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Approximate Independence of Optical-Model Elastic Scattering
Calculations on the Potential at Small Distances*

GEoRGE H. RAYITscFIER

Fale University, Eem Huven, Connecticlt

(Received 27 September 1963; revised manuscript received 30 January 1964)

In optical-model calculations of the elastic scattering of alpha particles or other heavier nuclei on nuclei, it
has been observed that the cross section is rather insensitive to variation of the optical potential at small
values of the interaction distance. In the present note it is pointed out that in many cases this e6'ect can be
explained with the aid of the JWKB approximation. If the real part U of the optical potential U+ig' is suf-
ficiently deep and if 5' produces sufficient absorption, then at some point E& contained inside the interaction
region, the outgoing branch of the JWKB expression for the radial wave function becomes negligible com-
pared to the ingoing branch. In this case the choice of the potentials for r (Rf, does not affect the phase shifts,
and the use of an ingoing wave boundary condition applied at E& to the radial wave function is nearly equiva-
lent to the use of conventional optical-model procedures. Under such circumstances the phase shifts are in
essence determined by the penetration of the radial wave function through the barrier formed by the com-
bined action of the Coulomb, nuclear, and centrifugal potentials.

I. INTRODUCTION interaction can be represented by a two-body potential,
to be employed for all values of the interaction distance
r. At distances such that the two nuclei overlap con-
siderably, the optical potential is interpreted as a
mathematical device used to obtain wave functions
which can be given physical meaning only at large dis-
tances. This interpretation would become questionable
if the cross section should depend on the choice of the
optical potential in the region where the overlap of
nuclear matter is pronounced. It is of interest, therefore,
to have an understanding of the mathematical condi-
tions under which the cross section is expected to be
insensitive to the small distance potentials. A study of
this question had led to the JWKB consideration out-
lined below, which may serve as a partial guide in the
interpretation of optical-model calculations.

~
'HE optical model has been extensively used in the

description of the interaction between a light and
a heavy nucleus, as for example, in distorted-wave Born
approximation calculations of stripping or pickup re-
actions. In many cases it was found that the final results
are insensitive to certain combinations of optical-model
parameters. Indeed Igo, ' in analyzing elastic o.-nucleus
scattering, finds that the depth of the optical-model
potential in the "interior" of the interaction region does
not affect the angular distribution and he is led to
optical potential parameters which characterize only the
"surface" of the interaction region. The optical model is
also coming into use for the description of the interaction
of heavy ions. McIntosh, Park, and Rawitscher' theo-
retically obtain the long-range part of the interaction
between N", C", and 0",which, when combined with a
phenomenological part of the interaction at small dis-
tance lead to cross sections in reasonable agreement
with experiments. A purely phenomenological optical-
model potential was employed in 1958 by Porter' in the
study of N"—N" elastic scattering, and recently also by
Kuehner and Almqvist4 in a study of 0"—C" C"—N'4

and N"—Be' scattering. In all these optical-model
calculations it is assumed that the nucleus-nucleus

II. JWKB CONSIDERATIONS

In this section the solution of the usual radial differ-
ential equation

(0'/2tt) (d'Pr/drz)+ (8 V ff~—zW) Pr, ——0 —(1)

will be discussed in terms of the JWKB approximation.
Here Pr, (r) is the partial wave corresponding to angular
momentum Al. , V,ff contains the real part V of the
optical-model potential, the Coulomb potential V' and
the centrifugal term*This research was supported by the U. S. Atomic Energy

Commission and by the U. S. Army Research Office (Durham) .
' G. Igo, Phys. Rev. 115, 1665 (1959).For a review of cx-particle

scattering on nuclei see R. M. Eisberg and C. E. Porter, Rev.
Mod. Phys. 33, 190 (1961).' J. S. McIntosh, S. C. Park, and G. H. Rawitscher, Phys. Rev.
134, 81010 (1964). A preliminary account of this work is given in
Proceedings of the Second Conference on Reactions betvtfeen Complex
Xgclei, edited by A. Zucker, F.T. Howard, and E. Halbert (John
Wiley 8z Sons, Inc. , New York, 1960), p. 127; and also in the
Proceedings of the Third Conference on Reactions bet7oeen Cornpleg
XNclei, edited by A. Ghiorso, R. M. Diamond, and H. E. Conzett
(University of California Press, Berkeley, California, 1963).

