
MECHANISM OF Si (d, p) REACTIONS BELOW 3 Mev 8693

CONCLUSIONS

It appears that consistent quantitative agreement be-
tween the experimental angular distributions of (d,P)
reactions with medium light nuclei and the DWBA pre-
dictions for such reactions is unlikely. The diQiculty
seems to arise from the contribution to the experimental
differential cross section from compound-nucleus forma-
tion. The angular distributions of this compound-
nucleus component are Quctuating and asymetric and
hence difFicult to disentangle from the stripping distri-
bution. At the low energies employed in this experi-
ment, the direct interaction mechanism accounts for
only approximately one-half of the observed cross
section. The magnitudes of the CN effects are such that
various anomalies observed in (d,p) reactions at con-
siderably higher energies can probably be explained as
large CN contributions to the stripping distribution. ""

With observations at a number of bombarding
energies, individual experimental angular distributions
may be obtained which apparently are relatively slightly
affected by CN contamination. These experimental dis-
tributions can be fairly well approximated by DWBA
predictions in a consistent manner. Multiple observa-
tions are especially necessary at low bombarding
energies where the stripping distribution is not so

sharply peaked. With these precautions, DWBA analysis
of low-energy (d,p) distributions would appear to yield
valid spectroscopic data. Detailed confirmation of the
proper values of the optical-model parameters remains,
however, a dificult and uncertain problem because of
the residual CN effects. An uncritical application of
plane-wave Born-approximation analysis to (d,p) re-
actions initiated with low-energy deuterons can yield
mis1eading information concerning l„.

There is some evidence that the rapid variations in
cross sections and angular distributions observed in
this experiment can be explained as Ericson-type
Quctuations in the compound-nucleus component of the
reactions. The role of interference between the com-
pound nucleus and direct modes of interaction is
difFicult to assess, however, and may account for a
considerable portion of the variation.
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An approximate expression for the partial-wave scattering phase shifts produced by a potential strongly
divergent at the origin is introduced, This approximation is applicable over the whole energy range; it
yields the correct threshold behavior of the phase shifts and becomes exact at high energy. The high-energy
behavior of the phase shifts Sr is ascertained; we find, as k diverges (l fixed), sr = —Ak' '~~, where ra charac-
terizes the behavior of the potentiai at the origin, V(r)~r, ra) 2, and A is a constant independent of l

which is evaluated explicitly. Numerical tests of the accuracy of the approximation are given, including
comparisons with the WEB approximation.

I. INTRODUCTION
' "N this paper we introduce and discuss an approximate
~ - expression for the scattering phase shifts produced
by a repulsive potential strongly divergent in the origin.
We concentrate our attention on S-wave scattering;
the generalization to all partial waves is given at the
end of the paper.

Singular potentials are important in phenomeno-
logical treatments of nuclear and atomic interactions.
A second motivation for discussing scattering on
singular potentials lies in the connection of this problem

with that of the divergences in (renormalizable or
unrenormalizable) Geld theories.

It is well known that for strongly divergent potentials
scattering theory makes sense only if the divergent
core is repulsive, because only in this case may the
normalization of the wave function in the origin be
maintained. This implies that the scattering amplitude
will not depend in an analytic way upon the strength of
the interaction. Thus, the Born approximation, being
the first term in a power expansion in the strength of the
potential, fails to converge; nor is I'"redholm theory
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applicable. This breakdown of the traditional perturba-
tive approaches is in contrast with the simplicity of the
physical situation, in which the effect of the repulsive
core is simply to reQect the scattering particles, forbid-
ding their penetration in the inner region. Our treatment
is based on the phase approach to scattering theory'; in
fact, this approach appears naturally appropriate in
this case, because it deals only with the physically
relevant quantity —the phase shift —rather than the
wave function (whose detailed behavior in the core
region, while physically irrelevant, is in fact responsible
for the mathematical difficulties).

An approximate expression for the scattering phase
shift which retains its validity for singular potentials is
the WEB approximation 8~Kg. This approximation,
however, because of its semiclassical nature, is only
valid provided the wavelength associated with the
scattering particles is small as compared with the
radius of the repulsive core; thus it breaks down
completely at low energy. The approximation we
introduce maintains, instead, its validity over the whole
energy range, and it yields the correct threshold
behavior of the phase shifts; it is, however, more reliable
at higher energies, and it becomes exact as the energy
diverges.

