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In this study we examine theoretically the possibility that the elastic scattering amplitude may be sub-
stantially enhanced due to the opening of a strong inelastic channel as the elastic and inelastic channels are
coupled through the unitarity condition. Some recent experimental data on proton-proton scattering have
suggested rather convincingly such a phenomenon. The theoretical investigation of this feature is carried out
by means of the current method of dispersion relations. The dynamical inputs of the scattering amplitudes
are derived from the perturbation diagrams of the Feynman theory using only the one-pion-exchange dia-
grams. A multichannel unitarity condition is used by retaining the three-particle intermediate states. This
provides a coupling between the elastic and the production amplitudes. Finally, the problem is solved in
terms of the ly/D method The .results obtained demonstrate a maximum in the elastic scattering amplitude,
which seems to explain the observed phenomenon.

I. INTRODUCTION

~ XPERIMENTAL work on nucleon-nucleon elastic
~ scattering by Martelli et u/. ' has shown that certain

partial wave amplitudes in the total isotopic spin T=1
state is enhanced over the T=O state at energies
somewhat above the production threshold. This feature
is usually not apparent from comparing the total cross
sections of scattering in these two states, since at such
energies many partial waves would have contributed to
the cross sections, and the detail features would have
been obscured. In the experimental conducted by
Martelli et tzl. , the differential cross sections for p-p and
tz-p scattering at 90' in the center-of-mass (c.m. )
system are measured. Since many angular momentum
states do not contribute to right angle scattering, this
experiment is able to eliminate some of the nonessential
interferences. Unfortunately, not all odd orbital angular
momentum states are removed by this procedure,
contrary to what is being claimed. ' Therefore, in the
T= 1 channel, for example, part of the 'P states mix in
with the 'S and 'D states, all of which are believed to be
contributing substantially to the cross sections.

Measurements are made at 595, 775, and 1010 Mev.
These together with the differential cross sections at
lower energies given by Bess' and by Amaglobeli and
Kazarinov4 indicate clearly the trend of the cross sec-
tions for the T=O and T= 1 states (see Fig. 1).Around

600 MeV we see that the T=1 state is definitely en-
hanced relative to the T=O state, whereas around 1100
MeU the T=O state is enhanced. The presentation of
the 6rst enhancement can be made more appealing by
taking the difference of the cross sections in these two
states, assuming that the T=1 state would behave
similar to the T=O state if not for the enhancement, as
shown dotted in Fig. 1, where we see a resonance-like
behavior at around 600 MeV.

Since the position of the enchancement occurs at an
energy which is very near to that required for the
production of the zr —X (3,3) isobar, and since this
isobar can only be produced in the T= 1 state and not
in T=O state, it has already been pointed out by
Martelli et ul. that the enhancement is a result of the
coupling of the T=1 elastic amplitude to this produc-
tion amplitude. Similarly, the enhancement at higher
energies in the T=O elastic amplitude may be the
result of its coupling with the production of another
z —3l isobar which occurs at the higher energy region of
the z —S spectrum. We shall not, however, be involved
with the T=0 channel, but concentrate with the T= 1
channel for the time being.
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FIG. 1. Elastic differential cross sections for nucleon-nucl«»
scattering in T=O and T=1 states at 90' c.m. system.
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Taking the suggested mechanism for granted, we see
that if the (3,3) isobar is produced in a 1=0 state
relative to the nucleon, then because of the conservation
of total angular momentum, isotopic spin, and parity,
the only possible two-nucleon initial state is Ds(T= 1).
Hence, the partial wave amplitude that is of interest
will be in T=1,J=2 state. In fact, this is why the right
angle scattering experiment is performed —to bring out
the full e6ect of this possibility.

We might remark that the maximum occurring at
600 MeV cannot be identified with a resonance in the
J=2 state. For if it were a resonance, the inelastic
cross section at this energy must be at least as large as
23 mb in order to be consistent with unitarity. This is
known not to be the case.' Therefore, if we insist that
this maximum occurs in the J=2 state, then it i.s
probably more adequate to call it a "woolly cusp"
after Pais and Nauenberg.

Recently, many authors' ' have discussed scattering
models which include isobar production. It seems
interesting to put the above conjecture that the en-
hancement is due entirely to the production of the (3,3)
isobar to a test. Formalism related to the treatment of
multichannel problem within the framework of disper-
sion relations has also been well developed, and we
shall follow closely that of Cook and Lee. '

BrieQy, the method is as follows. A set of equations
for the scattering amplitudes T22, T23, and T33, which
correspond to two-body elastic, production, and three-
body elastic processes, respectively, are developed based
on a truncated unitarity condition that involves only
these three processes. Then these equations are solved
according to an input information on the production
amplitude, which is calculated from a single-pion-
exchange diagram of an isobar model. All connections
are discussed in terms of the analytic properties of the
scattering amplitudes. This amounts to assigning to
each scattering amplitude in the complex plane of its
energy variable a "unitary cut" with the discontinuity
over this cut given by the imaginary part of the
amplitude as prescribed by the unitarity condition,
and in addition, certain "dynamical singularities" to
the production amplitude, which are evaluated from the
single-pion-exchange diagram.

Inelastic eGects on the elastic amplitude can be seen
very easily in a formulation based on the usual disper-
sion relations. The inclusion of all inelastic processes in
the unitarity condition modifies the approximate
"elastic unitarity" by just the factor (o T'/e, ~'), where
0.T' and o.,i' denote, respectively, the total and elastic

' M. Nauenberg and A. Pais, Phys. Rev. 126, 360 (1962).' S. Mandelstam, J. E. Paton, R. F. Peierls, and A. Q. Sarker,
Ann. Phys. (N. Y.) 18, 198 (1962).

'P. Federbush, M. T. Grisaru, and M. Tausner, Ann. Phys.
(N. Y.) 18, 23 (1962).'I. F. Cook and B. W. Lee, Phys. Rev. 127, 283 (1962); 127,
297 (1962).' J. S. Ball, W. R. Frazer, and M. Nauenberg, Phys. Rev. 128,
478 (1962).

cross sections in the 1th partial wave state. In analogy
to the formulations by Chew and Low' or Frautschi
and Walecka, " the partial wave elastic amplitude can
be written as

D(Wo) (W—Wo) ~W'p(W')&(W')
f,—'(W) =

w~w~ .w~w) &tw —w.)(w —w~

wT'(W') e T'(W)
X —op(W), (1)

e.,('(W') a,('(W)

where p(W) is the center of mass momentum, D(Wo) is
a constant, and X(W) is some function of dynamical
origin. This is a general solution of the unitarity equa-
tions. Whatever the real part of f~ 'maybe, f~ satisfies
the unitarity condition. The imaginary part of fg '
provides the "unitary limit" of the scattering amplitude,
and this limit is reached only when the real part of the
denominator vanishes We. see that this limit for fr is
reduced whenever O.T') o,i', and in fact if o-T' takes on a
sudden increase, as in S-wave production processes, this
sudden depletion of the elastic channel manifests as a
phenomenon identified as cusp in the elastic cross
section. While the meaning of the imaginary part of
f~

' is strictly kinematical, the real part bears the
dynamics of the interaction. We note that the factor
(e T'/o, ~') now occurs within the integral, and hence the
correction it introduces is felt long before the production
threshold is reached. Hence, a strong production channel
may cause substantial enhancement in the elastic
channel at a lower energy through this mechanism.
Assuming E(W) to be nonvarying, a factor (e T'/e. ,i')
different from one in the production region will cause the
real part of fq

' to decrease, and hence an increase in
the cross section until the production threshold is
reached; then the increase in the imaginary part will
cause the cross section to decrease. The combined
effects give the cross section an appearance which looks
deceptively like a resonance. This seems to be the case
in nucleon-nucleon scattering, which we are about to
investigate.

