a„)

=
2 (N'„—N„). The operators Ie and I2 form a complete

commuting set, where / is the eigenvalue of

As in the case of SU2 the trace operation here Inust be
understood as the sum of diagonal elements in the three-
dimensional matrix 53' whose elements themselves are
operators. It is clearly seen from the above discussion
of SU3 that it has double-valued representations.

In the limit of full unitary symmetry (which may be
expected to hold rigorously at very high energies), or in
the absence of symmetry breaking perturbations one can
obtain a manifestly Lorentz and unitary invariant
theory in which a pseudoscalar octet of mesons is
coupled to nucleons and the A particle This can most
conveniently be achieved by using the analogy with the
SU2 invariant theory

We introduce the 4-vector C „(44= 1, 2,3, 4) in a linear
combination

I2= 2tra-ce(S2)2=I82+-, (I+I +I I+)=I(I+1),
I=-21 (a„+a„+a„+a„)= ', (N„+-N„) .

(II.26)S,= ,'[Bl""S-„„',tra—ce-(Bl'"S„„)$.

Hence, using (II.22), we get the useful representation

,'V+Ip-
SB= I

I+
~ Y—/p
J

s
~+—I'i

(II.27)
S+ 0= 2 trace(C "r„) 4"r„—

and exhibit the coupling of x mesons to nucleon as
where the off-diagonal elements I+=a„+a„,I =a„+a„,
s =a„+ah, s+ ——ah+a„, 7+=a„+ah, J =ah+a„are the
ladder operators of the associated Lie algebra of SU3.
The suffixes 1, 2, and 3 of a; have been replaced by
(p,28, A), respectively. The operators Pand 'Ie are the
only mutually commuting generators in the Lie algebra.
Thus the group SU3 is of rank two. The operators I'
and Ip are given by

IIr=iG(1t (y80)it &, (II.30)

the formand the 0 operator has

(II.28) ~ C8 C

(II.29) - + '- — +
F =N„+N„——,'B=-',B+S, 7r Cg=C1&zC'2, lt8

——2rp.
7l p

Ip ———,
' (N„—N„),

The generalization of (II.24) and (11.25) to SU8 is
based on the definition

where B=N„+N„+N4, S= N4 and —where Nn
=u„+a„,X„=a„+a„,Xh ——ah+ah are number operators.
In this case the operators Ip, 7 and E' form a complete
commuting set, where

F2= —', trace(5 )'=-'B(-',B+1).

The generalization of (II.30) to the octet model
follows if we de6ne the traceless operator t in the form

t =-,2L81traceg""B ) pl""B„„$, —(II.31)

where it „„is a real symmetric tensor in four-dimensional
space. The operator f can be written as

(1/v'6)xe+ (1/v2)~o
7r+

E+
(1/g6) xp —(1/K2) ~p

Xp

E
E'

—(V'8)&8-
(II.32)

where we have used the notation

8( 11+1 22 21 88) (V 8)Xei 1 11 1 22 (1/~2)~8)

$12&ZlP84=2l ) lP81+2$24=E ) $28+8/14=E
$28 ZlP14 =X

The normalization is such that the squares of the
diagonal terms sum to 2re'+x82. The effective coupling
of the octet to the (p28A) system is

II.='«xl~. six&, (II.33)
where

Ix&= 4-
h

This is a known unitary spin-invariant theory replacing
isotopic spin-invariant theory.

III. THE NEW GROUP (ILU4)

So far we have discussed the construction of the
group SU3 from the Lie algebra of the three-dimensional
rotation group. Bilinear combinations of the generators
E~, E~, E3 provided a complete set of generators of
infinitesimal unitary transformations in three dimen-
sions. Any connection found with Lorentz group was
merely a formal manipulation without any extra
physical consequences. However, the method has
provided us with a rather novel technique for construct-
ing new groups out of known physically relevant groups.
It is, of course, sufhcient to find only one set of genera-
tors for a group, since all other representations of the
group can be found from the commutation relations of
these generators.