In the following section, the approximate expression
'5 pp for the 5-wave phase shif t, is derived. In Sec. III,
the high-energy limit of the phase shift is ascertained.
In Sec. IV, we consider the low-energy limit and obtain
an approximate expression for the scattering length.
This expression is compared with the exact expression,
for one class of potentials whose scattering length may
be evaluated exactly. In Sec. V, a numerical comparison
is made of b,pp and bwK& with the exact phase shift for
the class of potentials

V(r)=r me I"

In Sec. VI, we introduce the generalization to all partial
waves. Section VII contains some concluding remarks.
Throughout this paper, units are chosen so that
A = 2M = 1, M being the mass of the scattering particles.

II. INTRODUCTION OF THE APPROXIMATION

The 5-wave scattering phase shift 8 may be obtained
from the phase equation'

5'(r) = —k
—'V(r) sin'(kr+5(r)],

8(0)=0, 8=8(~). (2.1a)

Here U(r) is the potential, and k is the momentum of
the scattering particles. The phase function 8(r)
measures the phase accumulated by the potential up
to the distance r; specifically, 8(r') is the scattering
phase shift produced by the potential V(r)8(r' r), i.c., —
the actual potential amputated of its part extending
beyond r'. Here and in the following, 8(x) is the step
function, 0(x)=0 for r&0, 8(x) = 1 for x)0.

The potential V(r) is assumed to be positive definite;
the extension of the results to the case when U(r) is
not positive definite is mentioned in Sec. VII. To be
definite, we also assume the potential to be of the form

V(r)=ro '(ro(r)™C(r), m&2, (2.2a)
with

C(0)=1. (2.2b)

It will be obvious that certain of our results —in
particular, the approximate expressions for the phase
shifts —apply also to potentials which diverge in the
origin more strongly than any inverse power of r. The
potential is also required to vanish at infinity, as usual
in scattering theory.

To arrive at an approximate expression for the phase
shift, we integrate Eq. (2.1a) and obtain for the phase
shift

dr V(r) sin'Lkr+8(r)]. (2.1b)

Ke now propose to substitute an approximate determin-
ation of the phase function 8(r) in the integrand in the
right-hand side of this equation. Notice that the sub-
stitution of the zeroth-order approximation 5(r)=0
would yield the Born approximation for 5 (which,
however, diverges for the class of potentials we are
considering). Because the potential is very large close
to the origin, it is from this region that the major contri-
bution to the phase shift originates; therefore, it is in
this region that the phase function must be approx-
imated more carefully. Thus, we investigate the
behavior of the phase function near the origin, and from
Eq. (2.1a) we obtain

6(r) = —kr+kLV(r)] "'+-',kV'(r) V—'(r)
+OL(&/&o) '"" "] (2 3)

The first term in the right-hand side corresponds to
the phase shift produced by a hard sphere of radius r;
the second and third terms behave, respectively, as
y~l2 and ~m—~

We might then try to substitute in place of 8(r) in

the right-hand side of Eq. (2.1b) the first two terms of
this expansion. In this way, however, while accurately
approximating the behavior of the phase function near
the origin, we would approximate it very badly at large
r (where the phase function should become asymptot-
ically constant rather than diverge). When the energy
is large, this would be acceptable; in fact, as will be
shown in the next section, in this manner one may
obtain the correct high-energy behavior of the phase
shift. To obtain an expression valid at all energies, it is
necessary to manufacture an approximate expression
for 5(r) which, while reproducing the first two terms of
Eq. (2.3) at small r, also yields a reasonable result at
large r. One such expression, which reduces to the
zeroth-order result 5(r) = 0 at large r, is

i F. Calogero, Nuovo Cimento 27, 261 (1963). kr+kr(rgv (r)y—'+1) ' (2.4)
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This expression, while relatively simple, has the addi-
tional feature of yielding a result, correct up to a
constant factor, also for the third term in the expansion
Eq. (2.3). Inserting this expression in Eq. (2.1b), we
obtain the following approximate expression for the
scattering phase shift:

b»~= —k ' drV(r) sin'fkr(r[V(r)]'t'+1) '}. (2.5)

This may be viewed as a modified Born approximation,
which takes into account the suppression of the wave
function in the interior region. Note that this expression
is real only for repulsive potentials, and that the
nonanalyticity in the strength of the interaction appears
as a built-in feature of this approximation.