In Sec. II, the kinematics of the multiparticle states
is discussed and the helicity amplitudes are defined. In
Sec. III, the dynamical problem is formulated and the
discontinuity equations over the unitary cuts are
derived. In Secs. IV and V, the one-pion-exchanged
amplitudes for the production process are evaluated
and singularities of the amplitudes are discussed.
Finally, in Sec. VI, the equations are solved with the
input information coming from the production ampli-
tudes, and the results are exhibited and discussed. The
contributions from the complex singularities which have
been neglected in the calculations are estimated in
Sec. VII.

' G. F. Chew and F. E. Low, Phys. Rev. 101, 1570 (1956)."S.C. Frautschi, and J. D. Walecka, Phys. Rev. 120, 1486
(1960).
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II. KINEMATICS AND HELICITY AMPLITUDES

The processes that we are going to investigate are
the following:

(I) cV(p,}+/V(ps) ~ /V(p, ')+1V(p,'),
(II) &(p )+&(p ) /V(p ')+&'(p '}+ (k'}

(III) A (p,)+cV(ps)+?r(k) +-+ X(pr')+X(p3')+?r(k'),
(2)

where we use E to denote the nucleons and ~ pions, and
have indicated the momenta that these particles carry.

The two-particle elastic process is described by the
independent variables s and 3:

S= —(Pg+P3) ', t = —(Pr —P4')', (3)

where the metric is p"p„=—po'+p'= —??3'.

The description of the production process is given
after the following decomposition of the three-particle
state. '" The three-particle system is first converted
into a two-particle system by combining one of the
nucleons with the pion to form a subsystem. This
nucleon is denoted by the subscript 4. The momentum
of the x —Ã subsystem is q and in the center-of-mass
frame of the total system tI= —p3. This subsystem will,
of course, have internal degrees of freedom, and these
will be described by the variables o, n, and P, where

o = —(p4+k)', (4)

is the square of the "mass" of the subsystem, 43 and p
are the spherical angles measured from 41 to P4' (where
P4' is the transformed momentum of nucleon 4 in the
rest frame of the subsystem). The production ampli-
t;udes describing reaction II are therefore given by five
variables, s, /, o., n, and P, with

s = —(p3+p4+ k)'-',

/= —(pi —p3')'= (p —p' cos8}'
[(p2+??32)l/3 (p~2+??32)1/sj? (5)

where 8 is the scattering angle between p~ and p3' in
the center of mass of the total system, and

P'= (s/4) —??3'-,

P"=[S—(o-"'+??3)'1[S—(o'/' —??3)'j(4S)
—'. (6)

The three-particle scattering amplitudes describing
reaction (III) are decomposed similarly, and are given
by variables s, /,, o., 43, p, o.', n', p', where the unprimed
and primed variables of the pion-nucleon subsystems
refer to the initial and final states, respectively.

The scattering amplitudes will be helicity amplitudes,
which we shall designate by the momenta of the
particles and the helicities of the nucleons, as follows:

(I) (pl Xl q p2 X3
~
T32(s)$)

~
prx3, psx2) q

(11) (p, '),', p,'),', k'~'p'i T„(s,~, ')
i p,) „p,),),

(II') (p, ') 3', ps)3 ~T33(s,&,o) ~p3) 3, p4) 4, knp), (7)

(III) (p39i3 p4'~4', k'43'p'
~
T33(s,t,o,o')

~
p3X3, p4X4, kc3p).

"G. C. Wick, Ann. Phys. (N. Y.) 18, 65 (1962).

These states are normalized according to

(pV ~
p) )= (2~)32(ps+~3)'/3S(p —p')S». (8)

Although most of the formalism will be discussed in
terms of the invariant variable s, the final calculations
are carried in the variable 8"=s't' which is slightly
easier to work with.

Following Jacob and Wick,"the partial-wave ampli-
tudes in the center-of-mass system are defined in the
following manner:

(I) (p, ),', ps X3
~
T33(s,t)

~
p3hr, psX3)

= (2~)'(4po/p)Zs(2J+1}
X() 3 ) 3

~
T33 (s) ~) 3) 3)d„„(8),(9)

where 0 is the scattering angle, and p, v are, respectively,
the algebraic sums of the helicities of the initial state
along p~ and the final state along p~',

P ~l ~2p & ~& ~2 ~

Decomposition of the three-particle state in terms of
the variables introduced has been given by Wick."
The x —Ã subsystem is treated as a single particle and
will be characterized by its rest frame quantum numbers
such as mass, spin, and helicity. To accomplish this the
m. —E subsystem is transformed from the center of
mass of the total system to its own rest frame; however,

a Lorentz transformation of this kind will in general

change the axis of quantization of the nucleon, and the
helicity is decomposed into a new set of helicities along
the new direction of the nucleon momentum vector.
Since this complication is unnecessary for our purpose,
we shall choose to characterize the spin states of the
nucleon 4, which forms the pion-nucleon subsystem, not

by helicities but by the spin projection along the
direction opposite to y3 (i.e., along 4)t). Let us again
denote this spin projection by X4. Then X4 is unaltered

by the Lorentz transformation along q. Although the
nucleons are identical particles, this unsymmetrical
treatment of the nucleons, however, does not generate
other difhculties as long as we neglect certain "mixed
terms, " which we shall define later, in the unitarity
condition or the cross-section formula. By a procedure
similar to that discussed by Wick, "we can write

~ p,) „p) „k~p)=Q g ~ p,) „qo))
i=i &=i

&4'», ,'*(—P, , P)»( ), (1o)

where j is the spin of the x —E subsystem, X is its
helicity, q= p' in the center of mass of the total system,
and

&/(o) = (2~)[(2i+1)2o"'/l3"'

We see that in the present choice of variables and
decomposition scheme, the three-particle system can be

