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A formalism is developed for a statistical treatment of the energy variations of nuclear scattering and re-
action cross sections. A statistical collision matrix U~ is defined which has the form of an energy-independent
direct-transition matrix plus a fixed simple resonance-pole expansion, thematrix residues of which are products
of complex channel-width amplitudes. By direct comparison with theWigner-Eisenbud and Kapur-Peierls col-
lision matrices it is found that under widely applicable conditions the statistical collision matrixmaybe used to
calculate averages of observables over energy intervals containing many resonances and many total widths.
The problem of determining the statisticalproperties of the parameters of U~ is defined and is solved for several
special cases by relating it to the statistics of R-matrix parameters. Using these methods averages and mean-
square fluctuations of total and reaction cross sections are calculated under general conditions admitting di-
rect and compound processes and arbitrary average values of the total widths F and the resonance spacings
D. The results are expressed in terms of the direct-reaction matrix elements and the statistical properties of
resonance parameters appropriate to the energy region under consideration and are related to the locally
applicable optical-model phase shifts and transmission coefficients. Simplifications are obtained under
special assumptions such as uncorrelated width amplitudes, small and large F/D, pure compound-nucleus
reactions, many competing open channels, and many competing direct processes. In the limit of small P/D
one obtains the leading terms of an expansion of the average cross section which had previously been derived
from R-matrix theory directly. In the limit of large I'jD, many competing channels, but no direct reactions,
the nonelastic fluctuation (or average compound nucleus) cross sections approach the Hauser-Feshbach
formula. Except in this limit, corrections due to partial-width fluctuations and resonance-resonance inter-
ference are applicable. The former are sensitive to the magnitudes of direct reaction matrix elements, the
latter to the correlations of resonance energies. Competing direct reactions are shown to require reductions of
the transmission coefficients. The mean-square fluctuations of cross sections are found to approach Ericson's
results in the limit of large P/D and many competing channels, but are in general much larger for moderate
I'/D and few channels. They are also sensitive to the details of resonance parameter statistics.

I. INTRODUCTION

'HE local energy variations of nuclear cross sec-
tions may be thought of as arising from two

sources: 6rst, there are kinematical or size eGects typi-
fied by surface-barrier penetration factors and hard-
sphere phase shifts. These introduce dependences on the
asymptotic relative momenta in all channels which are
predictable and smoothly varying with energy except
for singularities at thresholds. Second, there are dy-
namical eGects due to the details of the nuclear inter-
actions which produce strong and varied energy Quctua-
tions, the detailed prediction or discussion of which is
often dificult and may be irrelevant to the problems
under investigation.

In a statistical theory of nuclear cross sections we
forego a detailed description of the dynamical Quctua-
tions in favor of a statistical description in terms of the
statistical properties of the many-body scattering sys-
tem or of models describing it. Specifically we wish to
obtain energy averages of cross sections and statistical
descriptions of their fluctuations. The principal problem
one encounters in such a program is due to the di%culty
of disentangling the dynamical fluctuations from the
kinematical energy dependences.

This separation is accomplished most completely in
the R-matrix theory of Wigner and Kisenbud in which
the dynamical fluctuations arise from the properties of

*Work performed under the auspices of the U. S. Atomic
Energy Commission.' E. P. Wigner and L. Eisenbud, Phys. Rev. 72, 29 (1947).
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the R matrix, its resonance energies and reduced-width
amplitudes, while the kinematic variations reside

chief in the L and 0 matrices. The success of the
separation depends on the judicious choice of a boundary
in configuration space and of boundary conditions which
specify the self-adjoint boundary value problem whose
eigenfunctions provide the basis for an expansion of the
wave function. The R matrix is also most suitable for
the introduction of statistical models of the inter-
action. ' ' Unfortunately, in the general many-channel
case the functional dependences of the cross sections on
the R matrix are so complicated, that explicit formulas
for the energy dependences of cross sections have been
obtained only in certain special cases involving either
few open channels or few nearby resonances. '4' The
same is true of energy averages which have been ob-
tained successfully only in the form of approximations
based on the one or two channel case or on the small
width-to-spacing-ratio limit. ' ' Several excellent reviews
of R-matrix theory exist.

2E. P. Wigner, Ann. Math. 55, 7 (1952); Fourth CanaChan
Mathematical Congress Proceedings (University of Toronto Press,
Toronto, 1957), p. 174.

s C. E. Porter and R. G. Thomas, Phys. Rev. 104, 483 (1956).
4 T. Teichmann, Phys. Rev. 77, 506 (1950).
s R. G. Thomas, Phys. Rev. 97, 224 (1955).' P. A. Moldauer, Phys. Rev. 123, 968 (1961).
r A. M. Lane and k. G. Thomas, Rev. Mod. Phys. 30, 257 (1958).

G. Breit, in Encyclopedia of Physics, edited by S. Flugge
(Springer-Verlag, Berlin, 1959), Vol. 41/1.

~ H. B.Willard, L. C. Biedenharn, P. Huber, and E. Baumgart-
ner, in Fast Neutron Physics, Part II, edited by J.B.Marion and J.
L. Fowler (Interscience Publishers, Inc. , New York, 1963),p. 1217.
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The formalism of Kapur and Peierls" does not suff'er

from these difhculties. It leads to very simple functional
expressions for the cross sections that are also formally
easy to average. Unfortunately, the kinematic aspects
of the energy variation are contained only implicitly in
the parameters of the theory, having been introduced
through an energy-dependent boundary condition. This
fact precludes straightforward energy averaging of the
Kapur-Peierls cross sections. The unified reaction theory
of Feshbach" is closely related to the Kapur-Peierls
theory in that the resonance parameters are expressed
in terms of matrix elements of the interaction Hamil-
tonian with respect to single particle or quasiparticle
states of the system and these matrix elements are im-
plicitly energy-dependent. On the other hand, these
parameters may be directly interpretable in terms of the
detailed properties of nuclear interactions and nuclear
structure. "

Finally, there is the pole expansion of Hurnblet and
Rosenfeld" which shares with the Kapur-Peierls and
Feshbach formalisms their simple functional form, but
which also has energy-independent resonance param-
eters. Indeed, the adoption of this formalism would re-
solve most of the difhculties and would obviate the
necessity for much of this discussion as well as most of
Sec. II. There are, however, two reasons for not follow-
ing that course. First, it does not appear to be known at
present precisely what conditions must be imposed on
the interaction Hamiltonian in order to justify the as-
sumed existence of a Mittag-LefRer expansion of the
multichannel collision matrix. "This di%culty couM be
avoided by regarding the Humblet-Rosenfeld series as
a purely formal expansion valid in a restricted energy
range. "That would, however, still leave a second dis-
advantage that at present there does not appear to
exist a statistical theory of the resonance parameters in
the Humblet-Rosenfeld formalism and that the methods
employed for that purpose in E.-matrix theory do not
appear to be applicable.

In order to overcome these difhculties, we define in
Sec. II a fictional statistical collision m-gtrix Us which has

the desired properties of complete separation of kine-
matic and dynamic aspects and of having a simple ex-
plicit energy dependence. It is shown that in a suf-
ficiently small energy interval Us is an arbitrarily good
approximation ot the actual collision matrix U and on
the basis of this comparison a connection is established
between average cross sections and cross-section ex-
pectation values calculated by means of Us. Similar
connections exist for other statistical properties.

The statistical-collision matrix IJs is derived in two
ways: first, by means of an expansion in terms of the
eigenstates of a general complex boundary-value prob-
lem which is developed in Appendix A, and then from

. E-matrix theory. The first derivation is simpler, the
second leads to the discussion in Sec. III of the sta-
tistical properties of the parameters of Us in terms
of those of the E. matrix which have been studied
extensively. "'~"

Section IV is devoted to the derivation of cross-
section expectation values from Us and their discussion,
and in Sec. V the magnitudes of the mean-square Auc-
tuations of the cross sections are obtained. Several in-
tegrals needed in Secs. IV and U are evaluated in
Appendix B.

II. STATISTICAL-COLLISION MATRIX

A. De6nitions

The various cross sections o(E) are functions of the
elements of the collision matrix U(E) which character-
izes the asymptotic form of the wave function of the
collision process. The energy fluctuations of o(E) there-
fore reflect similar fiuctuations of the elements of IJ(B).
We shall assume it to be possible to specify the statisti-
cal properties of the fiuctuations of U(E) in the vicinity
of any specified total energy Eo,"so that we may de-
fine a uniform (or stationary) random matrix function"
of 8 in terms of these same statistical properties. We
shall call a realization of this uniform random function
a statistical col/ision -matrix Us(E; Es) if Us(Ep' 8s)
=U(Ee) and if the absolute values of the elements of

"P.L. Kapur and R. Peierls, Proc. Roy. Soc. (London) A166,
277 (1.938).

u H. Feshbach, Ann. Phys. (N.Y.) 5, 357 (1958); 19, 28'7
(1962).

"B.Block and H. Feshbach, Ann. Phys. {N.Y.) 23, 47 (1963);
C. M. Shaicin, ibid 22, 373 (19.63); R. H. Lenimer, Phys. Letters
4, 205 (1963); A. K. Kerman, L. S. Rodberg, and J. E. Young,
Phys. Rev. Letters 11, 422 (1963).