It has been shown by signer' that the Lorentz group

2 E. Wigner, Ann, Math, 40, 149 (1939),
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has no 6nite dimensional unitary representations. There-
fore it is not possible to establish a connection between
the 6nite dimensional unitary invariance of the ele-
mentary particle interactions and their Lorentz in-
variance properties. Only a group larger than the
Lorentz group can be expected to possess both finite and
infinite dimensional unitary representations. Therefore
the wave function describing a physical state can not
be completely given by just specifying a Lorentz frame
of reference. Kith every Lorentz frame of reference we
must associate additional properties pertaining to a
6nite unitary covariance of the state. An example of a
symmetry group with the above-mentioned properties
can be constructed by generalizing the techniques used
in the previous section. Instead of bilinear combinations

of the generators of the three-dimensional rotation
group (which is a subgroup of the homogeneous Lorentz
group) we shall consider bilinear combinations of the
homogeneous Lorentz group generators. In the spirit of
the theory discussed in the previous section we again
take a symmetrical tensor operator which is formally
the same as the electromagnetic field energy momentum
tensor. Thus, we write the traceless:natrices

I'„„=i~g„„MpM p i2(M—„-vM„,.+M„vM„.p), (III.1)

where

g "F —0 (III.2)

and where the M„„=—M„„are a set of six generators of
infinitesimal homogeneous Lorentz transformations de-
fined as (see MQT, p. 50)

0 0 0
0 —i 0
i 0 0
0 0 0

N1 ——3E14——

0 0 0
0 0 0
0 0 0

—i 0 0

—z

0
p 7

0

0
0

F1 = M23 ——
0
0

M2= M31=

0 0 i 0
0 0 0 0

—i 0 0 0
0 0 0 0

0 0 0
0 0 —i
0 0 0

—i 0 0

0
0

N2 ——M24 ——
0
0

0
z3f3=%12= 0

,

0

0
0N3= 3/534= 0
0

—i 0
0 0
0 0
0 0

0 0
0 0
0 0
0

0
0
p 7

0

0

(III.3)

pi

The fifteen generators J„„(alsoM„„)and h.„„(also I'„„)of the group LOU4 satisfy the commutation relations

t J"J-p j=&(g-J.p+gp J-. g:J.—p g.pJ--)

Pvvvv Jap] &(gavAap+gaaApv gpvAay, gapAav) v

P.vvvvAap] i (gpv Jap+ glvp Jav gav Jvp gap Jvp) v

(III.4)

(III.5)

(III.6)

(III.S)

where in the derivation of (III.5) and (III.6) analogy with (II.10) for M„„has been used and where A„„ is an
abstract set of generators of the group.

From (III.4), (III.5), and (III.6), we observe that the set of matrices J„„and A„„are closed under commutation.
Thus the commutator of any two of the operators J„„,A„„is a linear combination either of the J„„orthe 4„,. These
matrices constitute a set of generators for the fifteen parameter continuous transformation group LOU4 which is a
subgroup of 16-parameter homogeneous group LU4.

A set of matrices representing the A„„can be found by using (III.1) and (III.3)

3 0 0 0 —1 0 0 0
1 0 —1 0 0 1 0 3 0 0

11
2 0 p 1 p y 22

2 0 0 1 p
0 0 0 —1 0 0 0 —1

—1 0 0 0 1 0 0 0
0 —1 0 0 1 0 1 0 0
0 0 3 0 ' "

2 0 0 1 0 (III.7)

0 0 0 0 0 0 —3

0 0 0 0 0 0 1 0 0 1 0 0
0 0 1 0 0 0 0 0 ~ 1 0 0 0

23 p 1 p p & 31 1 p p p p 12 0 p 0 0
0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 „0 0 0 1, 0 0 0 0P]4
p 0 0 0 I 24 0 0 0 p

I 34 p p 0 1
~ (III.9)

0 0 0 0 —1 0 0 0 0 —1 0
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we obtain

I Ji)Jj5 zeij [J[)