"M. Jacob, and G. C. Wick, Ann. Phys. (N. Y.) 7, 4&4 (19%).
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treated. as a set of two-particle systems each particle
having definite spin and helicity. The usef ulness of this
decomposition is obvious when we want to make the
approximation that only one of the many j states of
the subsystem is important. Since we have in mind an
isobar model, the fact that the spin of the nucleon 4 is
not in the usual helicity description makes no

difference

.
The amplitudes for the production process are

where o.3
——(2m+t, )', 01——(s"'—t,)', with m the nucleon

mass and p, the pion mass.
We shall have occasion in the future to make connec-

tions with the perturbation amplitudes in the Feynman
theory. For this purpose let us defne the Feynman
amplitude F, for the scattering of tw o fermions, by

S= 1—i(2')'54(~p) (2m) '

(II) (p3 X3,p4 X4,k n p i T„(s,t,o ) i p1x1,p2) 2)

= (42r) (2q3W/Pq)'t2 P P (2J+1)
j,) ' JO

X(P 3V
~
T23s '( ,s0) ~X1X2)d„,„s(g)

XD&' .,t(—P', ', P')N;( '), (»a)

(II') (p1'X1',p2'X2'
~ T32 (s, t,o)

~
p3X3,p4X4, knp)

= (43r) (2q3W/pq) "'Q Q (2J+1)
j,) J=o

Xp.,'x, '
~

T„&'(s, ) ~
x,t1)d„,„'(g)

X ii (m,/F;)'t2F()„)„;X,X,), (15)

where E; are the center-of-mass energies of the particles.
The relation between the partial wave helicity

amplitude and the Feynman amplitude is

(XP 4 I
T

I
Z1Z2) = d cosgd„,„~(g)

X (m1m2m3m4pp'/4n's)"'F('A3X4, X1X2), (16)

where p' is the 6nal state center-of-mass momentum.

XD, ,'*(—P, , P)N, ( ), (12b)

(III) (p,'X,',p, 'X ', k'n'p'
~

T (s, t, , ) ~ p X,p X, kpn)

= (87r) (qoqo'/qq')"' 2 2 E(2J+ 1)
j', A j', )t,

' J

X(x3'V
~

T33'»' (s,0.„~2)( &3')d„,„s(g)

XD)„1.'*(—p, n, p)D1, ,)„'(—p', n', p')

XN; (a.,)N4' (o.2), (13)

where p =) 3
—X, v =X~' —X'.

In terms of the differential cross sections, the helicity
amp 1itu de s are defined as

= (4p') ' Q (2J+1)(2J'+1)
~~ (elastic ) J,J'

d~ (in el as tie )

X(X1X2
I
T22 (s) )x1X2)C 1 x2 t T22 '(s) l&1~2)*

(g)d, (g)

= (4p') ' Z (2J+1)(2J'+ 1)d. .'(g) d. .' (g)

X d '(Z,V
~
T„(s,')

~
X,Z,)

X(X3 X
~
T23 (sy(T ) ~

~1~2) 1 (14)

where q3
——(q2+&r)'t2, t4= X,—X2, p = g3' —X' in II;

p=X~'-X2', v= X3-X in II'.
The amplitudes for the three-body process are

III. FORMULA TION OF THE DYNANICAL
PROBLEM

The application of the technique of dispersion rela-
tions to the determination of the scattering process
consists in treating the scattering amplitude as the
boundary value of an analytic scattering function. The
scattering function will have certain preassigned
analytic properties. Due to the incompleteness of the
theory, the exact analytic properties of the function is
ye t unknown; however, one realizes that it should
possess a branch cut extending over the entire physical
region of the process. The cut arises purely out of
kinematical considerations, and is important because
the discontinuities across this cut are known and are
dictate entirely by unitarity. This cut is referred to as
the unitary cut. Amplitudes evaluated from scattering
functions containing this cut and satisfying the discon-
tinuity equations will automatically satisfy the unitarity
condition. The proper treatment of the unitarity condi-
tion has led to many fruitful investigations of the
strongly interacting systems, even though they base on
dynamical theories which are incomplete.

Other singularities of the amplitudes are not definite,
and all we can say now is that we should consider
whatever singularities suggested by field theory. In
particular, we shal 1 incorporate into the scattering
functions the analytic properties of the one-pion-
exchange term for the elastic and production ampli-
tudes. Therefore, the entire approach falls within the
framework of the Feynman perturbative method where
the lowest perturbation diagram is taken, with the
exception that the amplitude is required to satisfy the
unitarity condition by the analytic requirement. It is



B736 YAN —CHOK LEUNG

interesting to note the marked improvement of the
result due to this modification.

Let us now determine the set of discontinuities over
the unitary cuts of the different scattering functions.
The following discussion is generally valid irrespective
of isobar approximation. Since we shall be working
entirely with partial wave amplitudes, we shall consider
scattering functions which are functions of the variables
s and cr only. The physical scattering amplitudes will

be defined to be the boundary values obtained by
approaching the unitary cuts from the upper half of the
plane, which we shall indicate by the subscript +.

The requirement of CP'T invariance provides the
connection that

rr
FIG. 2. Disconnected part of

the three-body scattering ampli-
tudes.

N

where we have neglected intermediate states with two
or more pions; the primes designate the intermediate
variables which are to be integrated over, and the
symbols +2 and ps represent two- and three-particle
phase space integrals over the momenta of the nucleons
and pion in the intermediate states. Letting the total
4-momenta of the intermediate states be P, then

T22 (S+)= T22*(&—),
T22(s+)a+) = T22*(s,a ),

Tss(s+)o+)o+ )= Tss*(s )o'—)o—-)

(17)

1
d4p'(2)r) —'t) (p"+ms) d4p" (27r)

—'
2 2

These relations have been shown to be generally valid
by Olive. "Since these amplitudes contain spinor parts,
what we mean by Eq. (17) is that if the amplitudes are
decomposed into a sum of terms consisting of the
products of the scalar functions of the invariants s and
0., and the spinor parts are chosen such that the complex
conjugation is equal to the reversed process, then the
scalar functions satisfy the above relations in the s and
0 variables. These relations imply that T» and T» are
real functions of the variables s, 0', a', although we
cannot conclude the same for T32. The assumption of
time reversal invariance separately is however sufficient
to make T32 a real function. Since T23 and T32 are now
the same function (in the sense of the scalar function
discussed above), we shall carry only one of them.