's J. Humblet and L. Rosenfeld, Nucl. Phys. 26, 529 (1961).
' This fact was emphasized by Professor G. Breit and Professor

H. Feshbach at the Topical Conference on Compound Nuclear
States, Gatlinburg, October 1963 [Rev. Mod. Phys. (to be
published)g. I am indebted to Professor Breit and Professor
Feshbach for helpful discussions on this point.

i5 This indeed was the point of view I adopted for the derivation
of some of the results of Secs. IV and V as presented at the
Topical Conference on Compound Nuclear States, Gatlinburg,
October 1963 PP. A. Moldauer, Rev. Mod. Phys. (to be
published) g.

C. E. Porter and N. Rosenzweig, Ann. Acad. Sci. Fennicae
Ser. A.VI No. 44 (1960).

'r M. L. Mehta, Nucl. Phys. 18, 395 (1960); M. L. Mehta and
M. Gaudin, ibid 18, 420 (19.60); M. Gaudin, ibid 25, 447 (1961)..

rs Freeman J. Dyson, J. Math Phys. 3, 140 157, 166 (1962).
~s T. J. Krieger and C. E. Porter, J. Math. Phys. 4, 1272 (1963).
"N. Rosenzweig, Phys. Letters 6, 123 (1963).
"As an example, one way of specifying these local statistical

properties would be to give the statistical properties of R-matrix
resonance parameters for resonances in the vicinity of Ep and the
average contribution of distant resonances to the R matrix at +p.

'~ For de6nitions see, for example, A. M. Yaglom, An Introdlc-
tion to the 2 heory of Stationary Random Functions, translated by
Richard A. Silverman (Prentice-Hall, Inc. , Englewood CliGs,
New Jersey, 1962). Uniform random functions are ensembles of
functions the values of which are specified by distribution func-
tions which are invariant under all translations of the argument,
in this case J . A particular sample function, or realization, may
therefore be said to fluctuate with uniform statistical properties
for all values of E from —~ to +~,
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(Eo—Eo) 'LUs(E, Eo) —U(E)] are bounded in the vi-
cinity of Eo, so that U is an arbitrarily good approxi-
mation to U suKciently near Eo.

To obtain the statistical properties of 0-, say its aver-
age at Ee, we must average n (U) over the ensemble of its
values which is characteristic of the dynamical Ructua-
tions of U in the vicinity of Ea. By definition this is
equivalent to averaging over the ensemble of random
matrix functions of which Us is an element. We shall
call such ensemble averages expectati ox values at Ee and
denote them by brackets: (o)z, . Moments and correla-
tion functions of cross-section distributions are similarly
defined in terms of expectation values of appropriate
functions of 0-. By the ergodic theorem" the expecta-
tion values (n.)&„etc., are equal to energy averages
of o(U ), etc. , in the limit of an arbitrarily large aver-
aging interval h. In practice we expect such averages
to converge quite rapidly when 6 becomes large com-
pared to the mean resonance spacing D and the average
total width I' which are the two characteristic fluctua-
tion periods of the problem and will be defined later.
Therefore, if there exists an interval 6 around Ep such
that U8(E,Ee) is a good approximation of U(E) within
6 and d))1',D, then the expectation values (&r)E„etc.,
are equivalent to ordinary energy averages which may
be compared directly with the results of relevant meas-
urements. The relative error incurred is at most of the
order of the maximum relative deviation of the elements
of Us from those of U within h.

At some energies Ep the above two conditions on the
interval 6 may be inconsistent with one another be-
cause of rapid energy variations of kinematic factors in
U. This may be expected to occur in the vicinity of a
threshold. In that case the ensemble average definition
tells us that we must consider (a)~„etc., as expectation
values of o(Ee), etc., which are realized by the mean
values of 0 (Ee), etc., with respect to a large number of
different values of Ep all having the same expectation
values (a)E„etc., and separated from one another by
many correlation distances 1 or D. It follows therefore
that if (a-)s is constant over values of E occupying an
interval 8')&F,D we may write for the energy average
of 0 over 8"

1
dEa(E) =— dE(~)g (~)E„(1)——8' g

where Ep may be taken as the center of the interval 5'.
Similar results apply to averages of other quantities.
In many circumstances the conditions required for
Eq. (1) to be valid are well satisfied. Expectation values
as a rule are fairly constant over regions large compared
to I',D even if these contain thresholds. Meyerhof" has
shown that threshold eGects on average cross sections
are confined to decreases in partial reaction cross sec-

'3W. E. Meyerhof, Phys. Rev. 128, 2312 (1962); 129, 692
(1963); J. T. Wells, A. B. Tucker, and W. E. Meyerhof, ibid.
131, 1644 (1963).

tions above thresholds due to the average additional
competition of the new channel. In the presence of
many competing channels this eGect is slight. Equa-
tion (1) should however not be relied. upon in the cases
of partial cross sections for reactions near their own
thresholds and nonthreshold cross sections in the vicin-
ity of a threshold if there are very few (2 or 3) strongly
competing open channels, for in these cases (n-)& may
vary too rapidly with energy. "The possibility afforded

by Eq. (1) to obtain averages over intervals containing
thresholds is particularly important since in many
applications the spacing of thresholds may be com-
parable to F or even smaller.

One way to generate Us is to insert Wigner's statis-
tical R matrix'4 into the expression for the collision
matrix (A23) and to maintain L, P, 0 constant. But
the resulting expression for cross sections are mathe-
matically very difficult to average. In the following two
subsections, we therefore proceed by other methods to
define Us and to estimate how its deviation from U de-

pends on the size 6 of the averaging interval about Ep.

and the meaning of the matrix index c is defined in the
beginning of Appendix A as specifying completely a par-
ticular partial wave in a particular channel. The 0„,are
complex while the g„and F„are real and Q,L= S+ip
are the usual diagonal channel matrices defined in (A24)
and (A25). The boundary conditions are specified by
the arbitrary complex diagonal matrix B.

If one specifies the boundary conditions to be

B.=L.(Ep), (2)

then at E=Ep the collision matrix becomes exactly the
Kapur-Peierls collision matrix"

U= /(]+2jPi»/Pi») / (3)

and at E=Ee+nE we may expand U as follows

U(E,+3E)=a{1+2ip'~'
XLS+%L'%+%L'%L'%+ ]P'») & (4)

"E.P. Wigner, Ann. Math. 53, 36 (1951).

B. Complex Boundary Conditions

%e first derive the statistical-collision'matrix from a
resonance formalism employing an expansion of the
wave function in terms of the eigenfunctions of a
boundary-value problem with arbitrary complex bound-
ary conditions. This generalization of both the Wigner-
Kisenbud and Kapur-Peierls formalisms is developed
in Appendix A where it is shown that the collision
matrix may be written in the form (A23):

U= ~{]+2iPi»[]—Q(L—g)]—igP'»j~,
where the complex R matrix is given by Eq. (A21) as

0„,0„,
cc' p,

h„—E—-„,'i I'„
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where
L,'(E. p+ oE) =L,(Ep+ bE) —L,(Ep) . (5)

We shall assume that within the range of values of bE of
interest the energy variation of L is adequately repre-
sented by its linear dependence upon E, so that

I.,P(E+pE) = oEL,'(Ep) =SEES,'(Ep)+iP, '(Ep)j, (6)

the prime denoting an energy derivative. Away from
thresholds the boundedness of the elements of '% and
of the energy derivatives of L assures the existence of
some energy interval of size 6 around Eo such that
within 6 the expansion (4) not only converges but also
the elements of %L'% and all higher order terms are
very small compared to those of %. We may therefore
consider the collision matrix throughout 6 to be given
by Eq. (3) plus a small correction of the order of at
most

&P'"%L'%P'"a

with L' evaluated at E=EO&-,'A.
In order to estimate the magnitude of this error for

a given interval size 6, we consider the quantities

d..=2~~(%L'%),./%.. ~, (7)

which, when evaluated at Eo, give the relative errors
introduced by the second term in the series (4) at the
ends of the interval A. If Eo is in a region of well-

separated resonances where F((D, the maximum errors
will occur if a resonance energy b„ lies at the edge of 6
and then the d„become at most

where the sum is taken over all channels which compete
with c and c'.

For the case of overlapping resonances we evaluate
d„under the assumption that the 9„, for different
channels are uncorrelated. Then we find that the
average value of d,. at the edge of the interval 6 is given
by

(d..)~„;,=-',~(A/D)S. , ~(0„,')1.,'~. (Sb)

The root-mean-square deviation of the error from its
mean is obtained for large width to spacing ratios by the
methods of Appendix 8 using the results of Sec. III
which yields at the edge of the interval 6

For the positive energy channels c+ the energy
derivative L.+ is generally dominated by its imaginary
part P.+', the real part being at the very most of the
order of an MeV '. "Su%ciently far above threshold
P,+ approaches k„u (see Appendix A) and hence P,+'

'5 Numerical confirmation can be obtained from J.E. Monahan,
L. C. Biedenharn, and J. P. Schi8er, Argonne National Labo-
ratory Report ANL-5846, 1958 (unpublished).

approaches (2E.+) 'P,+, where E, is the energy meas-
ured from the threshold of channel c. Then using Eqs.
(2) and (A15) we find from (Sb) that

(x„r„,) a

D E.
(d„)=0, chic'.