As implied by Eqs. (2.3) and (2.4), the approximation
Eq. (2.5) should be expected to be accurate only for
m&)2 and for potentials which vanish fast at large
distances. It. is anyway amusing to apply it to the
centrifugal potential V(r) =l(t!+1)r ', in which case it
y&eid». »= —&sr{i(l+1)/{[l(l+1)]"'+1)).The correct
result is of course —-,'xl. The Born approximation value
is —

ipse.l(1+1), and for large values of l is much worse
than the one we obtain.

In the case of a hard sphere, V(r)= ~ for r(R,
V(r) =0 for r)R, Eq. (2.5) yields the correct result
6= —kR.

IV. APPROXIMATION FOR THE
SCATTERING LENGTH

In the zero-energy limit, we get from Eq. (2.5) an
approximate expression for the scattering length a,
dered by

(4.1)lim[ —b/k] =a.

This expression is

drr'V(r)(r[V(r)]"'+1)-'. (4.2)

This expression is valid for m&4. For 2&m&4 the
second term in the right-hand side in Eq. (3.2) must be
modified, as specified in Appendix I.The dominant term
is the same.

Notice that the magnitude of the phase shift increases
with energy as a result of the singularity of the poten-
tial; but it can never grow faster than linearly in k.
This is consistent with the limitation implied. by
signer's theorem. '

It should also be mentioned that, while in this paper
we have restricted out consideration to potentials
singular in the origin as an inverse power of r, this same
treatment could also be applied to more singular cases,
for instance, to potentials behaving in the origin as
exp(ot/r), n&0. In such a case, the dominant term
would behave asymptotically as k (ink) P, with P)0.

III. HIGH-ENERGY BEHAVIOR OF THE
PHASE SHIFT

In the preceding section, we have given an expansion
Eq. (2.3) for the phase function in the neighborhood of
the origin. But at high energy, it is just the behavior at
the origin which determines the scattering phase shift.
Thus, by substituting in the right-hand side of Eq.
(2.1b) the first terms of the expansion Eq. (2.3), we

get an asymptotic expansion for the phase shift at high
energy. In this manner, we establish the high-energy
behavior of the phase shift; obviously the dominant
term coincides with that yielded by the approximate
expression Eq. (2.5).

By inserting the first three terms in the right-hand
side of Eq. (2.3) into Eq. (2.1b), we have

drV(r) sin fk[[V{r)]

with

A = [2' "t &/(2 —(2/m))!][(sr/m)/sin(sr/m)7,

b= —[rpC'(0)]2—'t" 2——!
(

2——[!cos —
[

m
'

m ( m) m)
(3.4)

(3.3)

+-.V {)V- ()i& (3.1)

The limit of this expression as k diverges is readily
evaluated (see Appendix I). We find for the first
two terms

b= —A (kr )' "t &[1+b(kr ) 't~]

This may be integrated for the class of potentials

V(r) = rp
—'(rp/r)", r(R,

=0, r&R,
(4 3)

and we find'

a,» ——RF[2,2p; 2p+1 i
—(R/rp)'t&'»] (4 4)

Here F (a,b; c; x) is the hypergeometric function, 4 and

p= (m —2)
—'. (4.5)

a,»——rpR/(rp+R), (m=4) .
In the limit of large nz, we obtain:

a,»=R if R&rp, ( +m)pe
a,»——rp if R)rp, (m~pe).

(4.7)

{4.8a)

(4.8b)
s E. P. Wigner, Phys Rev. 98, 145.(1955).' Tables of Integrat Transforms, edited by E. Erdelyi (McGxaw-

Hill Book Company, Inc. , New York, 1953), Vol. I.
4 Higher Transceedemtal PNncri ops, edited by E. Erdelyi

(McGraw-Hill Book Company„ Inc. , New York, $953), Vol. I-

It is convenient to rewrite this expression using Eq.
(2.10.2) of Ref. 4. We then find

a,»——rp(1I p/sinsrp) (1—2p)/cossrp
—R[(rp/R) Uo/(m —3)]

XF[2, 2—2P; 3—2P; —{rp/R)'t&'ol]. (4.6)'

In the case m=4 the hypergeometric function in (4.6)
is readily evaluated and we find
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TABLE I. A comparison of the approximate and exact values of
the scattering length for the potential V(r)=rp '(rp/r), for
various values of m. The quantities in the table are the scattering
lengths divided by rp, they are computed from Eqs. (4.15)
and (4.9).