' C. E. Porter, Phys. Rev. 112, 1722 (1958).' J. A. Kuehner and E. Almqvist, Proceedings of the Third
Conference on Interactions between Complex Nuclei, edited by A.
Ghiorso, R. M. Diamond, and H. E. Conzett (University of
Qaliforrga Press, Berkeley, California, 1963).

I

V ff L Vc+ Vx+ (Qz/2ts)L (I+ I )/rs (2)

kr, (r) = (2tt/A')"'(E —V.tP zW)"'—
8605

W is the imaginary part of the optical-model potential,
p, is the reduced mass, A is Planck's constant divided by
2x, and r is the center-to-center distance between the
two interacting nuclei. Equation (1) is usually solved by
numerical integration, with the boundary condition that
FL, vanishes at the origin of r, and a nuclear phase shift,
KzKr, n+zK, =zris obtai, ned in the usual way. The
JWKB approximation becomes valid if the effective
wavelength
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The term with the positive exponential is the outgoing
branch, the other is the ingoing branch. The ratio of the
constants AL, and B~ depends on the nature of the
potentials near ry and on the condition imposed on Sz,
for r&(r~.

In the presence of a negative imaginary potential 8',
the imaginary part of k~, Imkz, , is positive, and hence
the ratio SL, of the magnitudes of the outgoing to the
ingoing branch

N,,= lAL/BLlexpl —2 Imk J.dr (6)

decreases with increasing r. If the ratio (R~ should be-
come negligible compared to one beyond a certain value
rL, ', then the outgoing branch is negligible compared to
the ingoing one and the logarithmic derivative of F~,

(d+L/+Ldr) JwKs = —(dkL/dr)/(2kL) ikz„(7)—
depends only on the local value of k~ and its derivative
and not on the potentials present for smaller values of
rJ.'. In this case the nuclear phase shift is independent of
the potentials for r(rf. ', as long as the validity of Eq.
(7) at rL' continues to hold. If the JWKB approximation
is valid beyond rJ.', i.e., for r~'(r(r~", then the nuclear
phase shift depends only on the potentials for r)r&".

From the above discussion, the following procedure
denoted by the abbreviation IWB is suggested. At
some value Rb of r the logarithmic derivative of the
wave function is taken equal to the right-hand side of
Eq. (7), and the wave function is continued from R b to
the matching point R by numerical integration of the
Schrodinger equation. The usual optical-model pro-
cedure, in which the wave function F& is set equal to
zero at the origin, is denoted by OM. The IWB and OM
nuclear phase shifts are nearly the same if Eq. (7) is a
good approximation for the OM logarithmic derivatives
at Rb. If OM and IWB logarithmic derivatives disagree
at Rb, then OM and IWB nuclear phase shifts may
nevertheless be nearly the same if the increase of the
magnitude of the wave functions between Rb and the
matching point R is suKciently large. The reason is as
follows: The nuclear phase shift is related to the
difference of the logarithmic derivatives of Coulomb and
nuclear wave functions

~L P L /FL +L /~L3& zzm

varies sufficiently slowly with distance so that

l (dkL/d. )/2kL'l «1
as is frequently the case at sufficiently large distances
from a turning point rr. The JWKB approximation for
F~ then is given by

r

(&L)JwKs=~LkL '" «pl i j
(

+BLkL '~2expl i —kLdr
l
. (5)j

according to the well-known relation

Lexp(2ikz) —1j/2i= NFL'DL/(1 FL—HLhz)], =z„,
where F~ and G~ are the usual regular and irregular
Coulomb wave functions, HL iFL——+GL, and the prime
denotes differentiation with respect to kr. An error in
the logarithmic derivative at R b gives rise to an error at

according to the relation

(~z'/~z- ~.'/~2) ~„
=—(&z'/&z —~'/&2)p t:(& ~)~/(~ ~) .j (8)

where F~ and F2 are two nuclear radial wave functions
FL, which obey different boundary conditions at Rb but
satisfy the Schrodinger equation with the same po-
tentials for r) Rb.

It is the purpose of this discussion to determine a
position of Rb such that the IWB and OM procedures
give nearly the same results for all relevant values of L.
It should be pointed out that the use of form (7) as a
boundary condition is not the only possible one which
leads to ingoing waves. A simpler L-independent form
has been employed by Feshbach, Weisskopf, and co-
workers' in calculations of neutron-nucleus interactions;
a similar form has been employed by Ebel and Becker'
in a study of N' —N' scattering, and an L-dependent
ingoing wave boundary condition has been under recent
consideration by Strutinsky. The choice of Eq. (7) is
motivated here' by the desire of establishing a connec-
tion to optical-model calculations.