(9)

where we have employed the definition

1/8, =(1/r„) P, (I'„, /E. ). (9 )

In order to obtain a rough estimate of B,+ we assume

that a channel c contributes substantially to the sum in

(9c) only when E. exceeds the channel's surface barrier

height and that then F„, can be approximated by
I'„,'E,' '. Assuming the same reduced width F„,' for all

channels and a uniform effective threshold density be-

ginning at a lowest threshold with E,=Ji,( '"', one

finds that B,+=3E,( ' ). This is probably an over-

estimate. However, other more realistic (and more
involved) estimates yield values of E,s which are at
least of the order of the smallest s-wave neutron E,
and substantially greater at energies above large num-

bers of thresholds. In view of (Sa), (Sc), (9b), and (9c)
as well as (9a), we therefore conclude that so far as the
contribution of the open channels to the error terms in

Eq. (4) are concerned, ~si must be kept small compared
to the energy measured to the nearest lower s-wave

neutron threshold.
For the closed channels c—only the real part 5, of

L, is nonvanishing. For s-wave neutrons its energy
derivative is

'= (iIII g '/2@'E )'" (no barrier), (10)

where E, is the energy difference between the threshold
of c—and Eo. For channels having surface barriers,
S, ' is much smaller near threshold and approaches the
value (10) at energies below threshold which are large
compared to the surface barrier height. Of the channels

From the results of Secs. III and IV we may expect
7r(X„I'„,)/SD to be at most of the order of unity, and
much less than that for channels c with nearby thresh-
olds and large Coulomb or centrifugal barriers. Hence

(d„) is at most of the order of A/E, which is expected to
impose a significant limitation on 2 through the nearest
lower thresholds involving the emission of neutrons with

low orbital angular momenta. To evaluate the expres-
sions (Sa) and (Sc) we need to consider contributions
from both the open and the closed channels c".We con-
sider these two contributions to the channel sums sepa-
rately and then add their magnitudes, thus increasing
the error estimate. The same method which led to the
estimate (9a) shows that the contribution of the open
channels to the sums in (Sa) and (Sc) is at most of the
order

(9b)
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with nearby thresholds above Eo again only those in-
volving s-wave neutron emission are ordinarily impor-
tant and their contributions to (Sa) and (Sc) are of the
same order of magnitude as those of channels with
nearby thresholds below I o. We therefore conclude
that 6 must also be small compared to the smallest
s-wave neutron E, . However, we must also discuss the
possible effects of the many closed channels with dis-
tant thresholds. We limit the discussion to discrete chan-
nels and in analogy with the arguments of Teichmann
and Wigner" and Lane, signer, and Thomas, ' we
estimate P.

~
0„,

~

' to be of the order of a single nucleon
reduced width A'/M„a„', where the subscript ri refers
to a nucleon channel. Assuming arbitrarily that the
thresholds of two-fragment channels are distributed
with uniform density up to a maximum threshold
energy equal to the total mass number A times the
binding energy per nucleon, that Eo is very far below
this maximum threshold, and that (10) applies to all
closed channels, we obtain the estimate

which, in view of (Sa) and (Sc), imposes the require-
rnents that

(11b)

This could be a much more restrictive condition than
those imposed by the contributions of the open chan-
nels, particularly in the case of light nuclei. It seems
likely, however, that (11a) constitutes a substantial
overestimate, ' as can be gathered from empirical evi-
dence. The left-hand side of (11a) is of the order of the
rate of the relative shift of observed resonance levels
due to the closed channels. If this rate of shift were as
large as indicated in (11a), the observed resonance
level densities in the lighter nuclei would have to be
much smaller than those computed statistically on the
basis of observed or theoretical bound-state levels
which correspond to solutions of the Schrodinger equa-
tion without artificial boundary conditions. We shall
therefore assume that the conditions imposed on 6 by
the contribution to Eq. (4) of the open channels and the
closed channels with nearby thresholds will be govern-
ing. In Sec. II., we shall deal with the closed-channel
effect in another way which will support this conclusion.

Having established estimates for the size of the inter-
val 6 within which (3) is a good approximation to the
collision matrix, we now suppose that there exists an
interval of size I around Eo, where I&)A, I', and D,
such that for all h„ in I the corresponding values of
8„„I'„, and B„can be considered a typical sample of the
appropriate stationary ensemble of resonance param-
eters. By "typical sample" we shall mean that accord-
ing to an appropriate statistical test the distribution of

M T. Teichmann and E. P. Wigner, Phys. IIev. 87, 123 (1952),
"A. M. Lane, R. G. Thomas, and E. P. Wigner, Phys. I&ev,

98, 693 (1955).

where %'" contains all those terms in the sum (A21) for
which h„ lies within I and %1'i contains the remainder.
The variation of %i'1 within 6 is at most of the order of
2(h/I)(6& x6&)/ Dand we may therefore approximate
%"' by a constant niatrix in A. We further consider a
complex matrix %"' the b„of which are distributed
outside I from E= —ee to +en and the resonance
parameters of which follow the same distribution law as
those of %"& inside I. In particular the values of D, r,
and (~ 0„,~') for %1" are everywhere the same as those
for %"'.The variation of %1" within 6 is of the same
order as that of %"'. Adding and subtracting %1" in

Eq. (3), we finally obtain the statistical collision matrix

(13)

where the sum is extended over all resonance terms of

g„,= Q,(2P,) '~'0„. , (14)

U'= QL1+2ip'"(%"'—%1")P' ']Q,

and where all 0, and I', may be evaluated at Eo with-
out introducing errors greater than those due to the
omission of the higher order terms in Eq. (4). Though
U is a good approximation to U in 5, it is.defined for
all energies (—~, + ~ ) and satisfies the definition of a
statistical collision matrix given at the beginning of this
section. Therefore, Ue may be employed not only
within 6, but energy averages using Ue are ergodically
equivalent to resonance-parameter ensemble averages
defining expectation values at Eo.

At present the definition of the statistical-collision ma-
trix in terms of the eigenstates of a complex boundary-
value problem is somewhat inconvenient because the
statistical properties of such states have not been
studied, while those arising from a real Herrnitian
boundary-value problem have been studied intensively.

the above sample does not deviate significantly from
the ensemble distribution and that the same is true of
samples contained in all subintervals of I. The latter
requirement implies for example that there are no
strong systematic variations of D, r, or (0„.)„within I.
These assumptions are in part physical and in part
merely formal requirements in the sense that they are
affected by the choice of channel radii. The "appropri-
ate stationary ensemble" mentioned above may be
considered as provided in part either by theoretical
considerations or empirically by the study of resonance
parameters in a very large collection of intervals. %e
shall call energy intervals I which satisfy the above
conditions intervals of uriiforrri resoriarice statistics

We now separate the complex R matrix (A21) into
two parts

(12)
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For this reason we now give a slightly more compli-
cated derivation of (13) in terms of the real eigenvalues
and eigenfunctions of the Wigner-Kisenbud E-matrix
theory

C. Real Boundary Conditions

where

(25)

and diagonalize the complex symmetric matrix (e—$o),
supposing it to have distinct roots, by means of the

complex orthogonal transformation T.

As in Appendix A, we follow the notation of Lane and
Thomas'; but now, following Wigner and Eisenbud, ' we
choose real boundary conditions, for example

T(e—go)T '= T(e—go)Tr=G ,—iF—,

where Tr is the transpose of T and

(26)

(27)
8,=5,(Eo), (16)

though we shall not restrict ourselves to this choice
Lsee Eq. (37) below). The eigenvalues E„are now real
and y„, can likewise be chosen real so that the real E.
matrix becomes

(17)

Within a sufficiently small interval 3 around Eo we
may then expand Eq. (21)

A(E) = TrLse '+R 'XR '
+ge-'X3', "Xsc-'+ )T, (28)

where

(29)

and

n&= (1—R(o)Lo)

A= (e—E—g)
—'.

(20)

(21)

The elements of the matrices e, E, and. g, are given by

We immediately regard (17) as the reduced R matrix
from which reference to all closed channels has been
eliminated. " In order that the y„, and E„still be con-
stant within 6, we require that all 5, may be rep-
resented by linear functions of E in A. ' In practice this
imposes the same closed channel condition on 6 which
was assumed in Sec. IIB, namely that 6 be small com-
pared to the separation of E, from the nearest higher
s-wave neutron threshold.

We again separate E into two parts R(o& and R('&

as in Eq. (12), where R&'& again contains those terms of
the sum (17) whose Ei„ lie in the interval 1))h, D, and

(r„), which is an interval of uniform statistics with re-
spect to the E„and the y„,. Again R&o), which contains
the remaining terms of (17), is constant within 6 to
within an error of at most 2(h/I) (y&, )&Vq)/D. Following
the procedure of Wigner and Eisenbud' as generalized by
Lane and Thomas, ' we now expand the collision matrix
(A23) in terms of the level matrix A= {A„„).

U(P)=Uo(g)+2j~P&~o Py (a) ya„)gy P&~o/ (18)

where

U'(P) = ~I 1+2iPin(1 R(o)Lo)—iR(o&Pii2jQ (19)

and

X=Tg~(~)Tr. (30)

Using Eq. (28) we now obtain for the resonance terms
in (18)

Z~.(~.«,) &~.=Z~. (tl~ &~.)
XL&), '&).,+~), '&~,&, '+ .j, (31)

where the complex amplitudes

(32)

are analogous to the complex amplitudes of Appendix A
and as has been shown by Lane and Thomas~ they
satisfy a relation analogous to (A15).

where

r„=p, r„„
r„,=x„-2p,

I e„.I,
&.=Z. l T"I') 1.

