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can be written as

(1+cosP)/2 —(sinP)/v2 (1—cosP)/2
'

Vr —— (sinP)/%2 cost3 —(sinP)/W2

.(1—cosP)/2 (sinP)/v2 (1+cosP)/2 .
Another Lorentz transformation in the new z direction
to the rest frame of [1j does not change the helicity
state.

The justification of the unphysical transformation can
be seen in two ways. From dispersion theory, cosP is
the same as the cosine of the angle in the t channel. If,
on the other hand, we construct the fLeld function of [3$
and impose the Lorentz condition even io the case that
[3]is virtual, to eliminate the spin-zero component, we
obtain the same answer for the transformation between
the field functions in two vertices.
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The generalized Pauli principle is combined with the assumption of SU3 symmetry to yield relations be-
tween hyperon-nucleon and nucleon-nucleon scattering amplitudes for the 'S0 and 'S1 states.

LTHOUGH many applications of the "eightfold
way" version of unitary symmetry' have been

made to two-body meson baryon reactions, relatively
little attention has been paid to baryon-baryon sys-
tems. ' In this note we combine the assumption of SU3
symmetry with the generalized Pauli principle to deduce
relations between hyperon-nucleon and nucleon-nucleon
amplitudes. Particular attention is given to those reac-
tions which are most readily accessible to experiments,
namely,

p+p~ p+p T(pp) (1a)

rt+ p —+ st+ p T(rtrt) (1b)

Z++ p —+ Z++ p T (Z+Z+) (1c)

Z-+ p ~Z-+ p T(Z-Z-) (1d)

Z +p —+Z'+rt T(Z Z') (1)
Z gp ~ A+ ~ T(Z-A)- (1f)

A+P -+ A+P T(AA) (18)

A+ p Z++ n T(AZ+) (1h)

A+P —+ Z'+P T(AZ') (1i)
~ Supported by the U. S. Atomic Energy Commission.
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California Institute of Technology Report No. CTSL-20 (1961)
(unpublished); and Phys. Rev. 125, 1067 (1962).

'R. J. Oakes, Phys. Rev. 131, 2239 (1963); I. Gerstein (pre-
print).

'For an example of the combination of generalized Bose
symmetry with SU3 invariance as applied to mesons, see C. A.
Levinson, H. J.Lipkin and S.Meshkov, Phys. Letters 7, 81 (1963).

In general, the wave function of two particles, each
of which belongs to an octet representation of SU3, will

be a linear combination of irreducible wave functions
belonging to the representations [27$, [8,j, [8 j, [10j,
[10j, and [1). (Note that the symbol [107 denotes a
continuous bar over the "one" and "zero.") The gen-
eralized Pauli principle applied to states containing two
baryons which belong to the J~=1/2+ baryon octet,
allows a reduction in the number of independent, re-
duced SU3 matrix elements needed to describe the
reactions of Eq. (1).

The total wave function for two baryons must be anti-
symmetric under the interchange of all of the coordi-
nates of the two particles. In the two nucleon problem
it is customary to split the total wave function into
several parts, one describing the isospin and the other
the spin-space part. However, if SUB invariance is
assumed, then the dichotomy is into an SU3 part and a
spin-space part. Correspondingly, when two baryons
are in an antisymmetric spin-space state (rso, '&o, t, s,
in the notation 's+'Lq), their SUs wave function
[(BrBs+B&B&)/&2j must be symmetric. B& and Bs
represent the SU3 functions for baryons 1 and 2,
respectively. Similarly, for symmetric spin-space states
('Sr, '&r, ) the SUs wave function [(BrBs—BsBt)/&2j
is antisymmetric. In general, the SUB symmetric states
belong to the representations [27j, [8,], and [1], al-
though in the reactions of Eq. (1) the singlet [1$ state
does not occur. The antisymmetric SU3 states are con-
tained in [8,], [10j, and [10).

Assuming strict SU3 invariance of the strong inter-
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TABLE I. Matrix elements for the reactions of Eq. (1) expressed in terms of SUs invariant reduced matrix elements for 'So and sSs
incident or final states. The symbols ~B&Bs) are abbreviations for

~
(BsBs+BsBs)/K2) and )B&Bs B—sB&)/v2)

SS1

a. &ppl T'I pp&
b. &nP[To[nP&
c &&+p

I
Tol~+p&

e. (Zon[1 JZ-p)
f. (hnf T'[Z-p&

g &hplTolhp&

2T27

T27

T27

(1/5) (2Tso+3Ts,)
(3/Sv2) (Tso Ts,)—
(v3/5v2) (Tso Tso)

(1/10) (9Tso+Ts,)
(v3/542) (Tso Ts,)—
(VS/10) (Tso Ts,)—

(npl T'Inp&
&~'p

I
T'l~'p)