Unitarity of the 5 matrix gives in the s channel, when
all variables are having physical values (s~&4212, t(0,
o, a'~& (m+ p)2), the fOllOWing Set Of equatiOnS:

= 22 Q T22(sy)t')T22($ )t )

+2i g T22(s+, t', a~')T22(s, t",o "),
3

T„(s+,t,o+)—T,2(s )t)o. )

= 2i g T22(s~, t', a+) T22(s, t")

d'p) (27r) '8~ (p"+rrt') d'p" (22r) '8+ (p'"+22'')
3 2

&&d k(22r) 8+(k +)a )(2)r) P(P'+P"+k —E) ) (19)

where 8+. denotes the mass shell lying in the future cone.
We note that Eqs. (18) do not yet give us the discon-
tinuities across the unitary cuts in the s variable.
However, Blankenbecler has shown that discontinuities
in the s variable are obtained if we replace T» by its
connected part, T33'——T33—T33", where T33" is the
disconnected part, as shown schematically in Fig. 2."
Furthermore, following Ball, Frazer, and Nauenberg, '
we shall introduce isobar amplitudes which are defined
as

M22s (s) = T22s (S),

M22 '(S)a) = T22"(S a)lf)(a) )

3f22 '(s,o,o') = Tss '(s,.a,a')/f (a)f"'(a'),

where f)(o) is the jth partial wave in the center of mass
of the x —X scattering amplitude. The M amplitudes
are called isobar amplitudes where the interactions
within the isobar are factored out explicitly. These
amplitudes have no discontinuities across the unitary
cut in the o- variable. ' In terms of the isobar amplitudes,
the discontinuity equations for the partial wave

+2i g Tss(S+,a+,a+', t') T22(S,a ",t"),

Tss(S~, t,a,+,as+) Tss(S, t,at, a2 )—
= 2i Q T32(sy, t alp)T22($ t o'2 )

2

+22 g Tss(s+)t')at+)a+')Tss(s )t")as,a "), (18)
3

"D.I. Olive& Nnovo Cimento 26, 73 (1962).

FrG. 3. Schematic drawing of the mixed term appearing in
the unitarity condition and the cross-section formula.

)sR. Blankenbecler, Phys. Rev. 122, 983 (1961); see also
Ref. 9.
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amplitudes are

(2i) &)tl )t2 i ~22 (s+) ~22 (s-) i )tl)12&

=—'O(s —4288') P (Xt'X2'i&22 (s~)iX X„)(XX„i&22 (s )ihtX2)+4OLs —(2288+@)'j

oo

X do'2 2 2 IP(o') I'( '&2'1~32"(s+,o') I) ~) -&( ~).I~32"(s-.o') I)t»2&

(2i) '(Xs'X4'i M 32s'Ls~, o) Jtd32 —'(s,o) i XtÃ2)

=-', 0~(s—44832) p (Xs X4 iM32s '(s+o) iX~X )(X~X~i3II22 (s ) ixtX2)+4'OLs —( 288+@)q

~o' 2 IP'( ') I'() 8') 4'I ~88' '(s„o,') l)t~)t.)()t~)t. !~32"'(s-,o') I) 1)t2&,
j',~M, &n

(2i) '&Xs'X4'iM88 "'(s+,o1)o2) ~88 (s' —'|o1)o2) i)13)t4)

=40~(s 4tn—') p (Xs'X4'iM32 '(s+,ot) iX„X~)(X~X~iM32 "(s,o.2) ixsX4)+40'Ls —(2488+@)'g

harp

IP"(o') I'()ts')t4'I ~88" '"(s+,ot,o') I) ~)i.&& ~)t. I
~83"""i.s-,~2,~') I)'8)t4) (2&)

j",XM, )in

where the O~ function is the usua1 step function, which
is equal to one when the argument is positive and zero
otherwise.

The treatment of the three-particle intermediate
states in the above equations is not entirely correct,
where we have consistently assumed that the isobar in
both the "bra" and "ket" vectors are formed by the
same pair of particles. This, of course, need not be the
case, as the isobar may be formed by the first nucleon
in the bra vector while the isobar isobar is formed by
the second nucleon in the ket vector. ~ Especially, when
the nucleons are identical, an antisymmetrization of the
nucleon wave function will naturally bring in the mixed
situation. In other words we have neglected terms like

Z&)tl )t2
i T82i ( 32r))t4&&)18(2r)t4) i T32i)11)t2), (22)

3

where we have denoted the nucleons by their helicities-
and pion by x, and put parentheses around the pairs
that form the isobars. Let us call these the "mixed
terms. " Schematically, the mixed terms are illustrated
in Fig. 3; however, there are reasons to believe that the
contributions from these mixed terms are small, and
because they add considerable difFiculties to the problem
we shall exclude them from our calculations. These
contributions can always be estimated.

The rest of the information about the scattering
amplitudes comes from perturbation theory. The one-
pion-exchange diagrams for the production amplitudes
will be evaluated in the following sections. Since we

shall be interested mainly in the J=2 state, this state
for the elastic amplitudes as evaluated from the one-

pion-exchange diagram is very small, and therefore can
be neglected.

with the subsidiary conditions

'YA'w2"= Oi r)A'sj2"= 0
~ (24)

where 3II is the mass of S*, which shall be taken as
1237 MeV.

In short, we are saying that the nucleon can exist in,

besides in its normal state, one further isobaric state

(at least for low-energy processes) which has the above-

described properties. This approach is well known, and

in fact many kinematical aspects of pion production in

nucleon-nucleon scattering can be accounted for by
the isobar model. Lindenbaum and Sternheimer" have

shown that using E*alone they can get very reasonable

Gt for such experimental features as momentum spectra
of the pion and the recoil nucleon, angular correlations

"W.Rarita and J. Schwinger, Phys. Rev. Letters 60, 61 (1941).
i~ R. M. Sternheimer and S. J. Lindenbaum, Phys. Rev. 123,

333 (1961).

IV. PRODUCTION AMPLITUDES IN
THE ISOBAR.MODEL

In view of the strong resonance in the J=~, l=1,
T=& state in the low-energy region of the m

—X
interaction, commonly called the (3,3) resonance, we

shall assume that this state dominates all others. This
means, referring to Eq. (10), that the sum over the
angular momentum states in the center of mass of the

x —E subsystem will be restricted to j= ~ only. In the
isobar approximation, the x —E resonance is replaced

by a stable particle, denoted by E*, for which we shall

introduce a spin--,' Geld explicitly. The —,
' spinor will

satisfy the Rarita-Schwinger equation'

(y„B„+M)fsi2"0, ——
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between pions and nucleons, etc., for energies below
several BeV. Furthermore, from Lindenbaum and
Sternheimer's analysis of the energy spectra of the
produced x meson in nucleon-nucleon scattering, one
can deduce that at laboratory incident energies below
1 BeV or so the E*is produced essentially isotropically.
This is to justify our emphasis on processes involving
5-wave production of S*.

Dynamically we shall assume A* to be coupled to
the nucleon and the pion by a derivative coupling

N(p, w,
)-—

ig(k)

+(ps) N(P p)

N (p~&) N(p, &))

', Qk)

will be
eq q

———(2) «'(e„ie„,0,0),
eg o

———LO 0 (p"+3P)«'/M p'/357

e~=&= (2)-'/s (e„ie—„,0,0)

FIG. 4. Feynman diagrams of the isobar amp1itudes.