(33)

(34)

Since the Xz„vanish at Eo, only the first term of the
series (31) contributes there and upon substitution
into Eq. (18) we again obtain the Kapur-Peierls col-
lision matrix (3). We again adopt this collision matrix
throughout d and estimate the resulting error precisely
as in the preceding subsection by evaluating the magni-
tudes of the elements of the second term of (31) rela-
tive to the magnitudes of the corresponding elements of
the first term. To first order in the interval size 6 and
using the fact that R"' is symmetric we obtain for a
maximum magnitude of X),„in 6

A,p +X~Xp y (22) &g(ilz.
I
dLo/dg)+Lo(dRo/dE)Lo/6„), (35)

4%)= 0+('(&) (24)

b.=Z- v~.LL'(1—R"'L') 'j- v"" (23)

The double sum in Eq. (18) is carried over those level
indices p whose E„lie in I.We separate the level matrix
g into two parts

where we have used the notation (a b) =Q,a,b, . The
first term in the bracket yields exactly the same rela-
tive correction d to U as given in Eq. (7). For the posi-
tive energy channels under consideration here this cor-
rection was found there ta be at most of the order of the
ratio of 5 to the separation of Eo from the nearest lower



s-wave neutron threshold and usually much less than
that. Using the estimate of the variation of Ri'& within
d which was given below Eq. (17) and the magnitude
of the variation in L' used in connection with Eqs. (9),
we find that the diagonal components of the second
term of (35) contribute at most of the order of 8((I'„.)/I)
X(E,/D) times the corresponding contribution of the
first term. The relative contributions to (35) of any off-
diagonal terms of E.' may be taken to be similarly small
and of varying sign.

Under our assumptions, Eq. (31) is therefore well

approximated in 6 by the 6rst term on the right-hand
side. Substituting this first term into Eq. (18) one ob-
tains again an expression of the form (13) for the col-
lision matrix in 6, except that the B„and I'„belong to a
finite set arising from the transformation (26). In order
to obtain the statistical collision matrix we make some
observations regarding the distribution of the b„. Lane
and Thomas" have shown that

where

and

(36a)

(36b)

8 ~ —t(t) s. LLseRio&Lo So)0 ) (36c)

By substituting the upper and lower limits of the inter-
val I containing all the Ex into (36b) in place of Ex and
using (34), it is easy to see that all the hs' are contained
in I. From the assumed symmetry of the distribution
functions of the E„and y„, with respect to Ep, it follows
that also the 8„', I'„and 0„,have distribution functions
which are symmetric with respect to Eo. If we choose the
boundary condition 8, so that

gp I o*g (p)L p (37)

instead of Eq. (16), then the shift 8„is given by the sum
over any nonvanishing off-diagonal elements of R "&.

8„=E„ t Q.g;(O„,L,s)*R„ ts&(0„, L ), (38)

which is likely to be small because of the probable
alternation of signs of the various terms in the many
open channel case and is as likely to be positive as nega-
tive for any given resonance p, .As a result, we expect the

8„, F„, 8„, to have statistical distributions which are
symmetric with respect to Ep and we expect the 8„ to
occupy an energy interval whose size is of the order of I.
Though the density of the h„may not be uniform
throughout this interval, its symmetry about Ep sug-
gests that there exists an interval I'))6 around Eo,
which is an interval of uniform statistics with respect to
the 8„,1 „,and 0„,. If there is no such satisfactory inter-
val I' we may expect to produce one by enlarging the
original interval I, adding resonances to maintain
statistical uniformity and making a compensating
change in Rto&.

The statistical collision matrix Us of Eq. (13) is now

obtained by incorporating in U' the contributions of
those terms with b„outside I' and by adding resonance
terms with uniform statistics throughout the infinite

energy intervals (—~, ~) outside I', making another
compensating change in U' as described in connection
with Eqs. (13) to (15)."

It is important to recognize that the partial widths

(33), the resonance energies h„defined in (26), and the
background matrix U' are not identical to the partial
widths 2I',y„,', resonance energies E„and hard sphere
scattering matrices 0,' as customarily dehned in the
R-matrix expansion. They are in general not even the
same within the interval A. The resonance parameters
of Us might be described as "observable" local reso-
nance parameters at the energy Ep, while the "formal"
R-matrix resonance parameters are valid at all energies,
but less directly connected with observable quantities.

III. STATISTICS OF RESONANCE PARAMETERS

The statistical distributions of the resonance param-
eters h„, I'„, ()„, of Us may be discussed in two ways.
One method would be to deduce the statistical proper-
ties of the eigenvalues and eigenfunctions of the com-

plex boundary value problem of Sec. II.B from plausi-

ble assumptions or Inodels regarding the Hamiltonian
of the system. Another method is to use the consider-

able amount of existing discussion of the statistical
properties of the eigenvalues E„and eigenfunction co-
efFicients p„, of the real boundary value problem of Sec.
II.C, and to deduce the distributions of the h„, I"„,0„.
in the vicinity of Ep by studying the statistical proper-
ties of the transformation T of Eq. (26). We do not give

here a complete solution to either of these problems, but
will discuss by the second method some limiting cases
and general trends.

A. Isolated Resonances

In the vicinity of an isolated resonance, the one-

level approximation' r gives a collision matrix U which

is identical to Us, except that the t)„are replaced by the

e„and for the boundary conditions yielding (37) the
h„are replaced by the E„; also I'„=2 Q.P.~n„.~'. If
the spacing of such isolated resonances is much larger
than their widths F„, one may suppose that the R"'
for each one-level approximation is due almost entirely
to the influence of the very distant resonances and that
therefore the same Rt'& applies to all these one-level

approximations. In the limiting case of such noninter-

fering resonances the collision matrix has then the form

"The involved procedure described here could have been
avoinded if, starting with Eq. (18), we had used Wigner's Sta-
tistical R Matrix (Ref. 24) for R&'&. This woujd, however, require
restrictions on the statistics of R(') to insure the boundedness of
the in6nite dimensional transformation corresponding to Eq. (26)
and may complicate the solution of the statistical problem dis-
cussed in Sec. III. Statistical properties of several kinds of matrix
transformations have been studied by E. P. Wigner, Ann. Math.
62, 548 (1955); 65, 203 (1957).
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of a sum over one-level approximations and is identical
to Us with T„„=h,„.Therefore also the statistical dis-
tributions of the b„and 0„,are the same as those of the
E„and the o.„,and the E„are unity.

This result may also be obtained with the help of
matrix perturbation methods. If it is assumed that the
off-diagonal elements of P are small, then we may hope
to expand the diagonalization (26) as follows

', iF„—=—E„

+E.~.((k"')'/E. E.—)+ (39a)

T„„=3„„+(1—8„,)(&„,/E„L,)+—, (39b)

and by Eq. (32)

where

ds(y)
DRs(E) = 1—Ls(y) $'— s(1)dk, (44)

s(y) = siny/y,

y=zIEI/O,
and D is the mean spacing of the E„.Contrary to its
apparent oscillatory nature, Rs increases monotonely to
its asymptotic value D ' which it approaches to within
1'Po in a distance of less than three mean spacings D.
There is thus no pronounced long-range correlation of
resonance levels.

tonian' this function has been shown by Dyson" to be
given by

If the conditions

(40)

hold, then the series (39) will converge rapidly. In the
case of the boundary condition (37) we have

f„„s=iQ, P,n„,*cr„,

Pc'gc &sc +c +cc' ~c' true' ~ (41)

Assuming R&'& to be diagonal, Eq. (39a) gives in zeroth
order

(42)

The magnitudes of the off-diagonal elements of P are
then also of the order of the total widths I'„and if the
signs of the real and imaginary parts of the n„, are
random, we may make the estimate

where e is the number of important competing open
channels. This, together with the repulsion of the
E-matrix poles E„(see below), leads us to conclude
that the condition (40) will be satisfied when the ratio
of the average total widths to the average resonance
spacing I'/D is small compared to —',e' '. Under these
conditions, (42) is a good approximation, H„,=rr„, and
E„=i. These conclusions remain valid whenever the
second sum in Eq. (41) does not greatly exceed the first
sum in magnitude, either because the off-diagonal ele-
ments of R&'& are sufficiently small or because of the
effects of the random signs of the n„,.

B. Spacing Distribution

The correlation of resonance energies E„has been
much discussed by a number of authors. ' '8 For our
purposes we shall need mainly the two-level correlation
function Es(E) which gives the probability that any
resonance level E„will be found in a unit energy inter-
val a distance E from a given resonance energy E„.
For the customary assumptions regarding the Hamil-

where

PE(x)dx= e dx, —
(45b)

Because of the derivations of Us, the presence of
nonvanishing off-diagonal elements of R„("might tend
to suggest correlations between the y„, and y„, . How-
ever, this is not necessary, since the appropriate choice
of channel radii resulting in uncorr elated channel
width amplitudes for resonances near Eo may imply

2s Freeman J. Dyson, J. Math. Phys. 3, 166 (1962).

C. Width Distribution: Direct Reaction Effect

We shall assume with Porter and Thomas, ' as well as
more recent work by Krieger and Porter" and by
Rosenzweig" that the p„, for fixed c are normally dis-
tributed. From this follows that the y„.' follow the
Porter-Thomas distribution law

Pp.T.(x)dx= (2grx) ~se *~sdx (45a)

for x=p„.'/(y„, ')„.If R"' is diagonal, then by Fq. (20)
the o.„.are also normally distributed along some ]inc jn
the complex plane passing through the origin. Con-
sequently, the

I n„.
I

' also follow the Porter-Thomas dis-
tribution law (45a).