4.5
5
6

aapp/rp

1
0.855
0.806
0.785

a/rp

0.806
0.729
0.676

7
8

10
20

aapp/ro

0.793
0.806
0.833
0.907

a/rp

0.666
0.670
0.688
0.773

The second term in the right-hand side of Eq. (4.6)
vanishes in the long-range case R= ~,' so that in this
case we have simply

a,»——rs()rp/sin)rp) (1—2p)/cos)rp, (R= po) . (4.9)

These results should be compared with the exact
values of the scattering length, which may be obtained
from the zero-energy radial wave function for r&R

e(r) =r'I'K„$2p(rs/r) I"»] (4.10)

and the matching condition

as implied by the asymptotic expressions Lderived from
Eqs. (4.9) and (4.15)):
a.pp=rol:1 —2p+O(p')3 (R= "), (4.16a)

a= rsE1 2p( lnp 0 56)+O((p lnp)') j
(R= ~) . (4.16b)

V. COMPARISON OF THE APPROXIMATE PHASE
SHIFTS WITH THE EXACT VALUES

In the general case, Eq. (2.5) must be evaluated
numerically, and the exact phase shift must be obtained
by numerical integration of Eq. (2.1a) or of the radial
Schrodinger equation. ' This has been done for the class
of potentials

V(r) = r exp( —fir), (5.1)

for various values of the parameters m and p and of the
energy of the scattering particles. Note that these
potentials correspond to those of Eq. (2.2), with rs 1;——
this establishes the unit of length. For the purpose of
comparison, we have also computed the value of the
phase shift obtained in the WXB approximation,
namely, '

Here Kp(x) is the modified Ilessel function of the
third kind. '

Again, this simplifies in the case m=4, in which case
we find

a=a, =rsR/(R+rs)', (m=4). (4.12)

We thus see that the present approximation yields
the exact value of the scattering length, for the class
of potentials

V(r) = r '(rs/r)') r(R)-
=0, r&R,

(4.13)

independently from the value of the ratio R/rs.
In the limit of large tn we find, after some algebra

a=R if R&re, (m ~po), (4.14a)

a=re if R&fs, (m —+ ), (4.14b)

which again agrees with the exact result, Eqs. (4.8).
In the long-range case, R= ~, we have

a=re(s.P/sinrrP) (PP/P!)s, (R= ~). (4.15)

In Table I, we give a numerical comparison of the
approximate and exact expressions for the scattering
length in the long-range case LEqs. (4.9) and (4.15)j.
Note that a,» and u have in this case the same qualita-
tive behavior as functions of m, with a minimum
between m=6 and m= 7. Although the two expressions
coincide in the limit of large m, the convergence is slow,

~ We also require m)3; otherwise the asymptotic vanishing of
the potential is too slow to allow the de6nition of a scattering
length.' Higher Transcendental Functioes, edited by E. Krdelyi
(McGraw-Hill Book Company, Inc. , New York, 1953), Vol. IL

dr {Lks —(2r)
—'—V(r) $'i'

&&0[k'—(2r) '—V(r)$ —Lk' —(2r) 'j"'

The values of 8wxn and 5,», Eq. (2.5), together with
the exact values )5, are collected in Table II (actually
for convenience of writing the phase shifts have been
multiplied by the scale factor —k ').

From these data, the qualitative energy dependence
of the phase shifts is manifest: they are proportional to
k at low energy, and they grow with k slower than
linearly at high energy. Note that the linear region
extends to higher energies for more singular potentials.
The validity of the determination of the high-energy
behavior of the phase shifts given in Sec. III is borne out
by a comparison of the data in the last two columns of
Table II. The increase of the discrepancy with m and p
is also consistent with Eq. (3.3).

As regards the reliability of the present approxima-
tion, we observe that it appears to be more accurate at
higher energies, in the sense that the relative error
becomes smaller as the energy increases. However,
because the phase shifts grow with energy, the absolute
error in the determination of the phase shifts is actually

Actually, it is convenient to use the radial Schrodinger equa-
tion rather than the phase equation (2.1a), because this equation,
in the case of strongly singular potentials, is very unstable against
errors introduced during the integration. The instability is caused
by the large cancellation occurring in the argument of the sine
function in the inner region, where the potential is very large.

P. M. Morse and H. Feshbach, Methods of Theoretical I'hysi cs
(McGraw-Hill Book Company, Inc. , New York, 1953), Vol. II,
p. 1101.
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larger at intermediate energies than at low energies.
But it never exceeds 30', even when the phase shifts are
very large. The present approximation almost invar-
iably gives a determination for the absolute value of
the phase shift, which is in excess of the exact value.
The opposite happens for the WEB approximation.