(30)

(G/m) go/s& Q8„$)+H.c. , (25)

where 6 is the dimensionless coupling constant, and
the bold-face symbols denote vectors in isotopic spin
space. Computing the decay rate v- of such a particle in
a zeroth order theory, we get

1 2 G' 1 k'(E+m)

v 3 ms 2or (E+7//)
(26)

I"(p') = e»(p'). (27)

The subsidiary condition 8„$s/s&=0 means p„'u&(p')=0,
and the polarization vector satisfying this condition is

e = ~ P '(P '~")(P')—'L1—(P 'e")'(P') '7 '" (28)

where e= (e„e„,e„0)is the direction vector, with e'= 1.
Due to the presence of the subsidiary condition there
are just three directions of polarization, from which
we can form a new orthonormal basis by the linear
combinations

e~
——(2) '/'( e, i—e„)——

6P= 8g q

e i= (2)-"(e.—ie„).
Polarization vectors along these directions will be
characterized by their helicities A, and their components

where k is the momentum of the pion in the rest frame
of Ã*, and E= (k'+m')«', n= (k'+p')'". Since 7 is
related to the half-width 6 of the resonance by r '
= 6/A, and taking 6 to be 120 MeV, we get G'= 53.

Let us denote the Fourier transform of Ps/s&, or the
momentum space spinor, by u/'(p'), which will be
constructed out of the direct product of a —,

' spinor,
N(p'), and a polarization vector

The second subsidiary condition that y„Po/s"=0
guarantees that spin —,

' is obtained from the direct
product 'representation. Denoting the helicity of the
isobar by X and that of the nucleon by ) 4, the combina-
tions are as follows, where we write (x)=P C/„z(x4,&)
with Cq, ,p being the Clebsch-Gordon coefficients.

(l)=(-:,1),
(—-') = (-')'"(-' 0)+ (-')'"(—s 1)

(—s)= (s)«'(s —1)+(s)'"(—s o)

(—l)=(—l, —1)

(31)

The input information that we shall incorporate into
the production channel will be limited to the one-pion-
exchange amplitude calculated using the isobar model.
The Feynman diagrams that we shall concern ourselves
with are shown in Fig. 4. We shall take p~

——(—p, E),
ps ——(y,E), ps ——(—p', Es), and p4 ——(y', E.), with E
—(p2+m2)«2 E —(p12+m2)1/2 and E —(pcs+~2)1/2
The amplitude corresponding to the second diagram
will be denoted by the superscript c.

The Feynman amplitudes are given by

FoP sX ' Xyhs)

(gG/m—)1'L(p~ P)'+s—~'7 '( ~,~( -p'), »—», ( p))—
X (~&,"(p'), (k —ps),~/, (p)),

Fo'(Xok; Ages) (32)
= —(gG/ )1'f(p —P )'+/'7 '( ., (—P'), v, (p ))

&«~'(P ), (~-P ).N. ,(-P»,
where I' denoted the isotopic spin matrix element, and
for the T=1 state F= —8/3. The matrix elements
evaluated are (we use the same representation of the

7 matrices as that used in Ref. 18)

(~~, (—p'), v»~, (—p)) = (mb)-'t ~o'p'/ o
—p~i7{

~

l,+~,
~

cos—,'8—
j,Xs—X,)sin —,'8},

(~so(—p'), volens(p)) = (m(o) 'Lko'p'&o —PXs7{ ~
Xs—Xo )

cos-', 8—(ho+3 s)sin-', 8},

(~, (p'), (k —p,)„N„(p))= p c„,,(A, (p'), I„(p))L,„'(p p, ) 7„
)4, A

(33a)

(33b)

(34)

with pe~*(k —ps) "7z o
———go+ (2E4P/M)cos8,

(u ,(P'), u ,(P))= $,(1—4X X ( ){~X,+ X, leos-,'8

+ (X4 X2)smq8}, (35a) D. Y. Wong, Phys. Rev. 120, 2250 (1960).
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[o.*(k—P2)"]g=gi——W&2P sins exp (+iy),

(~1"(P'), (&—Pl).N. ,(—P))
= Q Ci, g(841, (p'), 24&„(—p))[6„*(/3—pi) "]~, (36)

) 4, ii

with

(~1.(p'), », (—p)) = p, (1—A,~,~,){I)„—),Icos-,'|/

+ ('A4+Xl)sin 228}, (3"/a)

[.*(&—P )") =o= —$ —(2E P/M)cose,

[o,*(k—pl) "76=~1——aV2 p sin8 exp (+8&),

where
go= (2+2/8)'/2(83+2/8) —'/',

$1= (++2/8) (+4+M) / (2/8M) /2

$2= pp'(8+228) '(E +M)—'

$3=p'W/M.

Now, let us list a number of things that we want to
do. First, we want the Feynman amplitudes to be
properly antisymmetrized, which means for the isotopic
triplet state (7=1) we should take the difference of
the amplitudes calculated from the graphs, and let us
define

=0) J odd)

~2'=(2212'32'122) —(2212'32'I —
2
—

2&

=Ry{fo[f1(1—$2) (1+«)+f2(1+$2) (1+«))
+ (1 «)L fl(1+b)+f2(1—b))}ey(«)
+Rz{fo[ f1(1 —&2)+f2—(1+b))+ (484/M) f4

2«fo}J'—8 only, J eveil~829'oj14 j ~1~2) ~op oj~4 j )11~2)=+0 (~3)14 j X1~2) ~ (39)

(35c) For the XS*system, states of definite parity are

(» '"lll&~l ——:——:)

(2)-'"I 2
—2)~ I

—
22&

(2)-'"I-:-l)~
I
-l-:&,

where the states with minus sign have orbital angular
momentum /= J&1, while the states with plus sign

have I=J or J&2.
The 16 amplitudes with definite parity will be grouped

according to their initial spin state (singlet or triplet
of the two-nucleon system) and their initial and
final orbital momenta, l; and lf. Although not all of

them will be useful to us in the present calculation,
we shall include them here for completeness. They are

(A) initial spin singlet, j=l,=l~, l~&2:

&1'=(22
I
2'32'I 22)—(22 I

2'32'I —
2
—2)

=Rye{f1(1—b) (1+«)+f2(1+b) (1—«) }
X[Q„,(.)—Q, ,(.))[~(~+1)]'"(2&+1)-',

J even (43a)

(2)-'"I-:—:)~
I
—:—!&,

(2) '"ll —-'&~I —ll), (41)

where the states with the minus sign have orbital
angular momentum /= J, while the states with the
plus sign have l= J&1, and the first one taken with the
minus belongs to the spin singlet state, while the others
belong to the spin triplet states.