We shall consider nonvanishing off-diagonal elements
of R"' as responsible for "direct reactions" since they
generate transitions between channels via the non-
resonant portion of the collision matrix U'. Such off-
diagonal elements of R"' will mix diferent p„, linearly
into n„, so that the latter are no longer restricted to the
above mentioned line but have a certain presumably
normal distribution also perpendicular to that line.
This will have the effect that the distribution of the
In„, Is is less peaked at zero than in Eq. (45a). In the
extreme case where very many channels are connected
by sizable direct reaction matrix elements, the n„, may
be expected to be distributed normally and isotropically
with respect to the origin of the complex plane. The

I n„, I

' are then distributed exponentially according to
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correlations for the distant resonances which contribute
to R('). In fact it seems unlikely that any single choice
of channel radii should be capable of eliminating cor-
relations everywhere. Moreover, it seems probable that
if R(') has many appreciable off-diagonal elements,
any local correlations in the p„,may not carry over into
the n„„but would be washed out by the transforma-
tion (20).

Assuming the 0„,and hence the width amplitudes g„.
of the statistical colhsion matrix to have the same dis-

tributions as the n„, we shall need to define some param-
eters which characterize the possible distributions,
namely,

which lead to relations such as

( total& shape elastic l absorptionMoc

and by Aux conservation

total)

With the collision matrix (13)

gy, cgpc'

(53)

(54)

(55)

f.= &g..'&./& I g" I
'&.

-4.= & I g" I
'&./& I g" I

'&.' (46)
all of whose parameters are regarded as constants, we
have

(56)
For the statistical conditions leading to the Porter-
Thomas distribution of the partial width (45a) the
parameters (46) assume the values A, =3, 8,= 1, while

in the opposite extreme when many direct processes
lead to the Gaussian distribution (45b), the values of the
parameters are A, = 2, 8,=0. In general, A, and 8, may
be expected to lie between these limits.

&o.,"t'&~,——2~%,s(1—Re& U..s(E,I':o)&, ),
&~..)~.= ~.'&I ~..—~-'(&,I'. ) I')-,

and employ the following additional definitions

„d'""'(E,)= lt.'l6..—&U..s(E,Eo)&..l',
direct(g ) shape elastic(E )

absorption(~ ) g 27 (g )
=~a,2(1—

I (U ..'(E:,E,))..I
'),

(4"i)

(4g)

(49)

(50)

(51)

ttuctuation(g ) y 2

xr&l ~.. 'I ).-- I&~-'&.-I'), (52)

IV. CROSS-SECTION EXPECTATION VALUES

A. General Theory

In accordance with the definitions introduced in Sec.
II, we now compute cross-section expectation values at
Eo by averaging the appropriate functions of Us(E, K~0)

over an energy interval the width of which may be
allowed to grow beyond all bounds, but must certainly
be very large compared. to the average spacing D of the

S„and the average total width I'. We denote such

averages by & ), . In particular, we are here interested
in the averages of the elements of Us and of their

absolute squares. The former will yield the expectation
values of the total cross section and the optical-model-

shape scattering and absorption cross sections, while the
latter yield expectation values of reaction cross sections
which we classify into direct and fluctuation cross sec-

tions. Specifically, we have the following expectation
values

T,=1—
I
v„ol'

+(2-/» R (~..*&g,.&.)-(-/D) I&g.. &. I
. (»)

From Eq. (B11),we obtain

where

I""I'lg" I' —3l„., 59

2vr2

D2

r„yr„
~~gycgpc'gvc gvc' C'p (60)

2D

The function 4p depends on the distributions of reso-
nance spacings and is defined and discussed in Eqs.
(B9) and (B10) and for the case of Eq. (44) it is plotted
in Fig. 1, while for uncorrel. ated resonance levels
4,=—1. With the aid of Eqs. (33) or (A15), we write

Defining

(61)

(62)

0„.= (2sr/D) lV„'r„„ (63)

O„=P,0„„ (64)

we rewrite the first term on the right in Eq. (59) as

"H. I'eshbach, C. E. Porter, and V. F. Weisskopf, Phys. Rev.
96, 448 (1954).

where ( )„ is an ensemble average over resonance
parameters. The complex optical-model phase shifts"
8, are then given by

d"'= ~-"—( /D) (g..'). ,

and the transmission coefficients are
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follows: 1.0

gpc gpc' p, c pc'
(65)

~ 8

To evaluate this resonance average we need to know the
averages (0'„,)„and the distribution functions char-
acterizing the fluctuations of the 0„,about their aver-
ages and their correlations. We shall assume that iV„as
given by the volume integral of the resonance-state
wave function (A16) fluctuates much less widely than

g„,which is determined by the surface value of the wave
function. Hence we shall suppose that the fluctuations
and correlations of the 0„,are governed chiefly by those
of the

I g„.l

' as discussed in Sec. III.
The average of 0"„,is easily obtained by averaging the

unitarity relation

which yields
2 "+&I U- 'I'&:=1, (66)

By substituting (65) into Eq. (59), summing over all
final channels c' and using Eq. (67), it is easily shown
that

absorption ~ fluctuation~~ direct (68)c ~c' gcc' M~ c'Qc ~7cc'

which confirms Eq. (55).
The transmission coefficient T, gives the average

fraction of the coherent incident Qux in channel c
which is removed by the interaction process. As seen
from Eq. (67), we may write

~ 2

0

0.01 0 ~ 1 1.0
27T—

I'
0

10,0 100

I"'xG. 1. The functions 40 and. C» evaluated with Dyson's
two-level correlation function.

tain formal expressions for all other cross sections.
However, further progress in the evaluation of cross
sections will depend on additional models or assump-
tions regarding the g„, and V„'.We now turn to these.

and

= (1—ti„)U„'+8..e"'
= U..'——',ti..b.(O„,/E„)„, (74)

B. Simplifying Assumptions

Uncorrelated 2ntptitldes

The most helpful assumption is to say that the g„, for
diRerent channels are uncorrelated (see Sec. III):

(g"g.").= ~- &g.')' (73)

With the help of Eqs. (61) and (63) and the defini-
tions (46), the assumption (73) leads to

T —T D.R.+T G.N. (69)

T "=(0" ) —P ~ M (71)

and which is further divided into an average resonance-
absorption coefficient &0~„,)„and a resonance-interfer-
ence contribution —P, 3f„Similarly the .fluctuation
cross section

,fluctuation —~g 2 —3I„.CC

0„
(72)

where T, .~ measures the fraction of the flux which
initiates direct reactions

(70)

and T, measures the fraction of the Aux which forms
the compound nucleus

g

Considering the fact that in the presence of several
channels the sum of two total widths fluctuates very
little and furthermore that 40 is a fairly slowly varying
function of its argument, we may ordinarily approxi-
mate (75) by

M,. =5„(27r'/D')
I (g„,')„I

'L1—e,]
U„o—ests

I
sL1—4 7

=-'~- ~ &o"/&.).'L1—~ 3, (76)
where

consists by Eqs. (59) and (65) of the average resonance
contribution which is formally very reminiscent of the
Hauser-I"eshbach model" and a resonance interference
term, —Mcc

We may also substitute into Eqs. (47) to (51) to ob-

r=&r„)„.
Using the arguments below Eq. (65) to set

.V„=(1V„)„=1V,

we obtain from Eqs. (71) and (76) the result

(77)

st W. Hauser and H. Feshbach, Phys. Rev. 87, 366 (1952). T c.N. (Qe ) i g 1irr
—s(1 g& )(Qw ) 2 (79)
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where

Q,=2B,X '(1—e p), (81)

and from Eq. (72) we obtain

PC PC
,fluctuation —&g 2

CC

0„
+' (T' —(o' ).) (82)

The requirement that Eq. (80) be real imposes re-
strictions on the averages of the partial widths de6ned
in Eq. (61). In the single-channel case with 1V=1 this
restriction is found with the help of Eq. (B10) or Fig. 1
to be

2~(l „,)„/D&2;

in the case of resonance-level repulsion. In the case
of no repulsion with Co—= 1, the limit is the usual
2s.(I'„,)„D '&1 obtained by setting the left side of (83)
equal to T,. In general for vanishing Q„ that is, if
C»=1 or B,=O, we have (0„.)„=T.o" which by
Eq. (63) gives

2'(I' ) /D=T o.N/1P (84)

We see, therefore, that even though T, may be close to
unity, (I'„.)„/D could be quite small either because of a
large value of T, ~. or a large X or both.

I.mv Erlergies: Ão Direct Eeactiorls

At low energies where all T, are small and assuming
no direct reactions, Eq. (82) becomes

fluctuation
0'CC'

X(T.T"/P; T; )XW.. . I'«D, (85)
where

(o")(o")0„(0„) (86)

~jthout the factor W ... Eq. (85) is the well-known

Hauser-Feshbach formula" which expresses the in-

dependence of the decay-branching ratio T, /P, T.
from the formation cross section xA.,2T, for compound-
nuclear states. The additional factor 8'„ is the width-
Quctuation correction which arises from the fact that
an average over many compound states is performed and
that the partial widths for these states are distributed
according to Eqs. (45) or (46) or some intermediate
distribution law. This correction has been extensively
discussed elsewhere. 6""We recall here only that for

"A. M. Lane and J. E. Lynn, Proc. Phys. Soc. (London)
A70, 557 (1957).

