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We consider forward scattering in the ladder approximation for a trilinear scalar interaction. The cor-
responding Bethe-Salpeter integral equation for the absorptive part of the amplitude is of the Volterra type;
and the kernel and inhomogeneous term are both positive. We exploit these special features in order to set
upper bounds on the absorptive amplitude for arbitrary values of the coupling constant g. Two different
techniques are described. For large scattering energies the bounds obtained imply corresponding bounds on
the value of the leading Regge pole n (0). In the limit of weak coupling our upper bound on n(0) is linear in g'
and in fact coincides exactly with the known weak-coupling result. In the limit of strong coupling our upper
bound varies as the square root of g'. The correctness of this feature is discussed on the analogy with the
Schrodinger problem of binding in a potential ield.

I. INTRODUCTION

'HE study of ladder graphs for scattering processes
has for some time been a very popular occupa-

tion. ' " The summation over an infinite subset of
ladder graphs leads to an amplitude which satis6es the
simplest integral equation of the Bethe-Salpeter type. ""
One hopes that the ladder approximation already re-
veals many of the features of a complete theory. It
has been used for the study of bound-state questions;
and viewed from a diferent channel, it has been used
as a model for high-energy scattering ("multiperipheral
model" ).' s Jointly these two aspects make the ladder
approximation an interesting testing ground for the
Regge hypothesis in conventional field theory. '

A vast amount of work has been done on the men-
tioned integral equation concerning the existence of
solutions and their analytic properties with respect to
energy and angular momentum variables. It should also
be interesting, however, to have some information on
the numerical sise of the scattering solutions. This is
the purpose of the present paper, in which for simplicity
we study forward scattering in a trilinear scalar inter-
action theory. In particular we concentrate on the ab-
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sorptive part of the scattering amplitude. This satis6es
a Volterra-type integral equation and we can utilize
the positivity of its kernel to obtain an upper bound on
the absorptive part, for all values of the scattering
energy and of the coupling constant.

Two somewhat different procedures are described for
obtaining bounds (Secs. II and III, respectively). The
second of the two has considerable flexibility and
promise. The upper bound which is obtained, when
studied in the limit of high energies, provides an upper
bound on the leading Regge pole in the crossed channel.
In the limit of weak coupling, g' —+ 0, the bound which
we get is linear in g' and in fact coincides with the
known, exact expression. In the strong coupling limit,
where no exact results are available, our upper bound
varies as the square root of g'. Ke discuss, however,
the Regge problem for potentials and are able to show
that this feature must be present there in the strong
coupling limit, for a wide class of potentials.

II. A SIMPLE MAJORIZATION IN THE
INTEGRAL EQUATION

We are concerned with the ladder approximation for
forward scattering of two scalar particles, with respec-
tive momenta p and k. The ladder diagrams are shown
in I'ig. 1. The heavy lines describe particles of mass tn;
the wavy lines (rungs of the ladder) correspond to
particles of mass p, . All of the particles are taken to be
scalars. The squared barycentric energy is s= (p+k)'
and the invariant momentum transfer is 1=0. On the
mass shell p'=k'=m'.

FIG. 1. Ladder diagrams for the forward scattering of
two scalar particles.
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The absorptive part of the forward amplitude, as
defined for p' off the mass shell in the ladder approxima-
tion, satisfies the integral equation'

A(p, k) =mg'bl (p+k)' —p'j

g' A (p', k)+, ~'p', ~L(p p')' —/"j; —(1)
(27r)' (nP —p")'

this is symbolized by the diagram shown in Fig. 2. In
terms of the invariants p', s, and k'=nP, this can be
written

g2

A (s,p~) = m g'8(s —p')+ $ (s—p' —m') —4p'm'j-'/'
16m-'

It is our purpose to exploit this fact in order to obtain
upper bourids on the absorb&tive part )/((s, p'); in par-
ticular, thereby, to set upper limits on the asymptotic
behavior for s —+. In the discussion which follows,
we shall assume that m ~& p. This restriction on the masses
is for technical convenience and has no other im-
portance. The arguments given could be supplemented
to apply, without essential change, to arbitrary ratio
of the two masses, provided stability conditions are met.

We shall proceed in two diferent ways. In this sec-
tion we majorize the integral equation (3) suKciently
drastically to yield a new equation which is directLy
soluble. In the next section we discuss a somewhat dif-
ferent, and generally morepromising approach, which in-
volves the use of trial functions to achieve majorization.

We now majorize Eq. (3) by employing the inequali-
ties (valid for p'~&0):

g' 8(s—4p')
A (4) (s,p') &

16~eP s—p' —m'

(p")+&0 (p")-& —~ '

L($—p2 —A@2)2—4M2p2j 1/2 & ($—p —982) (

g
]t (s,p') =

16nm' s—p' —nP
(p")+=p'+/' (1/2$) ($—+p' ~') (s +s~')—

L ($ p2 w2) 2 4p2M2 jl/2

&& P(s s'+//')' 4p—'s j'/'(1/2—$) .