For the usual choice of an attractive nuclear potential
of a %oods-Saxon form, the plot of V,ff versus r, for low
values of L, has a valley which is contained between the
repulsive centrifugal part near the origin and the re-
pulsive hump, to be denoted in what follows as the
barrier region, where the Coulomb and centrifugal po-
tentials dominate over the nuclear potential. As the
value of L increases the valley and barrier in V,ff

become less pronounced, until they disappear entirely.

5 H. Feshbach and V. F. Weisskopf made extensive use of an
ingoing wave boundary condition (IWBC) for the calculation of
reactions involving nucleons. Phys. Rev. 71, 145 (1947); and 76,
1550 (1949). However, the continuum model, which is based on
the IWBC, has lately fallen into disuse because it gives a wrong
energy dependence of the reaction cross section, as described by
G. E. Brown, Rev. Mod. Phys. 31, 893 (1959). The above-
mentioned authors assume an angular momentum independent
wave number for the ingoing wave boundary condition and also
take no account of the rounding of the Coulomb barrier due to the
diffuse nature of the nuclear potential.' M. E. Ebel and R. L. Becker, following a suggestion by G.
Breit, have applied the ingoing wave boundary condition, in much
the same spirit as described in footnote 5, to the elastic scattering
of N" on N", and have compared the resulting phase shifts to
several optical-model results.

7 V. M. Strutinsky, paper read at the Third Conference on
Reactions between Complex Xgclei, edited by A. Ghiorso, R. M.
Diamond, and H. E. Conzett (University of California Press,
Berkeley, California, 1963), and recent preprint from the I.
V. Kurtchatov Institute of Atomic Energy, Moscow, 1963
(unpublished).' The IWB procedure as outlined here has been used in part by
the authors in the publications listed in Ref. 2, and the connection
to optical-model calculations was apparent to the present author
since April 1961.
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Accordingly, two extreme situations can be distin-
guished. For suKciently low incident energies the values
of L which contribute significantly to the scattering
cross section are small enough so that the corresponding
barriers in V,~g are well developed. The other case is
that of high energies where only one turning point exists
for the large values of L which are still significant.

The high-energy case will be discussed first, although
the use of the IWB method is in this case not as useful as
in the low-energy case. An imaginary potential of a
Woods —Saxon-like r dependence is assumed present. One
turning point, rz (L), exists for the high values of L and
the corresponding reflection coefficient, exp( —2Kr,r)
depends on the magnitude of the imaginary potential
present for r larger than rr(L). In this case a small value
of the reQection coeKcient corresponds to a large in-
crease of the magnitude of the wave function between
turning and matching points, which can be seen as
follows. If the JWKB approximation is valid at the
matching point R„, then 6lr„as given by Eq. (6) and
evaluated between r& and R, is equal to the reaction
coeKcient. For small values of the reQection coefficient,
the outgoing branch has become negligible compared to
the ingoing one at r=E.b, and the quantity in square
brackets of Eq. (8), with Fi taken to be the same as Ps,
is approximately as small as the part in (Rl. containing
the exponential. The position of E.b can now be chosen
to occur near the turning point of the highest value of L
for which the corresponding reQection coeScient is still
as small as the desired order of the error made through
the use of Eq. (7). If Ls denotes this value of L, then
for L Lb the error in the phase shift is, according to
Eq. (8) and the above considerations, of the order of the
reQection coefficient. For L&Lb, Rb lies in the region
where E& V,rt and Eq. (7) is valid to within the error of
the JWKB approximation at Rs. For L&Ls, r~(L) &Rs,
W should be large enough for r&rr(L) so as to absorb
the outgoing branch of wave function relative to the
ingoing one at r =R s, and Eq. (7) should again be valid.
For the low values of L the "hump" in V,~g, mentioned
previously, may be in evidence, and since, as illustrated
in the Appendix for the case of a square-well complex
potential, the absorption of the outgoing branch de-
creases the larger the value of E—V,ff, a part of the
outgoing wave may still be present at R . In this case
the reaction coefIicient fluctuates as a function of L, as
can also be seen from the illuminating considerations of
Austern. ' The independence of the phase shifts of the
potentials for r &Rb, is in the case of high energies to a
large extent a result of the fact that the wave functions
are very small for r(Rb, and the position of R b depends
sensitively on the amount of imaginary potential pres-
ent. This will be illustrated by a numerical example in
Sec. III.