33 L. Dresner, Proceedings of the International Conference on
Neutron Interactions with the Nucleus, Columbia University
Report CU-175, 1957, p. 71 (unpublished).

which can be solved to give

(Og ) T C.N. +Q LI (1 Q T G.N.)t/s]s (80)

chic' the maximum corrections are 8'„=—', in the case
of the distribution (45), and W„=-', in the case of the
distribution (46), and that W.. approaches unity for
very large numbers of competing channels. Because of
the channel self-correlation effect, 8"„is three times
W., (chic') with the same average parameters in the
case of the distribution (45) and two times as much for
the distribution (46). This is also true in the limit of
very many competing channels. "

As T, increases (0'„,)„rises more rapidly than T,. In
the limit of minimum resonance-resonance interference
C'p=0, (0~&,)s—T. is greatest. This has the effect of
making 0-„.""'""'"'"greater than the approximation
(85) when chic' and less when c=c'. Considered as a
correction to the Hauser-Feshbach formula the sign
of this eGect is always opposite to that of the width
fluctuation correction 8'„, but ordinarily the two
effects by no means cancel one another.

As I'/D increases or as the resonance-level repulsion of
the 8„ is reduced, 40 approaches unity and the fiuctua-
tion cross section again approaches Eq. (85). Since in the
limit of very large I'/D the number of competing chan-
nels is large and therefore the width-fluctuation effect is
expected to be negligible, the simple uncorrected
Hauser-Feshbach formula for 0-„""'t""""is expected
to be applicable in that limit.

The relative enhancement of the compound elastic
cross section o..""'""""with increasing I'/D due to
Eq. (80) may be undersotod qualitatively as follows.
As the lifetime A/I' of the compound system decreases
compared to the characteristic period A/D of its internal
motion, the time-dependent wave function retains a
progressively larger component of the entrance-channel
wave function (or "memory of the mode of formation")
at the nuclear surface when the decay takes place, thus
favoring re-emission into the entrance channel. Though
the language of this explanation becomes less appropri-
ate as I' becomes large compared to D, the e6ect con-
tinues in the same direction. This point has been dis-
cussed by Feshbach. "

Bigh Energies: Direct Reactions

As the total energy of the system increases beyond 20
MeV we expect more and more direct processes to play
a dominant role. Therefore UP is expected to have a sub-
stantial number of off-diagonal elements and, as dis-
cussed in Sec. III, we expect 8, and hence 3f„ to
approach zero. In the presence of many competing
channels, o-„."""'is then given by the Hauser-Feshbach
formula. However, as the values of the direct trans-
mission coefficients (70) increase, the compound trans-
mission coeKcients (0~„,)„must decline by Eq. (69)
since T.&1. Hence the magnitudes of the fluctuation
cross sections will decrease as an ever greater portion
of the incident Aux initiates direct reactions. The latter
must, of course, be discussed in terms of the correla-

s4 G. R. Sstchler, Phys Letters 7, 55 .(1963).
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tions in the actual collision matrix, or preferably in
terms dynamical models involving interactions of few
degrees of freedom of the total system and therefore
having smooth energy variations.

Expartsion il R Mat-rix Parameters

When F/D is small we can obtain an expansion of the
Auctuation cross section in terms of the formal partial
width to level spacing ratios of R-matrix theory by em-

ploying the expression"

where

C. Observable Cross Sections

The cross sections defined in Eqs. (47) to (52) involve
transitions between asymptotic states c which are
ordinarily not directly distinguishable by experimental
methods. The observable cross sections are angular dis-
tributions, integrated and total cross sections involving
initial and final states belonging to specified alternatives
e which may have specified states of polarization,
though we shall not concern ourselves with the latter
possibility here. The average differential cross section
for scattering with alternative o, consisting of fragments
with spins I and 8 in the incident beam and fragments
n' emerging in a differential solid angle dQ ~ at the polar
scattering angle 0 ~ is given by"

r„.=4trP, (y„.2/D),

(&)(v..').
R, =Pr dE

(88)

(89)

(«-")= (~-'/(21+1)(2&+1))
XPL(BL(cr,cr')), PL(cos8 )dQ ~, (93)

and p(E) is the density of formal resonance levels

P.„, (y„,2)„ is the local resonance average evaluated at Ep
in Eq. (87) and at P. in Eq. (89), and Pr stands for the
principal value of the integral. Expanding (87) in powers
of v- and assuming that PR is small to the same order as

where PL(cos9 ) is the Legendre polynomial of order
I. and

L( & ) Qclcl'c2c2'5are25e1'ee'

-'(—1)" '"Z(ltJtl2J2., S1L)

XZ(lt'J14'Js, st'I ) Re(V'„„V'„„.*). (94)

) The summation over each c denotes a summation over

2 -(r ) (1 1(r,)„pg,) (9O) the corresponding values of s, t, and J and ct& c2 belong
to the alternative o. while c~', c2' belong to n'. The Z

Substituting this into Eq. (80) with ~'i)) 1& n coe&cients are defined. in Refs. 7—9. The transition
finds that amplitudes 9 „are given by

(o,.),=(,.),(1—lC'o( ").—P «), (91)

where now the quadratic term in (r„,)„on the right-
hand side is expected to be very small for F((D be-
cause of the level repulsion effect (see Fig. 1). In that
limit, we may therefore also drop the averages on the
left-hand side and on the erst factor on the right of

Eq. (91) (see Sec. III) and substitute (91) into Eq. (82)
to obtain

0 ~g C 2 7PC+PCI C
I PC

fluct. —

X«1—-'(., +"")Co —-'5 "(").'(1—+o)

+cc'

'face'

U ce' ~cc' ++ce' (95)

is constant in energy and

+ee' 2
gpcg pc'

8„+22iF„-—(97)

Substituting these expressions into Eq. (94) we may
write (BL), in two parts

where, employing the statistical collision matrix at Eo

(96)

1 P.-(r„.-)„(Cp+P.-R; )

2
where

( direct~ g fluctuation
L/av = L 7 (98)

—(Pg,+P,.R;), (92)
73L 212 ~12LZ1'2'L Re j+

(99a)

which agrees with the leading terms of the expan-
sion obtained in Ref. 6, Eqs. (38), (39), except for the
terms involving P.R, which were ignored there. "

"P. A. Moldauer, Phys. Rev. 129, 754 (1963). This paper
corrects the results of Sec. III of Ref. 6.

pe There is one discrepancy. The term —~~8«.(r„,)„2 has an
erroneous additional factor of —', in Ref. 6, Eq. (39).

~L +12 +12LZ1'2'L Re{(+ ' + ' )
—(& "')-P'."'*):) (99b)

'7 John M. Blatt and L. C. Biedenharn, Rev. Mod. Phys. 24,
258 (1952); L. C. Biedenharn, in Nssctear Spectroscopy, Part 8,
edited by F. Ajzenberg-Selove (Academic Press Inc. , New York,
1960), p. 732.
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We have used here the abbreviations

Z12 L —S(llJll2J2 2 $11) 2

+12 Zotel c2c2 l12122~21 22 a( 1)

(100a)

(100b)

vanish only in the high-energy region when, due to
many direct processes the statistics (45b) applies and
hence the b, —+0. In that limit also the interference
terms vanish and

From Eq. (83) we have

(&- ')-= ((g..g."&./D), (101)

(~L)av ~ J3L +s Zctct'(( 1) ~»Lgl'1'L
+(I-&..., )&„., &» L2JX~..., """

(high-energy limit) . (105)

while by Eq. (311)

(g" g" ).(g- *g-"*)
P'ctct' +ctc2' )av

DD

The second term in the brackets a8ects only compound
et.astic processes.

For the average integrated cross section one obtains
the familiar sum over all c belonging to n and all c' be-
longing to n'

gpclgIIcl'giJc2 gkccg'

+&Its,&n,nt- —(22r2/D2)'' ''D I'„ with
( -&=2- g.( - & (106)

g, = $(2J,+1)/(2I, +1)(2d.+1)j (107)

X(g„„g„„g„„*g„„*LI—C' (I'„+I'„/2D)$&„.„„,(102)

where J~ and II~ are the total angular momentum and

parity of cl and cl'. Under the assumption (73) of un-

correlated amplitudes, Eqs. (101) and (102) become

(+cc' ) 2 ~cc'~c(elec/+p&tc'

clcl c2C2

0 act 0

Act�'

('3ctcattcl'ct'+(I flclcl )~clc2 ~cl c2]
0„

Pcl
+~ctcl ~c2c2 2 ~cl~c2

X Li —2tt'ztzatt'utn, (1—C'o)]

2 422' gP, C1 gPC2

+tie, z,3n, n,— (102a)
P, cl gc2

At low energies the expressions (101a) and (102a) may
be rewritten by employing the relation

(103)

In the many-channel case of constant I'„and uncor-
related g„, we may write

and the average total cross section for alternative o. is

( total) p A ( total) (108)

Similar "observable" expressions can be written down
for the cross sections (49) through (52). In all cases
these are just sums over the partial cross sections
weighted with A, as in Eqs. (106), (108).

In the above results, as well as those of Sec. V, it
should be borne in mind that by conservation of angular
momentum and parity U.. and 0-„vanish unless
J=J' and II=II'.

V. CRGSS-SECTIGN FLUCTUATIGNS

The fluctuations of cross sections about their aver-
ages may be specified by correlation functions" which
can be calculated by methods similar to those employed
for the determination of average cross sections. We re-
strict ourselves here to a discussion of the simplest
fluctuation problems, those dealing with the mean-
square fluctuations in the total cross section and in
nonelastic reaction cross sections.