&& plT'l~ p&

(Z onfT'[Z p)
(hn f

T'[Z-p)
(hp f

T'[hp)
(Z+n

f
T'[hp)

T--10

Tlo
(1/3) (TIo+ Tso —Ts,)
(1/3V2) (TI0—2T10+T8,)
(1/v'6) (—Tro+ Ts.)
(1/2) (TTo+ Ts,)
(1/+6) (TIo —Ts.)
(1/2') (—Tio+ Ts.)

actions, the reaction amplitudes of Eq. (1) can be ex-
pressed as linear combinations of two independent
reduced amplitudes, T'27, T8, in the 'Sp state, and three
reduced amplitudes T8 Typ Tyg in the 'S~ state. This
is a great simpli6cation compared to that which prevails
for reactions like meson+baryon o meson+baryon. ' '
For arbitrary angular momenta, the five reduced ampli-
tudes listed above must be augmented by another inde-
pendent amplitude, Ts... that couples a two baryon
L8,] state to an 18,] state, or vice versa. This mixing

amplitude can occur only for states in which J=I.
(J and L are the total and orbital angular momentum

quantum numbers, respectively). In such states, J and

parity can be conserved in a transition of the type
I 8s] &-+

I So], for example: I 8,] 'I'r ~
I 8s] 'Pr. Transi-

tions of this type are forbidden for rs pscatt—ering by
charge independence when the generalized Pauli prin-
ciple is invoked. However, these transitions are rot
forbidden by SU3 invariance for hyperon-nucleon re-

actions, without an additional postulate such as R
invariance, which apparently does not hold for strong
reactions. ' Because of the effect of a possible nonvanish-

ing Ts,.amplitude we restrict our discussion to S waves.
The Clebsch-Gordan coeScients that couple sym-

metric and antisymmetric two-baryon states to SU3
invariant states have been listed in the literature. '
Table I lists the amplitudes of reactions (1) in terms of
the SU3 reduced matrix elements, for both Sp and S]
states. It is convenient to adopt the following notation:
T (BrBs) and T'(BrBs) are the transition matrix
elements for reactions of the form Br+P —o Bs+P
or Br+p —&Bs+ss in the 'So or 'Sr initial state,
respectively.

Table I yields the following equalities for the 'Sp

' C. A. Levinson, H. J. Lipkin, and S. Meshkov, Phys. Letters
1, 44 (1962).

5 P. G. O. Freund, H. Ruegg, D. Speiser, and A. Morales, Nuovo
Cimento 25, 307 (1962).' J.I.deSwart, Rev. Mod. Phys. 35, 916 (1963);R.E.Behrends,
J. Dreitlein, C. Fronsdal, and B.W. Lee, Rev. Mod. Phys. 34, 1
(1962).

state:

(1/4) I T'(PP) I'=
I
To(nn) I'=

I
T'(Z+Z+) (2)

I
T'(& ~') I'= 3

I
T'(&» I'=-3

I
T'(»') I'

=61 T'(h~') I' (3)
and

I
T'(nn) I'+ (1/5) I

To(» ) I'
= (6/5) I

T'(hh) I'+ (1/3) I
T'(~ ~') I' (4)

For the 'Sy state

I
Tr (Z h)

I

s =
I
Tr (h 1+)

I

s = 21 Tr (AZo)
I

s

and

3L I
T'(~ ~ ) I'+

I
T'(~ ~') I']

= 2
I
T'(Ah)

I
'+

I
T'(z+z+)

I

'. (6)

In addition, the relations in Table I imply many
inequalities, such as

31 T'(») I'&
I
T'(nn) I'—

I
T'(~) I'

31T'(Z A) I') 21T'(vasss) I'+21T'(hA)1'
—41T'(«) ll T'(hh)

I j (8)

31T'(Z A) Is(21T'(nn) I'+2
1
T (») I'

+ 41T'(SN) II
T'(hh)

I
. (9)

Equation (2) is valid for all antisymmetric spin-space
states ('So, 'Eo, r, s, ...) since the pp, sos, and Z+Z+ ampli-
tudes are not coupled to either the 18,] or L8,]
representation.

The dificult question remains as to what relation, if
any, Eqs. (2)—(9) have with experimental 5-wave cross
sections, since SU3 symmetry is broken. It clearly makes
no sense to compare the cross sections of endothermic
reactions, such as A+p —o Z++ss, with the exothermic
reactions like Z +p —+h+n at a kinetic energy wh. ere
the former is not energetically allowed. In the S-wave
dominant region, one might hope to compare the first
seven reactions of Eq. (1) by choosing the same kinetic
energy in the incident state (or what is almost but not
quite equivalent, the same momentum in the incident
state). Since these reactions are either elastic or exo-
thermic, this criterion has the virtue that all of the
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channels are simultaneously open. An analogous prob-
lem for a different class of endothermic reactions was
analyzed successfully by Meshkov, Snow, and Yodh, '
who compared different endothermic reactions at the
same outgoing kinetic energy.