Po and Fo' are in general not related to each other by
changing 0 to x —0, although further linear combinations
of the helicity states will have this property. Secondly,
we want to project out the partial wave amplitudes as
defined by Eq. (16). Finally, we want to combine the
partial wave amplitudes into amplitudes of definite
parity. It will be apparent later that it is easier to work
with amplitudes of definite parities, since the amplitudes
will be characterized by definite relative angular
momenta. To achieve this we shall make linear combina-
tions of the helicity states according to the property of
the state under inversion. Assuming all particles to
have positive intrinsic parities, the helicity states
under parity operator I' behave as [Jacob and Wick,
Eq. (41))

~lm~ p2&= (—)y- 1-"IJM—j,—)„&,

where sl and s2 are the spins of the particles. Hence, for
the NN system, states of definite parity are

=0, J odd, (43b)

~8'=(2 —
2 I

2'32'I 22&
—(2 —

2 I
2'32'I —l —2&

—Ry{f, (1 6) (1+«—)+f2 (1+b) (1 «)+fof6—}
X [ey+1(«)—ey-1(«)][~(I+1)]'"(2~+1)',

J even
=0, J odd, (43c)

(. .I I") (.
(8) Initial spin triplet, J'= l,=//, I/&2:

~»'=(22
I
2'32'I 2

—2)—(2212'32'I —22)
=0 J even

=~3Ry{[(1 «')foes(—«) foes 1(«—)]-
+[-',fo—fo«]y, .„iy} & odd, (44a)

&»'=(22 I
2'32'I 2

—
2&

—(22 I
2'32'I —

22&

=0 J even
= 2Ry{[fofo+«f 8 f4][ex+1 (—«) Qz 1(«)]-

X[J(5+1)]1/2(27+1) '—(K2/3)

X[(284/M)f6+f87 j=l only} J odd, (44b)

=0 J even
= —Ry{Lfo(f4—«fo)+f6(1—«')]Qy(«)

+D, ( f -f.)+f,(1-")]e. ()
+[ fof4+ (2+4/3M)fo+«fo+ 3f6)J'=1 only)

J odd, (44c)
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S-(~' )

s plane

P»'=
&2

——.
I
T»'I-2 —

2&+&2 —
2 I

T»'I ——.——.
&

= —RJ{L
—

1 l(1—$2) (1+K)+{2(1+&2) (1—«)

+M 7I:Q~+ (K) —Q~- (K)7I:J(J+1)7"'
X(2J+1) '} J even

)2
«4m

a~ m(/mt')
&

\

S~{2S~M )

s*O

FIG. 5. Singularities of the production amplitudes.

P25'=
&2

—
2 I

T'»'I 2
—

2&
—(2 —212'»'I —

22&

=0 J even
=~3RJ (J—1)'i2 (J+2) i&2{({ —{6K)

XLQ" ()—Q. ()7(»+1)-'+( {.—{.)
XLgz(K) —Qz 2(K)7(2J—1) '} J odd. (44d)

(C) Initial spin triplet, J=/, +1=l~+1;
P»'=&22

I
T»'I 2

——:&+(22I
2»'I —

22&

=0 J odd

=43RJ{(1—K2)L{ 3QJ (K) —i'5gz 1(K)7

+(K{3)J .. .y 3(i-5)~ 2,„,y} J even (45a)
P22'=(-', —,

'
I
T'32'I-22—2'&+(2222I T'32'I —

22&

=0 J odd
= 2RZ{ ({pt'3+t 6 Kt ) t Q~—+l(K) Q~-l(K—)7

xI J(J+1)7't2(2J+1)—'} J even, (45b)
P»'= &-. ——.

I
T»'I 2

—
2&+&2 —

2 I
T»'I ——.—.

&

=0 J odd

Rz{90(K{4 {6)+'{3(1—K )7gz(K)
+Lfp({ 4 Kt 6) $57QJ 1(K)+ ( —$0/4+K/3) J=p only

+3L(2&4/M){ 6+157J 2 on]y} J even, (45c)
P25'= &2

—
2 I

2'32'I 2
—2&+&2 —

2 I
2'32'I —

22&

=0 J odd

%BRJ{(J 1)"(J+2—)'"f (Kf5 {)—
X(g.+ ()-Q. ())(2J+»-+0- —{-,)
X(g ()—g ())(»—1)-7+-,'O.,) =, ,}

J even, (45d)

P»'=&l 2 I 2'32'I-:2&+(22
I
2'32'I —

2
—

l&
= —v3R~{L

—|2(1—b) (1+K)+{2(1+b) (1—«)7
XI Q~+l(K) —Q~-2(K)7LJ(J+1)7"'(2J+1) '}

J even
=0 J odd,

P '=&lll2' 'lll&+(-. —.I2' 'I —l —
l&

RJ{t0( pl(1 b) (1+ )+Kg (1+2b) (1—K)7

+(1-")L{.(1+b)+{..(1-b)7}g.( )
+Re{{0( {2(1 &2)+—t 2(1+—b)7+ (4&4/~)l 6

+2K| 3}g p, l„Jeven (45f)
=0 J odd,

=0 J odd,

P36'= &2
—

2 I
T»'I 22&+(2 —

2 I
T»'I —

2
—

2&

=0

where

(45g)

(45h)

t 0= (2R4K/~) —(b/P), {4= (P'b)+ (Pb/b)
{l= (bP') (P/b) {5 (P='bb) (P/b)
{2=(bP')+ (P!b) f6= (P'bb)+ (P/b)
{- = (p'b) (P—r /~o),

K = (S—o —3m'+ 2p,2) (4PP') —',
R& (gG/m) ——

3 (p/p')'i'(mM)'I't, (2~W) '. (46)

V. SINGULARITIES OF THE PRODUCTION
AMPLITUDES

The production amplitudes in the isobar model and
one-pion-exchange approximation, as given by Kqs.
(43)—(45), contain many singularities which are of
kinematical origin, such as the normalization factors
(E3+m)'i', etc., and these shall be removed. We are
interested only in the singularities which are of dynam-
ical origin, by which we mean the singularities arising
from the propagator. In the partial wave amplitudes
these singularities appear as branch lines of the QJ
functions, and the branch points occur at ~=&1.
Denoting the branch points by s+, the equations for
the branch points are

s~ = —', (3m'+o —lM') % 2 L (3m'+ o —
P,')'

—(o —m')'(4m'/p, ')7'" (47)

These branch points become complex as soon as
o.) (m jlt5)2. This is a well-known fact associated with
the instability of the vertex. As we have mentioned
before that we shall assume the production amplitude
to possess, in addition to this branch line, a unitary cut
running from s=4m' to ~. We then encounter the
dificult situation that the two cuts run into each other,
and it becomes dificult to determine which of the several
Reimann sheets should be taken as the physical sheet.
To circumvent this the physical sheet is often taken to
be the one obtained by continuing the s-plane branch
points in the o variable from o ((m+p)2 to the desired
0. value, with 0- taking on a positive imaginary part.
The loci of s*of this continuation is illustrated in I'ig. 5.