Finally, we draw attention to the fact that the data
in Table II span an energy variation of a factor 10',
and that the corresponding phase shifts vary by factors
considerably larger than 10' and attain very large
values.

~{~)=~- ex& {—u~)
0.01 0.1 1 10 100 100

TABLE II. A comparison of the exact and approximate values of
the S-wave phase shift for the potential V(r) =r ~ exp( —yr), for
various values of m, p, and the momentum k. The quantities in the
table are the phase shifts divided by —k. The exact phase shift b

is obtained numerically solving the radial Schrodinger equation;
the approximate phase shifts 8 pp and buzz are computed from
Eqs. (2.5) and (5.2), respectively. The symbol 0 stands for all
values smaller than 10 ~. The values in the last column are
obtained from the asymptotic expression for the phase shift,
Eqs. (I.16); the contribution of the two terms is explicitly
displayed.

VI. GENERALIZATION TO ALL PARTIAL VfAVES
—Bapp/k—s/k

0.987
0.976

0,922
0.921

0,654
0.657

0.3048
0.3088

0.1106
0.1101

0.1182—Q.OQ79 m=4
p, =o

One way to treat higher partial waves is by using the
present approximation in order to evaluate also the
phase accumulated by the centrifugal term. This leads
to the approximate expression for the scattering phase
shifts

—8app/k—a/k
0.516
0.486

0.516
0.486

0,477
0.459

0.2746
0.2763

0.1070
0.1085

0.118—0.012

—~wK B/k 0 0.001 0.342 0.2 723 0.1084 =0.106

0.191
0.169

0.191
0.169

0.191
0.169

0.1631
0.1544

0.0862
0.0855

-bwzB/k 0 ~ 0.009 0.1458 0.0860

0.118—0.047

=0.071

-5wzB/k 0.029 0.276 0.574 0.3055 0.1121 =0,1103

m=4
p 1

m=4
p, =10

drW(r) &app/k
-S/k

0.806
0.670

0.806
0.669

0.779
0.661

0.566
0.540

0.3354
0.3355

0.344—0.000

with
&&sin'(kr[rfW(r))'~'+1] ') (6 1)

W(r) = V(r)+l(l+1)r '. (6.2)

—&wz B/k

Bapp/k—a/k
0.701
0.582

-Bwzs/k 0

0.701
0.582

0.687
0.579

0.526
0.498

0.338 0.492

0.3217
0.3217

0.3217

0.344-0.015

=0.329

0.447 0,535 0.3357 =0.344

m=8
y=i

Because one is treating approximately the centrifugal
potential, which has a long range and accumulates a
large phase shift, this approximation should not be
expected to be accurate. In particular, it will be
incorrect at low energies, where it fails to reproduce the
correct behavior of the phase shifts, namely,

&app/k—a/k
0.391
0.327

0.391
0.327

0.390
0.327

0.348
0.316

0.2445
0.2428

0.344-0.148

—BwzB/k ~0
—&app/k—a/k

0.855 0.855
0.709 0.709

0.843
0,767

0,687
0,649

0.4825
0.4819

—5wzB/k ~0 ~0 0.410 0.642 0.4819

0.492—0.000

=0.492

—8app/k
-S/k

0.786
0.654

0.786
0.654

0.777
0.653

0,649
0.610

0.4639
0.4631

0.492—0.020

0.038 0,304 0.2426 —0.196

m=8
y =10

m =12
p=0

m =12
p=i

~)~ —~&&"+'.
k O

(6.3)

A better approximation is obtained, starting from the
phase equation which expresses the accumulation of the
phase shifts due only to the potential'

8~'(r) = —k 'V(r)DP (kr) sins[8~(kr)+8~ (r)j,
s((o)=o, s(=s, (~). (6.4)

The functions Dt(x) and $q(x) are the "amplitude" and
"phase" of the Riccati-Bessel functions:

DP(x) = [jP(x)+A.P(x)g, (6.5a)

8~(x)= —arctan[ j~(x)/Aq(x) j, (mode-) . (6.5b)

The Riccati-Bessel functions are the (regular and
irregular) solutions of the radial Schrodinger equation
in the absence of potential; they are, respectively, the
spherical Bessel and Neumann functions multiplied by
x. A list of properties of the functions D~(x) and $~(x)
is given in Ref. 1. In addition to those properties,

~ For potentials which vanish asymptotically less rapidly than
any exponential, the partial-wave scattering amplitude generally
has a branch point at k=0. However, if the potential behaves
asymptotically as r™,it is still true, for all the partial waves with
1& (m —3)/2, that the behavior of the phase shifts at low energy
is dominated by a term of the form Eq. (6.3).