[D,,D;$= —ze;, iJi,
LJ,,D~]= ie;;iDi,

t Ji&Ajif z(eijsAsi+eilsAsj) q

[D;,A; $) =z(o, [A;4+ o,,A4$),

[J;,A;4$ ze;, zAiz, —

I J;,Az4$=0,

PD;,A&43 = 2iA...
(D;,Az4) = z (8;;A44+A, ,),

(III.13)

(III.14)

(III.15)

(III.16)

(III.17)

(III.18)

(III.19)

(III.20)

(III.21)

LA;, ,Az,)=z(B;,e;n+5, ie;,.+5;,e, „+5;e;,„)J, (111.22)

zLAiz, A4z)= z(b; iD;+5,iD;),

LA;i,A;zg = ie,, iJz, —

I A;4,A44$ = —2iD;,

LA44, A@)=0.

(III.23)

(III.24)

(III.25)

(III.26)

"The possibility for a complex Lorentz group was stipulated
earlier in connection with two-valued representations of Lorentz
group t see p. 240, Eq. (VIII.5.55l in MQT1.

The following properties of these matrices must be
noted: (i) The matrices I',; (z, j=1, 2, 3) are Hermitian
and commute with F, (ii) The matrices I',4 (i= 1, 2, 3)
are anti-Hermitian and anticommute with F, where

0 0 0

F= . (III.10)

0 0 0 1

From (i) and (ii) it follows that the matrices I'„„canbe
looked upon as generators of complex Lorentz trans-
formations" which (a) leave the indefinite quadratic
form

(sl~ls)=ls I'—ls I"—ls I' —ls I' (»I»)
invariant, that is they satisfy the conditions

(III.12)

(where the sign t denotes Hermitian conjugation and I.
is now a complex Lorentz matrix), and that (b) the
determinant of I is 1.The above conditions are satisfied
also by members of LOU4 generated by 3f„„defined by
(III.3) which are also generators of the homogeneous
Lorentz group (the latter is a subgroup of LeU4).

The fact that the group SU3 is a subgroup of LoU4 is
clear from the quadratic form (III.11).However, it is
more convincing to demonstrate this fact in terms of the
Lie algebra of LOU4. Ke shall write the commutation
relations (III.4), (III.5), and (III.6) of the LDV4 Lie
algebra in three-dimensional notation putting

J&~—6U~J~ ) J&4

Now, a comparison of (III.13), (III.16), and (III.22)
with {II.9), (II.11), and (II.12), respectively, shows
that SU3 is a subgroup of LOU4. At this point it may be
tempting to see whether the above commutation rela-
tions contain an inhomogeneous character in them. Ke
shall, therefore, compare them with the commutation
relations of the usuali nhomogeneous Lorentz group. In
addition to the commutation relations (III.13), (III.14)
and (III.15), the inhomogeneous Lorentz group com-

prises the commutation relations

LJ"p j=z(g"p. g-p —) (III.27)

(III.28)

between angular momentum and linear momentum
operators, or in three-dimensional notation we write

[J,,p, j=ie'zipi

LD',p;3='5. p,

Pr;,p4]= zp,

(III.29)

(III.30)

(III.31)

(m.32)

"It is interesting to note that replacement of D; and A.;4 byiD;
and iA;4, respectively, in the commutation relations for L0U4 yields
the Lie algebra of the group SU4. The latter contains 04 (the four-
dimensional orthogonal group) and SU3 as subgroups. Thus the
relation of the new group to SU4 is similar to the relation of 04 to
the homogeneous Lorentz group (see p. 255 of MQT). Therefore,
representations of L0U4 can be constructed from the representa-
tions of SU4,

Hence we see that if we assume the correspondence
—,'A4i ~ p4 and A;4 ~ p, , the commutation relations of
LeU4 corresponding to (III.27) are given by (III.18),
(III.21), (III.19), and (III.20), respectively. With the
exception of (III.21) the remaining rules are of the same
form as (III.29), (III.31), and (III.32). Furthermore,
the (III.24) show that A,4(~ p,), do not commute, nor
does —,'A44(~ p4) with the A, 4, as shown by (III.25).
Thus the commutation relations (III.28) are completely
modified. "