The case of low energies differs from the one just
discussed mainly because the presence of the additional

' N. Austern, Ann. Phys. (N. Y.) 15, 299 (1961).

barrier destroys the validity of the JWKB approxima-
tion in the "barrier" region. As a result a great deal of
refl.ection is introduced, and the reQection coefFicient
depends to a large extent on the penetrability through
the barrier. The position of Rb now depends on the con-
dition that for all values of L less than a certain L',
(a) Rs be contained in the validity region of the JWKB
approximation and (b) the value of S,r. calculated from
rz to Rb, be «1. Fulfillment of conditions (a) and (b)
depends on the presence of sufficient imaginary po-
tential for rz (L) &r &R b and on the validity of Eq. (4)
near Rb. The value of L' is again determined by the
requirement, in addition to (a) and (b) above, that the
square bracket in Eq. (8) be sufficiently small so as to
eliminate the error introduced at Rb for L&L'.

This condition is expected to be satisfied for values of
L' such that the corresponding reQection coefficient is
close to unity, as can be seen from considerations of
barrier penetrability. Accordingly, the value of R& can
be taken close to the middle one of the three turning
points which occur in V,ff for.L=L'.

Whenever Eq. (7) can be applied as a boundary con-
dition for the nuclear wave functions, then in the low-
energy case the nuclear phase shifts are essentially de-
termined by the amount of penetration of the wave
functions through the barrier region. By approximating
the values of V,fg in the barrier region by means of
parabolas, the penetrability can be estimated in terms of
parabolic Weber functions, as has been done several
years ago by Wheeler and collaborators. " This pro-
cedure can be extended" to obtain an approximation for
the real part of the nuclear phase shifts as well, and
serves to give an insight into the L dependence of optical-
model nuclear phase shifts at low energies. In the cases
where the outgoing branch of the JWKB approximation
to the radial wave functions in the valley region is not
negligible compared to the ingoing one, the IWB con-
siderations alone do not apply, and the additional inter-
ference "wiggles" which then appear in the cross section
depend on the nature of the potentials in the valley
region. The considerations of Austern' and of Drisco
et al."are very helpful for these cases.

It also should be kept in mind that the use of Eq. (7)
at r=Rb implies either that the optical-model descrip-
tion of the elastic scattering of heavy ions is a valid
procedure for all values of r, the optical-model potentials
being such that the outgoing waves disappear at Rb, or

OD. L. Hill and J. A. Wheeler, Phys. Rev. 89, 1102 (1953)
particularly on p. 1141, and also K. W. Ford, D. L. Hill, M.
Wakano, and J.A. Wheeler, Ann. Phys. (N. Y.) 7, 239 (1959) make
use of Weber function results for parabolic barriers to estimate the
L dependence of nuclear phase shifts. T. D. Thomas, Phys. Rev.
116, 703 (1959) has used parabolic transmission coeKcients in the
calculation of compound nucleus formation in heavy ion induced
reactions. Comparisons between parabolic barrier transmission
coeKcients and optical model results were carried out for alpha
particles by J.R. Huizenga and G. Igo, Nucl. Phys. 29, 462 (1962).

"G.H. Rawitscher (to be published).
"R.H. Drisko, G. R. Satchler, and R. H. Bassel, Phys. Letters

5, 347 (1963).
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suits and the results of Eq. (7), labeled IWB, for values
of L larger than 8 is due to the lack of validity of the
JWKB approximation at 7.08 F. The imaginary part of
the potential employed in these calculations is the
larger of the two Ws shown in Fig. 1.

As another test of the applicability of Eq. (7) in the
example under discussion, the imaginary potential was
set equal to zero and the optical-model wave functions
were started at E.~ 4F by means of the boundary
condition, Eq. (7), and then numerically integrated
towards the matching point in the usual manner. The
results are labeled with IWB and compared to optical-
model results in Fig. 3. In order to investigate the effect
of the presence of the imaginary potential in the barrier
region, various imaginary potentials were employed in
the optical-model calculations. The functional form of 5"
is given in Fig. 3, where the significance of R becomes
apparent. Two such S"s are shown as dashed lines in
Fig. 1, corresponding to R= 2.5 F and 4 F, respectively.
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phase shifts corresponding to one of the cases are shown in Fig. 3.
The IWB cross section is not shown since it is nearly indistin-
guishable from the dashed curve, from which, however, the
wiggles are averaged out.
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FIG. 3. Comparison of optical-model and IWB nuclear phase
shifts XI,=XI,~+iVCz, , in order to test the validity of the ingoing
wave boundary condition. The condition is applied to the wave
function at the onset of the barrier region, as discussed in Sec. II.
The abscissa represents values of the angular momentum in units
of A. Both calculations involve numerical solutions of the Schrod-
inger equation for the potentials shown in Fig. i. In the optical-
model calculations the wave function is started at the origin; in the
"boundary condition" case, IWB, the imaginary potential is set
equal to zero and the wave function is started at r =4.0 F with the
logarithmic derivative given by Eq. (7). The various imaginary
potentials 8' used for the optical-model calculations are given by
the Woods-Saxon expression shown in the 6gure. Two such 8"s
corresponding to R=4 and 2.5 F are shown by dashed lines in
Fig. i.