—bwzB/k 0,339 0.603 0.4630 =0.472

—Sapp/k—S/k
0.504
0.427

0.504
0.427

0.503
0.427

0.458
0.420

0.3568
0.3542

0.492—0.200 m =12
p, =10

—~ WKB/k 0 0.073 0.405 0.3540 =0.292

we have

$((x)=D)—'(x), (6.5c)

which follows from the W'ronskian relation for the
Riccati-3essel functions. Thus, $~ (x) may also be
defined as

8, (x) = dx'D) —'(x') . (6.5d)

t: &/21

DP(x) =(g (&+2~)!t (t—2~)!(2~)!~-(—2x)- -~

[(~—&)/4

+( P (k+2'n+1)!t (l—2ts —1)!
n=O

&& (2N+])!$—'(—2x) '~ 'j' (6.5e)

This definition is free from the mod(s) ambiguity of
Eq. (6.5b). An explicit expression for DP(x) is the
following:
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From the phase equation (6.4) and under the assump-
tion that the potential is singular in the origin at least
as implied by Eq. (2;2), we find that the first two
dominant terms in the behavior of 8~(r) at small values
of r are

8((r) = —h((kr)+k8)'(kr)[V(r)7 —'~2 (6.6)

To obtain this equation we have also used Eq. (6.5c).
Proceeding in close analogy with the development of

Sec. II we are thus led to the following approximate
expression for the scattering phase shifts:

g$$(r) = ri12Itq[2p(rq/r) ~&2»7 (6.14)

and the matching condition

a2= [(2l+1)!!72(2l+ 1)R"+'
X (1—(l+1)a&)/(1+in(), (6.15)

where we have set

«= ~, (R)/[R~, '(R)]. (6.16)

The exact expressions a& may also be obtamed
explicitly, from the zero-energy radial wave function

Si happ
= dr V (r)D22(kr) sin2($2(kr)

In the long-range limit R= qo, Eq. (6.15) becomes

0

X[(8$(kr)/k)DP(kr)(V(r))i&2+17 &) . (6.7)

As before, this may be viewed as a modi6ed Born
approximation, which takes into account the suppres-
sion of the wave function in the inner region. Again it
yields the correct phase shifts, 5= —$&(kR), for a hard
sphere of radius E.

In the low-energy region, this expression yields the
correct behavior Eq. (6.3) for the phase shifts, with the
following expression for the quantities u&.

a) .„——[(2l—1)!!7—' drr"+'V (r)

q= (2l+1)p (6.10)

and p defined in Eq. (4.5). As in Sec. IV, we rewrite
this expression as follows

a~,»~ ——rq2'+'[(2l+ 1)!!(2l—1)!!(2l+1)"7 '(qrq/sinqrq)

X (1—2q)/cosqrq —R"+'[(2l+1)!!7'
x [(«/R)""/(ns —2l—3)]F[2, 2—2q; 3—2q;

—(2l+1)—'(rq/R)'«2»7. (6.11)

The first term on the right-hand side is now recognized,
as the value of c), pp for the long-range case R= ~, in
analogy to the S-wave case. We also have, in the limit
of large ns

a2,»,=R2'+i if R(r p, (m —& m ), (6.12a)

a2, ,» rq2'+' if R& rq,——(222 —+m) . (6.12b)

In this case, we have also the limit of large l to
consider. Applying the transformation of Eq. 2.9(3)
of Ref. 4 to the hypergeometric function in Eq. (6.9),
we easily obtain

a~,»——R"+'[(2l+1)!!7'(rq/R)""(2l) '

x[1+0(1/l)7. (6.13)

X[r(V(r))'I'+2l+17-'. (6.8)

This expression may be integrated for the class of
potentials Eq. (4.3), and we find'

a R2l+~[(2l+ 1)I!(2l 1) t 1

XF[2,2q; 2q+1! —(2l+1) (R/rq)'~ "2'], (6.9)
with

ai ——[(2l+1)!!(2l—1)!(2l+1)'q] '
X rq"+'(qrq/sinqrq) (q'/q!)'. (6.17)

This expression is similar to the expression we had in
the 5-wave case, Eq. (4.15). The expression for a~,,»
in the case R= qo [see Eq. (6.11)7 is also very similar
to the corresponding equation for the S-wave case,
Eq. (4.9). Thus, the numerical comparison of Table I
applies also in the present case with appropriate
changes. We emphasize that u& may be defined, in the
long-range case, only provided l( (222—3)/2 (see
footnote 9).