In deriving these formulas we have made use of the
fact that

cos8 Q J (2J+ 1)Pg(cos8)gg (K)

= K Qg(2 J+1)Pg (cos8)gg(K) —Pp(cos8)

for the successive reduction of the cos8 terms.
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Part of the s+ locus is shown dotted as it enters onto the
second Reimann sheet of the unitary cut. If a- is con-
tinued analytically with a negative imaginary part, the
loci are changed and s will move onto the second sheet
on the upper half-plane while s+ remains on the first
sheet in the lower half-plane.

As the dynamical branch line moves pass the elastic
threshold and enters the second sheet of the unitary
cut, any integration along the unitary cut is no longer
defined. This situation is often treated by deforming
the path of integration into the second sheet in front of
the advancing branch points s+ or s . This modification
at the elastic threshold is referred to as an anomalous
threshold. However, a straight forward analytic con-
tinuation of the amplitudes alters the properties of the
amplitudes. Ball, Frazer, and Nauenberg' have looked
into this problem in detail. YVe give here a slightly
diferent version of the treatment of the analytic
continuation in a later section.

To work with amplitudes which have all kinematical
singularities removed, we shall introduce new ampli-
tudes M, defined as

J' —
(g r')1/2M J(g I)1/2 (48)

~33'=g3'~33',
where

g
r (P+m)/P—27+1

12 —(g +~1/2) (g +n8)PI
—2 (W+ 2m) (W+ ~1/2+ m)

—1

XP(W+&"+m)/2p 3" ' (49)

and I, I' are the smallest orbital angular momenta of
the initial and final states, respectively. The bar ampli-
tudes also have the correct threshold behavior. Using
these amplitudes, the unitarity equations for M are
modified by replacing the factor 4 by xp21 and mp3

' for
the two-particle and three-particle intermediate states,
respectively, with

'=(4 ) 'L(W —2 )/(W+2 ))""'
—W (~1/2+ m)

—P+1/2

P3' ——(42r) '
W+ (o'"+m)

—W2 . (~1/2 m)2- I'—1/2 —W+~l/2+m-
X (50)

W+2m

These quantities are expressed in the total energy 8',
which is the variable we shall use for our calculations.

The production process that we are mainly concerned
with are the ones given by J=2, initial spin singlet,
l;= 2, and l~= 0. These in the one-pion-exchange
approximation are Pi, P2, P8, and P4 (where J is
understood to be 2). The modified amplitudes, P,
=(g2)'/'P, (g3)'/', as we specialize to O'"=M, can be
written as

Pi ——F2/(W+ 2m) (W+M —m) )Q8 (/4) —Qi(/4) j
XL/42+(M+m)2m(M —m)(W) 'j

P,= er/(W+M+m)(W2 (M—m—)'j(W) 2Q2(/4)

X{L (W2+ M2 m2)+2+ (W2 M2 m2) (M2 —m2) $
X (2M)—'L (W' —M' —3m'+ 2/4')

—(W'+2m(M —m))(W' —(M+m)') j(W) '
Pnz'(M' —m2)'+ p, 'W—'(W' M' 3m3—+/42) 7—

X(M+n3)(W) 2)

P = 1'/'P, —-21/2PQ3 (/4)
—Q, (/4) 7L (M+ m)/2m)

XLW' —(M—m)'] (W+M+m) t
(M' —m')

X (W2 M2 m2)+~2(W2+M2 m2) j(W)—2

P4=0, (51

where

2/= (gG/m) (W+ 2m)'(80Wp'p") '

We see that these amplitudes contain the dynamical
cuts due to the branch lines in the Q functions, but no
other singularities in the H/ plane except for simple
pole at t/t/'=0.

VI, APPROXIMATE SOLUTIONS OF THE PROBLEM

As we have stated before, the dynamical problem is
formulated by assuming the amplitudes as analytic
functions which possess the unitary cuts and some
dynamical cuts. The discontinuity across the unitary
cut is given by a modified form of the unitarity condition
and the discontinuities across the dynamical cuts serve
as the input information. It has been shown by Blanken-
becler" (see also Bjorken and Nauenberg") that
amplitudes satisfying these constraints can be developed
into the following set of multichannel /1//D equations:

+22(W) M22(W)D22(W)+Q 4f&M32 (Wpo~)D82 (W &—)

+28 (W)&) M22(W)D23 (W)o)+E /Eo M82 (Wp&+ )D88 (W)ogo —) 1

+32 (Wp&) M82 (W)o)D22(W)+g /fo M88 (Wpo )&+ )D82 (W)o —) y

(53)

+88 (W &1 o 2) M82 (W o 1)D28 (W o2)+2 4f&~Ã33 (W o 1 &+ )D38 (ll o 2 o —)

18 J. D. Bjorken s,nd M, Nanenberg, Phys. Rev. 121, 1250 (1961),



LEUNGAy —CH8742

where

g ')cV22(ii')dw'(ii"' —~) "D„(W)= l

I~) i,(g")iv23'(ii' 'dW'(~'—

I~~) i (g g)lV32dw'(li"—

,)iV88"(li' " ') 'aw (w' —~) '~'i1(lrlr qg l)02)

and

i(i'rlr g+ )D83(birr)D i(g 'Io')+2r(err l're) 322'(g g)

/»~ 8',&-'I'(W', &ig+. '(w', )D (~')+~r(err g ) A 82'(g g)

(55)
r D 'rP rg2)

ir (fg, g i|g+)D "(W o2)+~d8' r(err lir') 2 32 (
iir (P', g i&IT2)
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the integration over the dynamical cut is such that only
its value at W= 2m is meaningful (as the integrand is
most singular there). Since we are looking at the
singlet state of the elastic process, different spin
amplitudes of the production process contribute in
such a manner that we can introduce conveniently a
single amplitude, P= (PP+PP+Pa'+P42)'~' which
will account for the summation over the spin states.
I' is plotted on Fig. 6, and is calculated in units mc'= 1.
This means we shall introduce I' throughout and drop
the spin summation, and we get

.l2

.08 40

g„(W)= do f*(a)P(W)D32(2m, a),
0
2.0 2J 2.2 2eb

TOTAL ENERGY, W (in rnc*)

2.4

&~23(W,a) = do.'f*(o.')P (W)D38 (2m, a,a'),
(56a)

%32(W)a) =f(a)P t W) D22(2m) )

(33W, ,aa)= f(o)P(W) D23( 2m, o').

By successive substitution of D32, %32, and D» into the
equation for F22 we get an integral equation for /22
which is a Fredholm equation with a separable kernel.
E» can be solved by the standard technique, and
similarly all N;; and D,; can thus be solved.