With )p(s,p') =A (s,p') —~g'b(s —p') we then have the

equation
g2

($ p2) —A (4) ($ p2)+ L($ p2 yg2)2 4p2M2j 1/2

167r'

((&~) /]' — y($' p'2)
(Es' dp", (3)

4 2 (~2 p&2) 2

g' 1 ' 4(s',p")
(b' dp", (4)

16m' $—p —~ 4p' — (~ p )

where we have also extended the upper limit of the s'
integration to the value s.

Introducing

o(",p")
()tp~2

(m2 p&2) 2
f(s) =

where A (') (s,p') is the fourth-order contribution to the
absorptive part coming from the box diagram: we find

A"'($ p') = (N'/16~){$($—4/'))"'
y {(s—p2 —ypp) (yg2$ —/„2p2 p2yp)

+no'p'(s 4g')+ s(//, ' ns')')— —
f(s) = + ln

m'(s —2m') (s—2m')' s—m'

g4 g2 s

X + ds' j($')
16xm' 16m' 4„~

The integral equation (3) is of the Volterra type and
the iteration solution converges for every 6nite value
of the coupling constant g. In fact, for any hnite value
of s, )P(s,P') can be computed with a finite number of
iterations. Moreover, both the inhomogeneous term and
the kernel are positive throughout the range of the
variables appearing in the integral. It follows that any
majorization of the inhomogeneous term and/or of the
kernel leads to a new integral equation whose solution whose solutio

is an upper bound for )P(s,P'), provided that the itera-
tion series of the majorizing equation still converges
pointwise.

A further majorization leads to the equation

g4 g2 a

(s 2nz') f(s) = — + ds'f(s'),
16xns4 16m'm' 4„2

g4 1 $2~2 )g/6 m

f(s) =
16xm4 s 2m' 4p' ——2m')

where the upper and lower limits on the p" integration The majorizing equation for $&~4p' is then
are given by
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P(x)— E(x,x')f(x')dx'~&0 )or &&0j

If we now extend the limits on the p" integration in present problem, can be obtained by a different method
Eq. (3) from —oo to 0 and, for simplicity, the s limits which is based on the following simple observation.
from 4p' to s, we may use the above bound on f(s) to Lemma: The inequality
deduce an upper bound for P on the mass shell, p'= m'.
In this way we find

|P(s m') &&A&'~(s, m')+ —Ls(s —4m )j '~'

16xm'

$—2m2 g2/16 ~2~2

X —1 e(s—9t ') (5)
4p,'—2m'

Of particular interest are the implications of this
bound for large values of s. If the asymptotic behavior
of the absorptive amplitude for forward scattering is
dominated by a Regge pole n(t =0), our result implies

n (0) & —1+ (g'/16m'm') . (6)

We see therefore that our upper bound, Eq. (6), in fact
coincides with the true weak coupling limit for forward
scattering. But of course we have shown that (6) is an
upper bound for any value of the coupling constant.
That the bound is such a good one in the weak coupling
limit is a source of some surprise, in view of our reckless
majorization approximations.

The upper bound, for any value of g, which is repre-
sented by Eq. (6) can be related to corresponding ques-
tions for the case of a bound state in an attractive
Yukawa potential V= Xe & "/r. —

It is known there that the angular momentum for
fixed binding energy 8 can be expanded in powers of
X according to

n(B)= —11(X/2+B)+ (higher order in X)

The analog of Eq. (6) would then read

n (B)~&
—1+ (P./2+B) (7)

for any X. However, the correctness of (7) is in fact
immediately obvious. The right-hand side of (7) is the
known trajectory (as a function of B) for the Coulomb
potential —X/r. Clearly, a Yukawa potential Xe &"/r-
is everywhere weaker than the corresponding Coulomb
potential; hence for given binding energy it requires a
weaker centrifugal barrier. So we expect n(B) for the
Vukawa case to be smaller than, or at most equal to,
the corresponding n(B) for the Coulomb case.

III. TRIAL FUNCTION METHOD

A more Qexible procedure for bounding the absorptive
amplitude, and as it turns out a better one in the

But in the weak coupling limit, g
—+ 0, expressions have

been obtained elsewhere'" for the location of the
dominant pole at arbitrary momentum transfer t:

g' ' dx
n(t) = —1+ +(higher order in g').

167|' o m' x(1 x—)t—

for x in the interval (a,b) implies P(x) &0 Lor &0j in
(a,b), provided that E(x,x')'&0 and that the iteration
series (1+E+E'+ .)tP converges pointwise.

We can apply this to obtain upper (or lower) bounds
on the solutions of integral equations. For example, if
the given equation is

P(x)= oo(x)+ E(x,x')P(x')dx', E(x,x') &0,

we try to determine the parameters o.~, o,2, ~ of a
tria/ function g(x;n) so that —in the case where we
seek say an upper bound—

g(x;n) — K(x,x')P(x';n)dx'&&p(x) for all x in (a,b).