In this connection, an interesting speculation is t:o

think of translations in microphysics as discrete opera-
tions. However, this seems to conflict with the well-

established concept of translation in quantum me-

chanics. It would also violate the usual commutation
laws for small momenta, becoming less and less im-

portant at very large momenta. Furthermore, to be
compatible with the aim stated at the beginning of this
section we must seek a more natural way to introduce
translations where one can accommodate both finite and
infinite dimensional unitary representations in the same
transformation group. In this case spin and unitary
spin may be recognized in the "little groups" within the
infinite dimensional unitary representations of the new

group.
A simple way is to observe that the commutation

relations (III.4), (III.5), and (III.6) of LpU4 are also
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satisfied by the operator representations

—J„„=x„p„—x„p„, (III.33)

A„„x„p—„+x„p„,g—„„x—pp&, (III.34)

where the coordinates x„and momenta p„satisfy the
usual commutation relations

m= ', (a-~F (a)=pa„'a&

Gz

C4

(IV.5)

LJ„„,p ]= s(g „p—„g„p„)—, (III.36)

L~",p-] =t(g«.p.+g-p, 'g..p—-)-(III 37)

In this case we have, together with (III.4), (III.S),
(III.6), the Lie algebra of a 20-parameter inhomo-
geneous group. The group includes, of course, trans-
formations of the form exp(ip). For this group p„p" is
no longer a group invariant, except for the inhomo-
geneous Lorentz group which is now a subgroup of the
generalized inhomogeneous Lorentz group ILU4. This
seems to be a nontrivial way of combining both space
time and internal symmetries of dynamical systems into
a single group, since SU~ also is a subgroup of ILU4.
Unlike the inhomogeneous Lorentz group, the rest mass
does not, by itself alone, commute with the new group.

The next important step in this direction is to dis-
cover the implied relevant dynamics by ILU4. If the
latter turns out to be too ambitious we must at least
find a physical parameter whereby one can discuss some
kind of "contraction" of ILU4 so as to yield inhomo-
geneous Lorentz group in some limit of this parameter.

A further relevant, but not too pressing atpresent,
remark is to look upon ILU4 transformations valid only
locally and not applicable over an extended space time
region. In this latter sense the group ILU4 may be
envisaged as a subgroup of an infinite continuous group
in the elements of which arbitrary functions occur. In
this case, gauge group, and coordinate transformations
in general relativity may be studied with a broader view.

IV. THE BASIC QUANTUM NUMBERS OF LU4

Following up the method used in Sec. II for the discus-
sion of SUs we introduce the operators a„(p= 1, 2, 3, 4)
which obey the commutation relations

Lx„,p„]=ig„„, Lp„,p„]=0. (III.35)

Ke may, now, easily establish the commutation
relations

s (&+I')+Is
I

I+ s
—,
' (2+F) Ip J~—

—V

(IV.7)
where

Ip ——
2 (Xt—iVs), 2= F4jb, &= Xs+ b—(IV.&)

and S =a a t (n= 1, 2, 3, 4, not summed). The off-
diagonal operator assignments, in this case, are

J+=8283

S+=C38] )

I+= Cy82 )

J =aaa2

S = Oping

I = 82Cy

(IV.9)

Q+= gig4

U+=C284 )

g+= 8384

Q = C4Gy I

U = 0482

g
= 84Gg

(IV.10)

The operators Io, 2, and I' are, besides b, the only
mutually commuting members of the LU4 Lie algebra.
Hence, the group LU4 is of rank four. The additive
operators Io, 2, I' will be assumed to refer to isotopic
spin projection, lepton number, and hypercharge,
respectively. " (IV.S) shows that the hypercharge I' is
related to the new baryon number by

These expressions satisfy the commutation relations
(III.4), (III.5), and (III.6). The operator 5II com-
mutes with A„„and J„„.It will be related" to a new
baryon number b by

b = ,'OR —1—='(—St+-cVs+1Vs E) —(IV.6)

The analog of the operator statement (II.26) in the
present case is obtained with the I' and 3E matrices
de6ned by (III.3), (III.7), (III.8), (III.9), as

5 = —-'(I'~"A +31~"J )