Examination of Fig. 3 shows that as 8" is shifted toward
smaller values of r, i.e., as E. is decreased, the phase
shifts move towards the IWB results, and nearly coin-
cide with them for E.=4 F. As R is reduced further, the
phase shifts remain fairly stable until they begin to
oscillate around the IWB values, as is illustrated by the
case E.= 2.5 F. For such small values of H/' the outgoing
branch is no longer negligible compared to the ingoing
one at r E.b and the interference between the two is
responsible for the oscillations. The corresponding cross
sections are shown in Fig. 4. The IWB cross section is
not shown since it lies very close to the dashed curve,
obtained with E.=2.5 F. It does not have the slight
"wiggles" of the dashed curve, however.

The comparison of optical-model phase shifts to IWB
results, the latter calculated with 8'=0, serve to em-
phasize that small amounts of imaginary potential
present in the barrier region do not affect the main de-
pendence of the complex nuclear phase shift on L, which
is determined by the position and penetrability of the
barrier in V,ff. The IWB method is, of course, not re-
stricted to situations in which 8" is negligible in the
barrier region. Calculations of the IWB type have been
performed for the numerical example discussed above,
in which various amounts of 8' are present for r&~E.~.

The dependence of the phase shifts on 8' is similar to
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that obtained in the optical-model case, i.e., the value of
the maximum of sin(2kl, ~) exp(2kl. l) decreases and the
differential cross section in the backward angles in-
creases with an increase of 8' in the barrier region. In
another series of calculations the sensitivity of the phase
shifts to the choice of the position Eb of the ingoing
wave boundary radius was tested. As E.b was changed
from 5.0 to 6.0F, the most sensitive phase shifts
changed in the second place after the decimal point,
while for Eb ——6.5 F a change in the first place after the
decimal point was noted. From the arguments made in
the preceding section, one would expect 6.5 F to be an
upper limit for Rq since for I.'= 11, exp( —2k', ) 0.991
and the turning point rr'(11) 7.1 F. At the distance of

0.66 F to this turning point the JWKB approximation
is valid to about 5% accuracy according to the Appendix
and hence E.b 7.1—0.66 6.5 F. It is useful to note
that 6.5 F is equal to 1.35 FX (Aq"'+32"').

For a comparison to experiment of the cross sections
obtained by means of the IWB procedure at low ener-
gies the reader is referred to the paper of McIntosh et al.'
In these comparisons the imaginary part of the po-
tential is set equal to zero and the real part, having to be
specified only in the barrier region, is given in terms of
the parameters Vo and a, by the expression

V~=- Vp exp( —r/a)

thus reducing the total number of optical parameters to
2. The choice of E b does not affect the results as long as
it is taken inside the valley region, which corresponds to
Eq 1.20 F)& (Aq'~'+A2'~') for the nuclei there dis-
cussed. By setting 8'=0, the simplifying but unneces-
sary assumption is made that the imaginary potential
does not extend into or beyond the barrier region.

A high-energy case is obtained by increasing the
center-of-mass energy to 60 MeV in the numerical ex-
ample discussed above. The dependence on the imagi-
nary potential is examined by the comparison of the two
cases for which 8=4.0 and 5.5 F, and the results con-
tained in Table I show that for the high energy the
sensitivity of the phase shift on 8" is more pronounced
than it is for the low energy. A plot of V,ff versus r
shows that for L&~25, the valley and barrier has de-
generated into curves decreasing monotonically with r.
The values of Rb chosen for the case 8=4 F are 4 and
5 F. The former is close to the turning point of L= 22,
for which the reQection coefficient is 0.038 and good
agreement between OM and IWB results is expected.
The agreement in the phase shifts is good to the third
figure after the decimal point, and hence the OM values
are not given in the table. The turning point for L= 27
occurs near 5 F, and since the reQection coefficient for
that L is 0.3, poor agreement between IWB with
R b——5 F and OM results are obtained. For the case of
larger imaginary potential, 8=5.5 F, the curve of the
reQection coefficient versus L has a marked shift to-
wards higher L values, which is to be contrasted with

TA&LE I. Dependence of exp (—2E'I, ) on W and R& for two diHer-
ent energies. The real potentials are the same in all cases.