The total cross section for an incident beam in alterna-
tive n is given by

o ""=22r)1.2 p, g. Re(9'„'+1'„'),
where the sum is extended over all c belonging to

Following Ericson, " we de6ne the mean-square
fluctuation

2 +2 0~22r g„„g„„„„0„„=b.tb.,a
D I p, p Op

In the case of nonelastic processes 0.'/n, Bl,""" con-
sists according to Eqs. (101a) and (102a) of terms which

are of the form of the Hauser-Feshbach formula, ex-

cept that (0'„,)„replaces T, and the width fluctuation
correction is applicable. The compound elastic angular
distribution contains additional correction terms, which
in contrast to the result (76), do not vanish even for
randomly distributed resonance energies, or in the limit
I'))D (that is, when clio ——1). These correction terms

p (( total)2) ( total)2 (110)

which by means of Eqs. (96), (97), (109), and (+11) is~104~

easily found to be

Eclca 2tIII23nlutgcl

gycl gPC2X2Re-
D F„

g g 1—4p

2' T. Ericson, Ann. Phys. (N.Y.) 23, 390 (1963).



STATISTI CAL THEORY OF N UCLEA R CROSS SECTIONS

where e is a number of the order of the number of
strongly competing channels c.

Next we evaluate the mean-square fluctuation of the
reaction cross section

(113)

for the case where n/n' and the amplitudes are
uncorr elated

(112a) Under these circumstances

where c~ and c2 must both belong to o.. In the many-
channel limit where the I'„are assumed not to fluctuate
and when the width amplitudes are uncorrelated, Eq.
(111)may be rewritten as follows:

Ii =22r)'1 2{+.tg. t2[tr

+Q.,(1—8...,) Reb, ,b.,*o...,"""]}. (112)
In the case of very many competing channels, we may
suppose that the sign of Reb„b„* fluctuates with c2

so that the principal contribution to Ii comes from the
first sum which in the case of nucleon scattering may
then be estimated to yield

p ~(1/+)( total) fluctuation

where c~, c2 belong to o. anc c~, c2 belong to 0.'.
Employing Eqs. (811), (813), (814), and (817) we obtain

lg" I'lg" I'lg-. l'lg- I' (I'.+I' ) (I',+I',)
ctct'csea' ActQcz @ol I+@ol

DD, r I„ 2D1 I '1 2D2 )
4~

I g" I I g"1 I I g"21 I g," I (4 ' Ig" I'lg" I'Ig- I'Ig... I' (I',+I',)+4,I,brt, rr, — + t 2 1' 2'
I C'ol

D I p, &D &2D)I pI"v

gtvct guet gvct gvct f I tv+I v) ~~
I g" I

'I g" I'

D' (I'„+I'„)2 k 2D 1 „~„) D F„

I clcv g ctct gct trctct {2trctct + ( 0 +ct ct @2)trctct }+gctct coca gctgcatrctct trcacs

X{2[4'o(l'/Dt)+C'o(I'/D2)] —1+tlztzsbntnz(D/zri')[1+bctct(Act 1)][1+bet c, (Ac, —1)]. a/tr' (116)

The second sum clearly goes to zero in the limit of large I'/D and the value of the first sum can in that limit be
estimated to yield

where C 2 is defined in Eq. (815) and plotted in Fig. 1. In the many-channel limit when the I'„are fairly constatn
(115) can be rewritten as

I' .-(1/Nzz')o. ""'"((~..)+o.."""), (116a)

where e and e' are the number of channels c competing strongly in the decays into alternatives 0, and 0.', respec-
tively. Since I'/D and n are expected to be roughly proportional, we see that we may expect Ii to decline with
increasing excitation energy even more rapidly in the region of large I'/D than for isolated levels where the decline
is governed by the factor D/zrI' in Eq. (116).Further, discussions of the implications of Eq. (116)have been given
elsewhere" and will not be repeated here.

Employing again Kricson s definitions we write

where

((do ./dQ .)')—(do /dQ 2)=X 4[(2I+1)2(2c(+1)2] ' QzK FzK(nn')PI (cosg') pK(cosg'),

Ii I K(ot,ot') = (BI,(tr, tr') BK(n,41')
&
—(81,(n, tr') )(BK(4r,n') ).

(117)

For the case of nonelastic processes otWot', we easily evaluate (118) with the help of Eqs. (813), (814), (817) and
obtain in the many-channel limit [see Eqs. (100)],

FIK(etvet ) +12 +84 Z121~1'2'IS84K~8'4'K(f1284(civet )/Zr )(cc ) v (119)

where f,284 depends on the eight sets of channel parameters over which the summation extends and which occur in

cc P. A. Moldauer, Phys. Letters 8, M (1964),
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the expression

fioo4(nn')=sr. .., """lr.s.s""'"(&iobo4[C'o —1+4,z, &n,ns(D/zl')[1+8. ..,(A.,—1)][1+8..., (A„.—1)]j
+&i4boo[C'o+ 4,J's&n,

ns(D/farl')

[1+b...s(A „—I)+8..., (A .,—1)—bioA c,A., j])+o.„,""'"o „„.""".
X &iobo4b, b,;b,,*b,, *(—C'&+4rz, &n n, (D/z I')[1+& .,(A, 1)+b.. ,. (A, —1)—bioA, ,A, $)

where we have used the notation
~i2= ~c...~.,", .

In the limit of large I'/D this expression becomes

f1284(n n ) ~ /l14b28lr ' rr ' +Re(523+ ' + ' rr ' + t/147 ' 9, 'o..., """), nWn'. (120a)

Comparing this result with Eq. (105) we find that in this limit for nWn and in the absence of direct reactions
(all 1„'=0)

((drraa'/d~) ) (do'aa /dQ) PLK +lo ZioLZ1'o'LZoiKZp pK0'cr '0' ' 'PLPK
(nWn') .

(do /dQ)' ELK Zlo Z11LZ1'1'LZ22KZ2'2iKrrc 'O' 'PLPK
(121)
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APPENDIX A: COMPLEX BOUNDARY VALUE
PROBLEM EXPANSION

In the various boundary condition formalisms "0 the
configuration space of all nucleons in the scattering
system is divided into an interior region and an ex-
terior or channel region. The wave function in the in-
terior region is expanded in the eigenfunctions of a
boundary-value problem specified by the Hamiltonian
operator and conditions on the normal logarithmic
derivative at the surface dividing the two regions. The
E-matrix theory of Wigner and Eisenbud' employs
arbitrary real boundary values, while the Kapur-Peierls
formalism" uses special energy-dependent complex
boundary conditions. A particularly convenient deriva-
tion of the latter method has also been given by Bloch."
We require a formalism employing arbitrary complex
boundary conditions. Since this slight generalization of
the R matrix and Kapur-Peierls theories does not ap-
pear to be in the literature, we sketch here the deriva-
tion from the beginning employing mostly the same
notation and conventions as Lane and Thomas used. ~

Omitted details may also be found there.
It is assumed that in the exterior region the system

can be described by a collection of states or "channels"
o(n, s, /, J,M') characterized by the specification of two
fragments in specified states of internal excitation (with
quantum numbers symbolized by n), and their angular
momentum quantum numbers s(channel spin), l(rela-
tive orbital angular momentum), J, &(total angular

momentum and its z component). The wave number of
the relative motion, depending on the total energy E,
is k (E). The wave function in the exterior is written
as a sum over incoming and outgoing waves in the
various channels

4 =p.(x,g,+y,s,), (A1)

and the collision matrix is defined by the channel matrix
relation

x= —Uy. (A2)

The wave functions 8, and 8, are assumed to be solu-
tions of a Schrodinger equation with a spherically
symmetric nonpolarizing potential operator V(n, s,l).
The dependences of 8, and 0, on their internal co-
ordinates $, their angular coordinates 0, and their
radial channel coordinates r may therefore be separated

~c f/a nasl JM()asia)lal(ra) s

8c=~a PaslJclf()a~ala)oal(ra) s

(A3a)

(A3b)

where M is the reduced mass. For the purpose of
matching the logarithmic derivatives at the dividing
surface one defines salle and derim, five quantities on the
surface by

V,=
I &.*+d~,

2MaOa1 surface
(A5a)

( $2 ) 1/2

D, =~
~

q.*V (r 4')de, (ASb)
(2Mafia/ surface

where v is the relative velocity of fragments n and I &

and 0 ~ are the incoming and outgoing solutions of the
radial equation

[(d'/dra') —l(t+1)/ra' —(2M /A')(V —E))m=0, (A4)

so C. Bloch, Nucl. Phys, 4, 503 (1957)., where u is the chueeel ruckus which defines a portion of
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the dividing surface over the whole of which the integra-
tions in Eqs. (AS) are carried. The normal gradient at
the surface is V'„. The q, are a complete orthogonal set
of functions on the surface, and therefore at r =a

ditions, ImB, equals the penetration factor P, corre-
sponding to the channel radius u .