In the low-energy region, the rather large 2' —A mass
diGerence may cause large deviations from the pure SUB
predictions, for reactions (1e) and (1f). For example, if
tensor forces are important' for an incident sSt(Z P)
state, the outgoing 'D& state of Z'e will be strongly sup-
pressed by centrifugal barrier effects relative to the
outgoing 'Dq state of Ae.

A particularly interesting corn'parison may be made
between the cross sections for the processes rt+ p ~ rt+ p
and Z++P —~ Z++P. Their 'Ss cross sections both de-

pend only on T27 and should be the same. However, the
sSr cross section for the Z+P system depends on Ttv,
whereas the sSt system for the I+p system corresponds
to the deuteron (T&//). Since

o...(Z+Z+) = (1/4) s(Z+Z+)+ (3/4)o&(Z+Z+) (10)

o'(rtrt) =o'(Z+Z+)

SUB invariance predicts that

0 „(Z+Z+)) (I/4)o'(nrt) . (12)
7 S. Meshkov, G. A. Snow, and G. B.Yodh, Phys. Rev. Letters

12, 87 (1964).' D. E. Neville, Phys. Rev. 130, 327 (1963);J. J. deSwart and
C. K. Iddings, ibid 130, 319.(1963).

The amount by which oi,i(Z+Z+) is larger than o'(rttt)
is a direct measure of T~o. A difficulty with this analysis
arises if we consider the hyperon-nucleon potential as
arising from meson exchange. The wide variation of the
masses of the eight pseudoscalar mesons would imply
substantial differences in the ranges of parts of the
hyperon-nucleon potential compared to those of the
nucleon-nucleon potential. ' This might produce devia-
tions from the SU3 prediction given above.

Despite all of the difhculties cited above, comparison
of the reactions (1) with Eqs. (2)-(9) should prove use-
ful because it may provide important clues about the
effect of SU3 symmetry breaking on baryon-baryon
dynamics. The S-wave cross sections for the reactions
Eqs. (1a)-(ig) are all observable, since E mesons
stopping in a hydrogen bubble chamber provide an
excellent source of low-energy Z+, Z, and A hyperons.
The interactions of these hyperons with protons can be
studied in the same pictures which record their
production. '

Note added its proof Prelim. inary experimental results
of R. Burnstein et u/. "yield o.&,&(Z+&Z+) =200&100 mb
at a Z+ average laboratory momentum of 160 MeV/c.
The assumption of SUs invariance combined with P-P
scattering data predicts reav(Z+, Z+)=165 mb at this
momentum, indicating that o'(Z+, Z+) is small.

9 A similar comment has been made by R.H. Dalitz, Proceedings
of the Athens Topical Conference, 1963 (unpublished)."R.Burnstein, T. B.Day, B.Kehoe, B.Sechi-Zorn, and G. A.
Snow, Bull. Am. Phys. Soc. 8, 515 (1963); and (to be published).
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It is shown that if the analytically continued partial-wave amplitude is assumed to have 1 dependence
n

a~(s, /) = Z C +(s)/™(/+1)~
1=0

for /(/v(s) and finite n, the scattering amplitude is bounded by exp{—const/le(s) sinO(s) ]&}at high energies.
Here a+(s,l) Pa (s,l) g is equal to a&(s) for even (odd) integer l. The most physical example of this dependence
is that in which a central area of the scatterer becomes maximally absorptive.

'HE large angle p—p elastic-scattering cross section'
shows a strong dependence on both energy and

momentum transfer. Orear' has pointed out that this
*This work supported by the U. S. Atomic Energy Commission.
$ On leave of absence from the Department of Physics, Osaka

University, Osaka, Japan.' G. Cocconi, V. T. Cocconi, A. D. Krisch, J. Orear, R. Rubin-
stein, D. B. Scarl, W. F. Baker, E. W. Jenkins, and A. L. Read,
Phys. Rev. Letters 11, 499 (1963); W. F. Baker, E. W. Jenkins,
A. L. Read, G. Cocconi, V. T. Cocconi, A. D. Krisch, J. Orear,
R. Rubinstein, D. R. Scarl, and B.T. Ulrich, Phys. Rev. Letters
12, i32 (1964).

i J. Orear, Phys. Rev. Letters 12, 112 (1964).

strong dependence can be fitted by a single exponential
in the transverse momentum. If this dependence holds
to arbitrarily high energies, the scattering amplitude
for a 6xed angle must decrease for increasing energy as
exp( —const s't'), where s is the square of the center-of-
mass energy. At any rate it appears that the scattering
amplitude for finite fixed angle is a rapidly decreasing
function of s.

The purpose of this note is to show that this rapid
decrease of the scattering amplitude at 6nite angles