OM~

Z, .„.=10.8 MeV

IWBc
F, =60 MeV

R=4b W=o R=4b R=5.5b

Rb=5c Rb=6c Rb=6c L
R=4b R=5.5b

I4 4c Rf, 5c Rb=4.6b

0 0.083 0.065 0.065 0.090
0.067 0.069 0.070 0.096

2 0.099 0.080 0.081 0.108
3 0.085 0.098 0.100 0.129
4 0.151 0.128 0.131 0.164
5 0.153 0.180 0.185 0.220
6 0.293 0.269 0.275 0.308
7 0.383 0.416 0.423 0.444
8 0.649 0.630 0.634 0.624
9 0.828 0.842 0.841 0.803

10 0.958 0.956 0.953 0.919
11 0.989 0.991 0.990 0.971
12 0.998 0.999 0.998 0.990

22 0.039
23 0.069
24 0.109
25 0.160
26 0.234
27 0.314
28 0.337
29 0.615
30 0.888
31 0.958
32 0.979
33 0.988
34 0.993

0.007 0.0006
0.011 0.0013
0.019 0.0029
0.043 0.0071
0.140 0.0175
0.356 0.044
0.352 0.106
0.616 0.234
0.888 0.425
0.958 0.620
0.979 0.763
0.988 0.852
0.993 0.906

a Optical-model results are denoted by OM.
b The imaginary potential is characterized by the value of R, defined in

Fig. 3. The values of R and Rs are in units of 10 "cm.
&The use of Eq. (7) at r =Rf together with the usual optical-model

procedures for r )Rf is indicated by IWB.

the low-energy case. The choice of E.b
——4.6 F now gives

excellent agreement with the corresponding OM result
since 4.6 F is close to the turning point for L= 26, for
which the reQection coefficient is 0.02. Even for
E.b

——5.6 F good agreement is still obtained.
An example for alpha particles was carried out for the

nucleus of calcium at 29.1-MeV c.m. energy. The po-
tentials used were those obtained by Igo' for argon at 18
Mev, given by (—S7—15i)/{1+expL(r—5.37)/0.6]).
The numbers are in units of either MeV or F. This
example falls into the category of "low" energy, since
for L=15 the reQection coeScient is 0.77 and the
corresponding curve of V,ff versus r has a minimum of 9
MeV at 4.75 F and a maximum of 32 MeV at 6.9 F. The
imaginary potential at that point is —1.1 MeV. The
distances and the reduced mass occurring in this alpha-
particle case are less than the corresponding quantities
in the heavy ion case discussed above, so that the values
of RL, are not as small. The numbers are as follows. The
distance from the turning point beyond which the
JWKB approximation becomes valid is in this n-particle
case very similar to the corresponding quantity in the
heavy ion case. The reason is that the slope of V,«with
r is larger in the e-particle case and compensates for the
decrease in the reduced mass, and hence the value of
c '~', de6ned in Eqs. (A7) and (AS) of the Appendix,
remains approximately unaltered, equal to 0.72 F in the
vicinity of r~'(15) 6 3F.The pri—me i.n rr indicates that
the middle one of the three turning points is being re-
ferred to. The value of 5.5 F is close to the upper limit
for R~ since it is within 0.7 F of rr (15). Evaluation of

Eq. (6) for S.qq leads to 0.16, which is about four
times larger than the corresponding value of (R9 in the
heavy ion case, because now the radial distance over
which the integral is to be evaluated is smaller by a
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OM IWB
Rb =3.5 Rb =5.0"

OM
8

IWB
Rb =3.5b Rb =5.0b

TABLE II. Comparison of O.'- Ca differential scattering cross
sections' for the 0Mb and IWB calculations. The quantities
listed' represent ratios to Rutherford scattering cross sections.

and where e and w are constants related to the reduced
mass, the energy and the nuclear potentials. The inte-
grals occurring in Eq. (5) can be evaluated exactly in
this case and lead to the following expression for the
radial wave function:

30 0.15 (0) 0.14(0)
35 0.19(0) O,20 (0)
40 0.56 ( —2) 0.75 ( —2)
45 0.18(0) 0.14(0)
50 0.68 ( —1) 0,46 ( —1)
55 0.29 ( —1) 0.31 ( —1)
60 0.10(0) 0.87 ( -1)

o.14(o)
0.19(0)
0.69 ( —2)
0.14(0)
0.43 ( -1)
O.32 ( —1)
O.86(-1)

65 O.16(—1)
70 0.18( —1)
75 0 22( —1)
80 0.25 ( —3)
85 0.64( —2)
90 0.23 ( —2)
95 0.41 ( —2)

0.63 ( —2) 0.79 ( —2)
0.39 ( —1) 0.41 ( —1)
0.35 ( —1) 0.40 ( —1)
0.59 ( —2) 0.82 ( —2)
0.23 ( —1) 0.28 ( —1)
0.14( —1) 0.23 {—1)
0.63 ( —2) 0.66 ( —2)

(P~) JwKQ —kl. / {A'e'2~"f(kzr+il)/(kyar —il)) '/

+B'e '2 "f(krr+il)/(klr il)]—'/') (A3)

The constants A' and 8' can be shown to have the ratio

a The center-of-mass energy is 29.1 Mev.
b The significance of the symbols is the same as in the previous table.
0 The numbers in parenthesis represent the exponent of 10 by which the

numbers in front of the parenthesis have to be multiplied.
d The scattering angle in the c.m. system is represented by 0 and is given

in degrees.

SUMMARY AND CONCLUSIONS

A large class of absorbing optical potentials exist
which lead to very similar phase shifts and cross
sections. Some of the conditions to be satisfied for this
to be true can be stated in terms of the JWKB con-
siderations discussed in this paper. The potentials have
in common the property of giving rise to only the
ingoing branch of the JWKB wave function at the end
of the region where they diRer from each other. It
appears that potentials of the above-mentioned type
actually occur in alpha particle and heavy ion scattering
calculations, and hence the considerations here presented
should be a useful guide in such calculations.
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APPENDIX

It will now be shown that the ratio of the coefficients
Ar, and Br,, defined in Eq. (5), is less than unity for a
complex square-well potential. According to Eq. (3), for
constant nuclear potentials, kz, is the square root of
el, —zm and is given by

f (e 2+~2)1/2+e ]1/2+if (e 2+~2)l/2 e ]1/2 (A1)

where
e~ ——e l2/r2-
l= fl (1.+1)]'/2,

(A2)

factor of about 2, and also because of the smaller value
of the mass. Nevertheless, as Table II shows, the IWB
method still gives reasonably good agreement with
optical-model results, as would be expected from the
calculations of Igo.'

F'r, l2: s / 7~i/2 (s) . (AS)

The two expansions agree in the terms containing l2/s

and l4/s' but diA'er by a term i2/4s2 and terms in. higher
orders of s '. By evaluating (A2) at the turning point
rr l/ge——, and by combining relations (A4) and (A3) it
can be shown that

ln~Ar, /Br,
~

= lf —2y+ 22lnf (1+2y+2y')/(1 —2y+ 2y2)]), (A6)

where y= tlat/(E V~ —V') ~'/'. —Since the right-hand
side of the above expression is negative for all values of

y, the ratio
~
Ar, /Bz,

~

is less than unity. Expression (A3)
is useful since it indicates how fast the outgoing branch
disappears relative to the ingoing one. Since the expres-
sions in square brackets approach unity as r recedes
from r~, the r dependence comes from the terms
exp (&ikl r) When .22/((er„ Imki, ', (cu'/e——r,)-'/2, which
shows that the disappearance of the outgoing branch
relative to the ingoing one occurs with distance more
slowly the smaller the mass of the incident particle and
the deeper the real potential.

The distance to a turning point, beyond which the
JWKB becomes applicable, can be examined easily for
the case that the real potentials are linear near the
turning point, i.e.,

eL, =c r—rz

~=constant.
(A7)

By comparison of the JWKB expression to a Bessel
function of order —, of complex argument, in the asymp-

' totic region, the error in lowest order is found equal to

(5/48) (c/cu2") f (r rr)/(co/c) i]—"' (A—S)

which is the same as the left-hand side of Eq. (4) multi-
plied by 10/48. If IVAO, the distance to the turning
point enters in terms of the ratio to ~/c, which is inde-
pendent of the mass of the incident particle. When this
ratio is sufficiently large so that the i in square brackets
can be neglected, then the error is proportional to
fc(r rz)2] '/', and c '/' i—s the relevant unit of distance.
It varies only slowly with the slope of U, ff and the mass
of the incident particle. For the numerical heavy ion