Finally, the solution for the scattering amplitudes are

M22(W) =P(W)G(W, 2m)[1—Z(W, 2m)

XG(W, 2nz)) '

Mga'(W o) =M32'~(W o) = f~(a)P (W)
XM22(W)[P(W)G(W, 2m)g

—', (57)

M33(W, o,o') =f(a)f(a')K(W, 2')M22(W)[G(W, 2m)$

where

G(W, 2m) = (W—2m) do
~ f(o)

~

' dW'(W' —W ie) '—
XP(W') p3(W', a) (W' —2~)—',

E(W,2m) = (W—2m) dW'(W' —W-ie) 'P(W')

Xp2(W')(W' —2~) ' (5&)

and the superscript i denotes the four different spin
states of M~3 or 3f32 corresponding to those of I',. Here

~
f(o) ~' is assumed to be given by a Breit-Wigner

distribution. with a half-width 6 of the (3,3) resonance
io the ~—lV scattering, i.e.,

j f(o)) = (2a ~ ) (6/2m)[(a ~ —M) +(6/2)'j ' (59)

where we take (6/2) =0.06 (in unit of mc'). G(W, 2nz)
and Z(W, 2m) are then evaluated numerically, and
their real and imaginary parts are plotted on Fig. 7.
In passing let us mention that although in this particular
problem the G and E curves computed in this manner
look quite different from those computed using the

FIG. 7. Numerical values of the real and imaginary parts
of X(W,2m) and G(W, 2m).

pole approximation, the 6nal differential cross sections
computed are about the same.

The differential cross section at 90' in the 7=2 state
for the elastic amplitude is roughly

da/«=(25/16p') I
2'» I'

= (25/16p') (W—2m)'(W+2m) '
X [(ReG '—ReZ)'+ (ImG '+ImK)'1 '. (60)

The computed cross section, as plotted on Fig. 8, shows
a bump at around 600 MeV. Due to the lack of partial
wave data at this energy, this bump is matched with
the difference of the differential cross-section curves in
the T=1 and T=O states. This provides at least a
comparison of the order of magnitude. The agreement is
surprisingly good, but this should not be taken seriously,
as on Fig. 8 another curve is shown which is calculated
from a coupling constant G which is 20% larger than
that estimated, and the computed curve is moved up
quite a bit. This sensitivity is of course not unexpected,
since unitarity connects the imaginary part of M» with
the square of M», a change in M» is magni6ed at least
two times in M» which is then squared to give the cross
section. This also explains why small inelasticity usually
have no effect on the elastic amplitude, since once it is
squared it becomes negligible. Therefore, for a produc-
tion amplitude to contribute substantially to an elastic
amplitude it must be as large as the elastic amplitude,
and to achieve this it is almost always necessary to have
some resonance situation in the production channel so
as to obtain maximum coherence.

VII. COMPLEX SINGULARITIES AND
ANOMALOUS THRESHOLD

In the previous calculation, the contribution from the
anomalous threshold is completely neglected. It is well
to have in mind. the order of magnitude of this feature,
and therefore we shall give an estimate of its contribu-
tion to the present problem.

The problem of analytic continuation is most care-
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Wag(W) =mr+8(W —W~)+m.r 6(W— (64)
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given by Eq. (57),

mir~p2(W+) G (W+, 2m)

+—W) (W —2m) 1—E(W+,2m)G(W+, 2m)(W+—W +—m

+C.C.

ds (s s) 232(S,M )
=o.o3Lr+(w+ —w)-i+r (w —w)-ij, (65)

C(M )

4m~

+(M )

ds'(s' —s) ' disct M32 (s',M') jp2(s')

im and Gwhich is evaluated by taking W~= (2m+im,

S
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and E approximated by a pole at 8'= 2m with residue
equal to 50, which 6ts the one-pion-exchange amplitude
approximately in the physical region. This result shows
that even if the entire input amplitude were fitted by
two poles at 8'+ and 8', with residues I'+ and F,
respectively, the contribution from the anomalous
threshold can at most amount to 3%.Hence, the initial
assumption that its contribution is small is justified.
The reason that 3f32 is small in this case is because the
real parts of 8'+ are exactly at threshold, and conse-
quently ps(W+) are very small, and so are G and K
evaluated there. However, if the real parts of 8'+ are
large then the contribution from such complex singulari-
ties would also be large. Hence, the calculation carried

out by neglecting the complex singularities are actually
realistic within the framework of our program.
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The possibility of constructing an S-matrix theory from postulates concerning unitarity, analyticity, con-
nectedness, the ic prescription and the spin-statistics connection is explored. The existence and residues of
the physical region poles are shown to follow from the connected unitarity equations. The validity of certain
fundamental theorems known from field theory, Hermitian analyticity, extended unitarity, the existence of
antiparticles, the substitution law for crossed processes and the TCI' theorem is reduced, in simple cases, to
the question of whether the S-matrix singularity structure permits specific distortions of certain paths. These
distortions are shown to be possible in a "model" singularity structure consisting of the normal thresholds,
and depend only upon simple properties of these singularities. It is explained that it is logically impossible to
deduce the complete singularity strpcture without the results we are trying to prove. A suggested resolution
of this difhculty is to set up a scheme of successive iterations in singularity structure to be justified by self-
consistency. Then our work is the first step in such a scheme.

1. INTRODUCTION

ECENTLY some degree of understanding of the
working of unitarity in S-matrix theory has been

developed, e.g., the way it evaluates discontinuities, '—'
generates singularities, ~ and enables analytic continu-
ations to be made onto unphysical sheets' "' In this
sort of work a large number of properties or ingredients

*This paper is a revised version of an unpublished Cambridge
preprint circulated in July 1963 under the title "Towards an Axio-
matisation of S-Matrix Theory. " Compared with this the con-
clusions are restated more precisely. The work has been rearranged
and more explanation given but no new results are included.
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s D. I. Ohve, Nuovo Cimento 26, 73 (1962).
e D I. Olive, Nuo. vo Cimento 29, 326 (1963).
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(1962).' H. P. Stapp, Phys. Rev. 125, 2139 (1962).
e J. Gunson and J. G. Taylor, Phys. Rev. 119, 112 (1960).
' D. Zwanziger, Phys. Rev. 131, 888 (1963).

have been used. Apart from the quantum and Lorentz
assumptions these are: (1) unitarity, (2) connectedness
structure, '" (3) maximal analyticity, ' (4) the ie pre-
scription (see Sec. 3), (5) Hermitian analyticity, (6)
extended unitarity, ' (7) existence of unphysical region
stable poles on physical sheets, (g) the existence of
antiparticles, (9) the substitution law for crossed proc-
esses, (10) the TCP theorem, (11) special physical
sheet properties, (12) properties of physical region

poles, 4' (13) connection between spin and statistics.
Several of these ideas can be grouped together. (5),

(6), and (7) can be thought of as unphysical versions of
the unitarity equations for T-matrix elements, valid
at energies below the physical threshold of the ampli-
tude concerned, . The number of intermediate states
included decreases with the energy so that (5) derives
from the equation with no intermediate states and (7)
from that with a single-particle intermediate state.

' H. P. Stapp, University of California Radiation Laboratory
UCRL-10289, 1962 (unpublished).