Using Eq. (A13) we obtain for the expansion coeK-
cients A„of Eq. (A7)

+=+.(23' a./h')'"V. q. , (A6a)

7' 4= Q, (2M /a 5')'"(D,—V,) g .. (A6b) interior
(A17)

In the interior 4 is expanded in a complete set of
functions X„

4 =g„A„X„. (A7)

The X„are defined as the eigenstates of the boundary-
value problem

HX„=8'~X„, (AS)

where H is the complete Hamiltonian and the boundary
conditions at the dividing surface are specified by com-
plex numbers 8,

0'~./8~. =&. (A9)

where 8„, and f„, are obtained by substituting X„ for
4' on the right-hand sides of Eqs. (ASa) and (A5b), re-
spectively. Assuming H to be invariant under rotations
and under time reversal, one obtains from (AS) and (A9)

HX„=8'„*X„, (A10)

|t'"/8"= & * (A11)

where, denoting the time reversal operator by K,"
X„(g,~) ( 1)~ ~EX„—(——g, g )(r), (A-12)

and P„, and 8„, are obtained by substituting X„for 4
in the right-hand sides of Eqs. (A5). If we assume the
eigenvalues W„of Eq. (AS) to be distinct except for the
(2J+1)-fold M degeneracy for each p, then the or-
thogonality of X„and X, for pWv is easily demonstrated
by operating on Eq. (AS) with fdTX„*and on the com-
plex conjugate of Eq. (A10) with J drX„, subtracting
and employing the self-adjoint property of the inter-
action part of H, Green's theorem and Eq. (A9). For
the normalization of the X„we choose

X„*X„de=5„„.
interior

(A13)

Applying the same procedure to X„and X„*,we find
that

(A14)

where
V= %(D—BV),

'Jl- =Z.(8"8"/~. ~),

(A20)

(A21)

and where we have used the fact that

0 *=8 (A22)

which follows from the properties of the time-reversal
operator E and the choice of normalization (A13)."

By writing Eq. (A20) in terms of the incoming and
outgoing waves of Eqs. (A3) and using (A1) and (A2),
one obtains the usual expression for the collision matrix
in terms of the R matrix which, for the elements con-
necting positive energy channels, may be written as

U= Q{1+2iP'"Ll—%(L—B)$-'SP'~') Q, (A23)

where the following diagonal matrices are used:

fI.= LI ( -)/0 ( -)1'", (A24)

I.,=k a 0.'(a )/O, (a ) =S,+iP, . (A25)

The Kapur-Peierls theory corresponds to the choice
B,=l., at each energy which eliminates the matrix in-
version indicated in Eq. (A23), but implies energy-de-
pendent values of 8'„and 8„,. The Wigner-Eisenbud
E-matrix theory encompasses any fixed real values of
the 8,. As a result, the 8'„and 0„, become the real
parameters E„and y„.used in Sec. II.C.

Operating on the Schrodinger equation

HN=E4, (A1S)

with J'd7X„*and subtracting the complex conjugate of
Eq. (A10) after operating on it with J"d7%', and em-
ploying the same methods as described above we
obtain

A„=(W'„—E) ' Q, 8„,*(D,—B,V,). (A19)

Upon substituting this in (A17), one obtains the usual
E.-matrix relation

with

where
I'„=Q, I'„„ I'„.=2/„'Im8, ~8„,~', (A15)

APPENDIX B: INTEGRALS

We are concerned here with functions of the form

terior
[(X„i('dr. (A16) p (()(+)=p

P 8„(~)+,'iI'„(~)—-
In the special case of the Kapur-Peierls boundary con- and

4' A full discussion of the properties of the time inversion opera-
tor has been given by Eugene P. Wigner, Group Theory, trans-
lated by J. J. Griffin (Academic Press Inc. , New York, 1959),
Chap. 26.

p(i)+ p(i)p&&)+ p(J')p()t')+p(&)p(~)@ etc (B1)
where the real and distinct 8„'» are assumed to be dis-
tributed with uniform density D&

' @Dd with uniform
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correlation of 8„+„(&') and h„(t) from F= —~ to + e&.

The complex a„(» and the real and positive I'„(» also are
uniformly distributed in p. We further assume that there
is an effective maximum value I'; ' of the I'„(» and we
call the average (I'„(")„=I';.

We wish to obtain averages of the functions (81) (col-
lectively called F) over energy intervals which are
allowed to grow beyond all bounds:

(F), = lim— dFP(L~') .8' g
(82)

For the distributions of interest here the limiting value
will be approached when 8'&)I';, D; for all j involved in
F. We evaluate the integral in (82) by considering the
contour integral of F along a rectangle in the upper half-
plane of the complex E plane with its base of length 5'
along the real axis and of height %'))D;, F,™~for all j
involved in F. In fact, we make VP large enough so that
along the top of the rectangle F has reached the limiting
constant value which it approaches in the upper half-
plane. The expectation values of the contributions from
the two vertical sides of the contour integral are equal
and opposite, and the root-mean-square fluctuation of
the net contribution to (F), from these sides goes to
zero as O' '. Their possible contribution can be further
reduced toward zero by considering averages over
many (F), whose intervals are slightly displaced. This is
equivalent to the use of other than rectangular resolu-
tion functions. These conclusions regarding the vanish-

ing of the contribution from the vertical sides clearly
hold equally whether we are dealing with F(» or with
functions in which F(»* contributes poles in the upper
half-plane. We conclude therefore that

average

(~ "') (~.'")*),
ER)+=2s', J,W J&, . (86)O' D; D~

If
p

however J;=J~ and hence D; =D~ =D then we ob-
tain a contribution from those terms in (85) for which
s =p which is

(87)(2 /D)( „„*/r„)
and a contribution from the terms with zap.

(2~2/D2)(&„()&„( )*C,L(1 „+r„)/2Dj)„,„, (BS)

where " deR2(e)
4'o —=—i—

e—il'
(89)

and% has been defined in connection with Eq. (44). For
uncorrelated 8„(') the function E2 has the constant value
D ' and then Co—= 1. For Dyson's expression (44) of R2
we And that

C&o)
—

(
= 1 (1/x) L1—(1/x)e *sinhx)

(D,i
—(1/x) Ei(—x) fcoshx —(1/x) sinhx7, (810)

r 00

x=~—,—Ei(—x)= e 't 'dt,D'

which is plotted in Fig. 1. For large I'/D the function
Co must always approach unity. For small I'/D the
deviation of C 0 from unity depends on the degree of the
mutual "repulsion" of the neighboring b„(&) and on the
range of this resonance level correlation effect. Combin-
ing the results (84) through (88), we obtain

(p), = F(im) +li m(2~i/W) Qe„; s R„+, (82) (p(, )p(&,)gg
/av

(F(')) F('&(i'N) = —i~((u„('))„/D~) . (83)

where E„+ is the residue of any pole of F which lies in
the upper half-plane and whose real coordinate is h„.

The average of F~&' is easily found by evaluating the
first term in Eq. (82)

(«„&'&)„(g„&'&")„2 «„&'&&,, «&*)
+4;z,

D, DI, D I'„

p v

(811a)

When F=p(&')F(")*,we And from (83) that

F('+)= —'(( ."')./D )(( .'"'*)./D ), (84)

and that
g (»g (&)+

2 R.'= Er.'-~ 2
(h (&) b (i))+ i(I' (i)+I' (i))

(85)

The value of this sum will depend on whether the poles
of F(» and F(~) have the same coordinates or not. We
denote the parameter determining the pole coordinates
of F(i) by J; (total angular momentum and parity of the
system) and assume that if J;4J&, the positions of the
8„(~' and 8„(&' are completely uncorrelated. In that
event (85) yields for the residue contribution to the

g (i) g (i)
(p(i)p(&)),„=

Da
(811b)

For more complicated functions of the F(», the ex-
pressions for the averages become more and more
lengthy. We shall here still evaluate the average of F(»

F(~)*F")F( )* under the restrictions

(a,"))„=0, i= j, k, I, m. (812)

In that case F(i'VP) clearly vanishes and there remain
three types of contributions to the sum over residues
arising from terms with pairwise equal indices. The

The function F(&'F&~' has no poles in the upper half-
plane and hence
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p 3

terms with all four indices equal contribute

g (i)g (&)+g (&)g (~)+

~~~~a~~r ~t~~i~m ~

D II

where
I' D

4'2 —= —z—1"
" deR2(e)

„(e—iT')'
(815)

A second contribution arises from the terms in which the
indices arising from F&» and F"' coincide and the indices
of F("*and F( '* coincide but the two indices are dif-
ferent, from each other. This yields

16~' a "&a '"u, "'*a,'"&* I' +r,
D2 2D pgv

which vanishes identically for E2=D ' when the 8„
are uncorrelated and goes to zero for both very small
and very large values of I'/D in all circumstances. The
functional form of 4» for the case of Dyson's R2 as
given in Eq. (44) has been plotted in Fig. 1.

Finally, there are contributions from the poles of
terms in which the indices arising from each of the un-
starred factors coincide with the indices of one of the
starred factors. These contribute to the average

(2s./W)p(bg, .J „bg g a ~'&u &"&*a„&'&a„&"&*

+5g.g hg g a U'a "'*a "a " *)([I' "'[8 "'—8 '"+-,'i(I' '&'+I' ")][8 '&' —8„"'+-'i(I' '&' —I' '")]] '
+Lp„(t&$8 (l& —$ (j&+—z(p„(l)yp (j&)]I g„(l&—g (j&+—z(p (l& —P (j&)]] 1} (816)

where the sum is over all pNv in W. In the limit of large W the expression (816) is easily evaluated with the help
of the antisymmetry property C»(—x) = —Co(x) and yields

2 ' a„(&)a„&') b,.g,bJ,g a„( )*a„' )* bg,.g„bJ,J,a„' '*a,"'* I'„F„ I'„1,
Co +Co . (817)

D;D) r„r„ 2D; 2Dg — p, gv

The sum of (813), (814), and (817) equals (F"'F&"&*F~'&F& &*), under the restricting conditions (812).