(A4)

from the comparison of the asymptotic expansion of
Eq. (A3) with that of the exact expression given in
terms of a Bessel function
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example considered in the text, the following numbers
result for L=9: c/(oi)"'—1.60, oi/c—0.33 F, and for
distances to the right of the turning point (r)rr) of 0,
0.33, 0.66, and 1 F, the corresponding error in the
JWKB expression is found from Eq. (A8) to be equal to
17%, 10%, 5%& and 3%, respectively. It may be
interesting to note that for IV&0 the quantity in (A8)
does not become infinite at r=r~, showing that the
presence of W improves the validity of the JWKB
approximation near the turning point.

A more general estimate of the error in the JWKB
approximation can be obtained by utilizing the pro-
cedure outlined in the book on quantum mechanics by
Kemble, ' in which the difference between the actual
potential and the potential for which the JWKB ex-
pression for f is an exact solution, is treated as a
perturbation.

' E. C. Kemble, The Fgndamentat Prr'nc~p/e of Quantgm Me-
chanics (McGraw-Hill Book Company, Inc. , New York, 1937),
Sec. 21.
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Nuclear Pair-Correlation Function via Electron Scattering
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A theoretical analysis is made of the differential cross section for the process of inelastic scattering of elec-
trons by a nucleus accompanied by the emission of two nucleons. The analysis is twofold. First, assuming a
purely electromagnetic interaction (of the semiclassical Moiler type), and invoking closure and impulse ap-
proximations, the above cross section is shown to be simply proportional to the Fourier transform of the
nucleon-nucleon correlation function in the nucleus (at a momentum determined experimentally). Secondly,
following a physical idea due to Gottfried and employed in a similar context, the nuclear cross section is com-
pared to that of the electrodisintegration of a deuteron. This has the advantage in that it eliminates the need
to introduce an explicit Hamiltonian (as in the first case), and also it allows us to include some very important
mesonic effects due to the virtual pion exchange between the two outgoing nucleons. This approach, there-
fore, shifts the problem to a theoretical understanding of the connection between the deuteron wave function
and the pair-correlation function in a nucleus. A computation of the cross section is made, which is rather
low, yet is seen to be within the reach of the present experimental techniques. Detailed kinematical questions
are explored and the optimal experimental setup indicated. The corrections due to (1) the final-state inter-
actions and (2) real-meson-production channels are also discussed. In conclusion, we surmise that there is a
definite need for detailed experimental study of two or more nucleon emission phenomena for the determina-
tion of the correlation function at high momentum (or small distances). Beyond fixing some qualitative
guidelines, the no-nucleon and one-nucleon emission cross sections seem to be less than adequate.

1. INTRODUCTION

E would like to make a proposal regarding the
measurement of the 2-nucleon correlation func-

tion at very sma, ll distances, in light/medium nuclei
via inelastic electron-nucleus scattering accompanied
by the emission of two nucleons. Some of the physical
ideas presented here are due to Gottfried employed in
a similar context.

First, before entering into the main theme, a few
words about the pair-correl. ation function and the need
for its evaluation are in order. Let Ps(ri, rs, ,r~) be
the nuclear ground state in configuration spa, ce (as-
sumed properly normalized to unity) then the pair-
correlation function C(ri, rs) is defined as

C(ri, rs) = ~its(r„r„,r~) ~'(drs)(dr4), ~, (dr~),

*Present address: The University of Michigan, Ann Arbor,
Michigan.

t Supported in part by the National Science Foundation.

and thus gives the conditional probability density for
finding a particle at r2 if another one is known to exist
at r1. Of course, in any realistic situation, one can define
spin- and isospin-dependent functions (which we con-
sider later on), but for the time being let us disregard
such inessential complications.

Fundamental theories of nuclear matter to date (for
example, that due to Brueckner), are all based on the
2-nucleon interaction. From these nuclear theories one
can say something directly about the properties of the
infinite nuclear medium. One would also hope to be able
to predict properties of the models of low-energy nuclear
physics. However, this last step has not been very
successful as yet. To consider an example, in Brueckner's
theory it is difFicult simply to justify the existence of
various phenomenological models (like the shell model)
much less to "predict" their properties in detail.

Now in so far as more than 2-body correlations be
negligible, the pair-correlation function describes the
nuclear matter and such associated properties as the