It is also easily seen that in the limit of large m the
exact values ug coincide with the approximate ones,
Eq. (6.12), in analogy to the 5-wave case.

In the limit of large /, we find with some algebra that

a2 ——[(2l+1)!!7'R"+'(rq/R)'~" (2l) '[1+0(1/l)7 (6 18)

This coincides with the corresponding equation for
a&,,», Eq. (6.13). We thus see that even in the limit of
large l and small 0 the present approximation yields the
correct behavior. Notice that this situation is the most
unfavorable from the point of view of the present
approximation, because when the angular momentum
is large and the energy is small, it is the outer part of
the potential which plays the major role in determining
the phase shifts. The success of the present approxima-
tion at large l may be understood remembering its
similarity with the Born approximation.

Finally, the asymptotic behavior in energy of all
partial-wave phase shifts may be discussed along the
same lines as it was done in Sec. III for the S-wave
phase shift. It is thus found that the exact dominant
term for the high-energy behavior is yielded by the
approximate expression for the phase shifts, Eq. (5.7),
and that it is the same for all partial waves:

(6.19)

with A given in Eq. (3.3). A proof of this statement is

given in Appendix II. We notice that this result is not
surprising, once it is recognized that the high-energy
behavior of the phase shifts is determined by the
behavior of the potential in the origin, because the
potentials we consider are more singular than the
centrifugal term and thus dominate it completely.
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It shouM be emphasized that the above conclusion
refers to the asymptotic behavior in 0 of the phase shifts
6~ corresponding to a fixed finite value of /, but it does
not imply anything about the behavior of the phase
shifts as both k and l diverge. Thus, it would be incorrect
to draw from Eq. (6.19) any conclusion concerning the
angular dependence of the full scattering amplitude in
the high-energy limit, because the partial-wave sum
which defines the full scattering amplitude extends to
infinity. Possibly the approximate expression Eq. (6.7)
would also yield the correct asymptotic behavior as both
k and 1 diverge, but this question will not be discussed
in this paper.

VII. CONCLUSION

An approximation has been introduced for the
evaluation of the scattering phase shifts produced by a
repulsive potential strongly singular at the origin. The
major advantage of this approximation is its validity
over the whole energy range. In particular, it yields
correctly the low-energy behavior and becomes exact
at high energy.

A possible additional advantage of this approxima-
tion consists in the possibility of using this approach as
the first step in a convergent iterative procedure. "This,
however, may turn out to be of small practical value,
because of the instability of the phase equation against
errors in intermediate steps. '

In this paper, we have restricted our consideration to
repulsive potentials. If one deals with a potential which
is attractive in some region, the approximate expressions
for the phase shifts, Eqs. (2.5) or (6.7), are inapplicable,
because they are not real. It will, however, be obvious
in every case how they should be modified; the simpler
solution is to suppress the potential in the argument
of the sine function whenever it becomes negative.
Otherwise, by using techniques such as those described
in Ref. 1, one may always reduce the problem to one in
which only the repulsive part of the potential appears
explicitly. One could then treat the rest of the potential
exactly (or using some other approximation) and,
proceeding as in the previous sections, one would obtain
an approximate expression for the phase shifts due to the
repulsive part of the potential in terms of the "ampli-
tude" and "phase" of the radial wave functions apposite
to the problem without repulsive contribution.

Finally, I wish to thank the Istituto Superiore di
Sanita of Rome for the use of their computer.

8= —(krp) ' (dr/rp) (rp/r) (1+C'r)
0

X sin'(krpL(r/rp) ~'(1+C'r) 'I'

'm(r/ro) '$-)t, (I.1)

where we write C' for C'(0). Expanding again and
keeping only the dominant terms, we find

5= —(krp) ' («/yp) («/y)"

Xsinp(krp(r/rp) ~2L1+2t(r/rp)'j)

(krp)
—i C «(yp/y) m 1 j sntpk

—
y( p/yy )mp2j1(I2)

Here
for m&4,

p=m/2 —1 for 2(m(4,
(I.3a)

(I.3b)

g= —~~rpC for m&4,

g = ——,'rpC' —1 for m= 4,
g= —(m/4) for 2(m(4.