(ap)av ]=gatv. (IV.1)

The sixteen linear operators Q„„=a,"a„satisfy the
commutation relations

(IV.11)

LQ" Q-s] = g-Q.s—g.sQ- (IV 2)

and can be used to construct generators of infinitesimal
LU4 transformations by putting

A„.=mg„„—(a„ta„+a„ta„)= (ai pi"„„ia), (IV.3)

J„„=i(a„ta„a„ta„)=(a—~I'M„„~a), (IV.4)
"See MQT, p. 254, Eq. (VIII.8.3).

where 5= —Ã3 is the strangeness quantum number. The
lepton and baryon numbers are related through l74

~ Thus LU4 is decomposable into the product LU4=U&XLpU4
where U&=exp(AWK) is an LU4-invariant unitary operator and
L0U4 is now the 6fteen-parameter subgroup of LU4 discussed in
Sec. III.

'4 It may seem somewhat hasty to name 2 as "lepton number"
rather than allowing it to maintain its original place in the Latin
alphabet. However, this operator assignment can be regarded as a
suggestive speculation since, at present, one does not know how
various elementary particle interactions will 6t into the new group.
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which, presumably, is related to muon number" 5~.
Thus from (IV.8) we write

putting 2J=N~+N, and b=I o—(V+X) it can he
written as

(IV 12) 5'= [I(I+1)+o'(Z+F)'—(2I+1)—,'(2+ 7)$. (IV.19)

PR,I~7= PIZ,s~]= [OlZ, J~)= [m,e~)
= [m, v~7= [m, q~J=0,

[~,1+)= [~,1~1=[~,$+i= o,
[zpi~]=au~, [z,u~$=au~,

[F,I~(=0, [F,s~f=&sg, [I',Jg7=&Jg,
[I',U~j=0, [I' V+3=~V+.

(IV.13)

We now give the commutation relations which reveal
the fact that the isotopic spin group in addition to the
SU3 subgroup of LU4 contains other subgroups (SU2's)
in its structure:

Some of the commutation relations in terms of the
ladder operators appearing in (IV.10) are

a„t~0)=0 (IV.20)

The operators 2, F, Io, and 5' form a complete com-
muting set.

Ke may use the eigen-values of 5' to classify ele-
mentary particles just as the eigenvalues of I2 are used
to label various isotopic multiplets. We may therefore
consider two general cases:

(i) 5'& 0, for b) 0

(ii) 5'=0, for b=0.

The eigenvalues of the occupation number operators N,
=a,a,t (i = 1, 2, 3) and N4 = a4a4t range over (0, 1, 2, ~ ~ ~ )
and ( ~ ~ ~ —3, —2, —1, 0), respectively. This can easily
be established by using the four equations

[Jo Ig]= +Iy [J+I j=2Io
b = ', (Ng+No+-No N4)— (IV.21)

[Jo,J+3= +Ja ~ [J+~J—3 2J» (IV 15)

for the vacuum state."Hence the eigenvalues of
IV.14

Here
[so)skj= Ask

& [$+~$ j—2$o. (IV.16)

Jo= p (No —No), so ——-', (No —Ng),
(IV.17)

Jo+so+Io= o.

Therefore the new symmetry group also contains the
spin degree of freedom of elementary particles as a
unitary content, as well as the isotopic spin. We must
add, immediately, that a real detection of spin in ILU4
must follow from a discussion similar to one used in the
usual Lorentz group. Such a discussion will be deferred
to the next paper.

An invariant of the group LU4 is given by

5'= (1/48) (A.„gi'"+J„„JI"")
= ~~ trace(54)'= b(b+1), (IV.18)

"The remarks of the previous footnote apply here also.

are non-negative.
Detailed discussion of these points will be made the

subject matter of the next paper on this symmetry
group.

Note added ie proof. The well-known properties of the
group SU3 and the discussion in this paper demonstrate,
beyond any shadow of doubt, that the group LU4 has
double-valued representations. However, it does not
seem to be possible to identify the various operators of
the present group according to a conventional scheme.
The latter may not be a necessity.
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