Here K(x,x') &E(x,x') may be chosen to simplify inte-
grations, etc. ; i.e., we can regard E as a "trial" kernel
adjusted for convenience provided it bounds the true
kernel. For best results of course one chooses X=E.
We now have, symbolically,

or

and hence (P P) K(P P—) &0—. Thus—, according to
the lemma P(x; n) is an upper bound to P(x), provided
the iteration series converges pointwise. Clearly analo-
gous procedures apply where one seeks to obtain a
lower bound. As long as the kernels are nonsingular the
requirement of pointwise convergence is always met

- for Volterra equations.
In applying the present method to the integral equa-

tion (3) we seek a trial function P(s,P') such that

g
y(s, p') —

t (s—p' —m')' —4m'p'j —'n
16~'

H&tt) —ttl

8$
&""+ p(s', p")

dp" & A"'(s, p') . (8)
(m' —p")'

To simplify the subsequent computations, we shall allow
ourselves to worsen matters somewhat by further major-
izing the kernel (extending the range of integration)
and the expression for A &" (s,p'). Using the inequalities

('s' m'—
—s+s'+ p'& (p")-& (p")+& p'I

&s-m'
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the strong coupling limit a bound on n(0) which grows
with the sggare root of g'. We now wish to argue that
this behavior for large g' is in fact plausible for the true
rr(0) and that our bound is therefore a good one, apart
from constant factors, in the limit of large g'.

We consider the analogy to the Vukawa potential
Here the effective potential, including the centrifugal
barrier term, is

V,tr ———(}/r) e-&"+Ln(n+1)/r'j.

For fixed binding energy the ratio n( r+r1)/X clearly
cannot increase indefinitely as I, —+~ because V,ff
would then eventually become repulsive for all values
of r and could not maintain a fixed bound state. Simi-
larly n(n+1)/X cannot decrease indelnitely towards
zero as A,

—+00 because V,ff would then grow more and
more attractive over an increasingly large range of r.
In fact it is easy to conclude that, in order for a fixed

bound state to be maintained, it is necessary that

n(n+ 1) 1
hm — =— e=- 2 7183 --

pe

This corresponds to the situation where the two zeros
of V,ff approach each other as ) —+, while the depth
of the potential between them grows indefinitely. This
property is quite general": for any attractive potential
that is less singular than r ' at the origin and that falls
off more rapidly than r ' at infinity, n(X) must satisfy

n(n+1)
lim = const&0,
) -+oO

the constant depending on the shape of the potential.

"This has been noted independently by R. Blankenbecler
(private communication).
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With the aid of some operator algebra the Lippmann-Schwinger integral equations for three-body tran-
sition amplitudes are recast in a form which involves two-body transition operators rather than two-body
potentials. These equations, which are uncoupled and apply to all channels, are ideally suited to be the basis
for approximation schemes, of the impulse approximation type, which have the distinctive feature of pre-
serving unitarity. Two such approximations are described. With either of these as the leading term, a method
of successive approximations is developed which yields an expansion for the exact amplitude whose con-
vergence properties are expected to be considerablyimproved over the usual Born and multiple-scattering ex-
pansions. At high energies and low momentum transfers we obtain a unitary version of the strip approxima-
tion. Here the integral equation is quite tractable and represents the nondispersion-theoretic analog of multi-
particle /l//D techniques which have been applied recently to Ar-/V and s.-/V reactions.

i. INTRODUCTION
' 'N a previous paper' we have formulated a scheme for
~ - calculating three-body scattering amplitudes which
generalizes the well-known impulse approximation by
taking into account the constraints imposed, by unitar-
ity; effectively, one has summed an infinite set of dia-
grams of the impulse approximation type. A generalized.
/V/D procedure was employed, in a model in which the
incident particle interacts with only one of the target
particles. An alternative to the X/D procedure which is
in fact much more convenient and direct, particularly
when none of the two-body potentials are ignored, will
be described here. We again obtain amplitudes which
satisfy a generalized unitarity relation which, however,
can be derived without reliance on the multiple scat-
tering expansions employed in Ref. 1. In fact, in Sec. 2,
we derive the exact integral equations whose iterations

* Supported by the National Science Foundation.' L. Rosenberg, Phys. Rev. 131, 8/4 (1963).

give rise to the multiple scattering expansions. These
integral equations are essentially the Lippmann-
Schwinger equations recast, with the aid of some oper-
ator algebra, into a form which involves the two-body
'1operator, rather than the two-body potential. Such a
reformulation is particularly desirable in the light of the
observation' that the ordinary Born expansion of the
three-body amplitudes in powers of the two-body po-
tentials is essentially useless as a calculational tool.
Similar T-operator integral equations were obtained
earlier by Fad.deev. ' In the form given here they lend.

2 R. Aaron, R. D. Amado, and B. %'. Lee, Phys. Rev. 121, 319
(1961).

s L. D. Faddeev, Zh. Eksperim. i Teor. Fiz. 39, 1459 (1960)
LEnglish transl. : Soviet Phys. —JETP 12, 1014 (1961)j.These
equations are highly coupled; they take the form of matrix inetgral
equations. A more compact form, applicable to many-particle
scattering problems, has been developed by S. steinberg, Phys.
Rev. 133, 8232 (1964), although the two-body potential still ap-
pears in steinberg's formulation. Our equations, restricted here to
the three-body case, combine the advantages of being uncoupled
and potential-independent.