(I.4a)

(I 4b)

(I.4c)

Finally, expanding the sine function in the 6rst term
in the right-hand side of Eq. (I.2) and keeping only the
dominant contributions, we obtain

8= —(krp) 'I (m, m/2; krp) —
rtJ((m/2) —p, m/2; 2krp)

—(krp) '(rpC')I(m —1, m/2; krp), (I.S)

with

I(s,t; s) = dxx-' sin'zx' (I.6a)

APPENDIX I

In this Appendix, we evaluate the 6rst terms in the
large k behavior of the integral Eq. (3.1), with V(r)
given by Eqs. (2.2a) and (2.2b).

As will be clear below, the large t|: behavior is deter-
mined by the behavior of the integrand near the origin.
Thus we expand the integrand around r= 0, and we have
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J(s,t; s) = de ' sinzx'.

Now with the change of variable

g=ZX )

we find
I(s,t; s) =t 'st' '&"I(s,t),

J(s,t; s)=t 's& '&"J(s,t),

(I.6b)

(I.7)

(I.8a)

(I.8b)
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with

I(s, t) = dyy
—1+(I—s)/5 sjn2y

The equations given in the paper —Eqs. (3.2), (3.3),
and (3.4)—are immediately derived from these equa-
tions in the case m) 4.

J(s,t) = dyy '+&' '~t'siny. (I.9b)

These integrals are easily evaluated":

1(V)=x2 "' ""{L(~—1)/t)'
)&SinLpr(S —1)/(2t))) ', (I.10a)

J(s,t) = -2'2r( ((s—1)/t]! cosLpr (s—1)/(2t))) —'. (I.10b)

Introducing these expressions in Eq. (I.5), we finally

obtain

APPENDIX II

In this Appendix, we show that the leading term in
the large k behavior of all partial-wave phase shifts is
the same. Because we are interested only in the leading
term, we may keep only the first two terms for the
behavior of the phase functions near the origin, Eq.
(6.6). Thus, the problem is reduced to that of showing
that the leading term in the large k behavior of the
integral

dr V(r)D22(kr) sin2LkD '(kr) V '/'(r)] (II.1)

with

(ky )1 (2/fs) B(ky )1 (4/fl4)

—B(kyp)' —(2/~) —('/~), (I.11) is the same as that of the integral

Q=L2'-(2/~)/(2 —(2/ m))!)( 2/rm)/ isn( 2/rm), (I.12)

B= ( oC'/2)L2' '""'/(2 —(4/ )&!]

&& (22r/n2)/sin(22r/m), (I.13)

(1+2)2
2 (1+e)2/na~ 1+ I

dr V(r) sinpt k V—'/'(r)). (»2)

Note that this expression is obtained from the previous
one, substituting in place of Di(x) its asymptotic
value 1.

First, we divide the interval of integration into two
parts, from zero to p and from p to infinity, with

t)
—y (ky ) 2/ tN (II.3)

X (22r/m) sin~ —(1+e) ~, (I.14)
(m i'

and e, 2/ defined in Eqs. (I.3), (I.4). Note that, for m) 4

B=—L1—(2/m))B, m) 4, (I.15a)

while for ns=4

It is then obvious that in the second integral, the
asymptotic value may be substituted in place of Di(kr),
because the argument kr diverges at least as (krp)' "/

when k diverges. As for the first integral, we may express
the sine-square function by means of the corresponding
power expansion and exchange the order of integration
and sum. We get, thus, an expression of the form

B= —L-2'+ 1/(r pC'))B, m= 4. (I.15b)

l)= —A (krp)' ('/~) —(2/m)B(krp)' ('/~)

for m&4, (I.16a)

f!=—-2m-'/2(kro)1/2 ——' (roC')+-',

for m=4, (I.16b)

for 2(nz(4. (I.16c)S= —A (kr,)'-('/") —B,
"Cf. Eqs. 6.5(15) and 6.5(1) of Ref, 5.

Ke see that, while the dominant term in the asymp-
totic behavior has the same form in all cases, the next
term has a different form depending upon whether the
value of m is larger or smaller than 4. Thus, we have for
the first two leading terms

( )nL(2yt) t) 1(ky ) (2m+m —2—mn)

n 1

with

dxx D ' '"(x)x " (II.3)

(kr )1—(2/ m) (11.4)

Now to evaluate the leading term in the integral in the
limit as k, or equivalently I, diverges, we may sub-
stitute the asymptotic value for D1(x) as x diverges
(note that the integral diverges as X diverges). But this
shows that to get the leading term, all we have to do is
substitute 1 in place of Di(x) in Eq. (II.1), thus
returning to the 5-wave case, Eq. (II.2); Q.E.D,


