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7%, respectively. Bartholomew and Gunye, ' who have
reported values of the spins for the same levels we have
studied in Ni", agree with our assignments for the levels
at 0.470 and 0.870 MeV, but disagree in assigning the
spin J=2 to the level at 1.31 MeV. However, the dis-
agreement is not as large as might be inferred from these
different assignments, since the measured correlations"
from which these spins are deduced are the same within
the statistical errors.

DISCUSSION

The levels in Fe", Ni", and Ni" studied in this ex-
periment all fall within the gross structure in the (d,p)
spectrum which was interpreted earlier as the 2psts
single-particle neutron state. The results of the present
experiment indicate strongly that the first excited p
state in all of these nuclides does, in fact have J=—,',
inconsistent with the earlier interpretation. In Ni"
our results indicate J=-,' and J=-,' states so close to
each other in excitation that they would earlier have
been interpreted as part of the same gross-structure
group. In fact, a low-lying p&ts, pri& doublet at very low
excitation seems to be characteristic of all the odd-
neutron nuclei in this mass range. This has been dis-
cussed in more detail in an earlier note. "

'0 G. A. Bartholomew and M. R. Gunye, Bull. Am. Phys. Soc. 8,
367 (1963).

"G.A. Bartholomew (private communication).
"L.L. Lee, Jr., J. P. SchiGer, and D. S. Gemmell, Phys. Rev.

Letters 10, 496 (1963).

It is then apparent that there is considerable mixing of
spins within the (tl,p) gross structure, at least for the
/=1 groups. Each p-wave gross-structure peak contains
states with both pets and pits strength and the simple
interpretation advanced earlier is not correct. It is dis-
appointing that the simple and naive interpretation is
not the correct one. However, it is now possible, with
the aid of fast computers, to calculate the details
of the one structure for particularly favorable cases. A
recent calculation by Ramavataram, "for instance, pre-
dicts our value of J=—, for the 413-keV first excited
state of Fe". The calculation does not, however, pro-
duce the correct spins for some of the higher excited
states which are populated strongly in the (d,p) re-
action. '4 Setter success was achieved for Cr", where the
calculation did remarkably well in fitting the known
spins for a number of levels.

There remains, however, the question of what inter-
action is responsible for the experimentally observed
splitting of the p-wave gross-structure peaks. It is
evidently not the spin-orbit force, which had been sug-
gested earlier. Nor is it apparently an isotopic-spin
splitting, which should not affect the results of (d,p)
reaction. ' lt will be interesting to see if more sophisti-
cated nuclear-structure calculations can reproduce these
unexplained effects.

"K.Ramavataram, Phys. Rev. 132, 2255 (1963).
"D.S. Gemmell, L. L. Lee, Jr., A. Marinov, and J.P. Schiffer,

Bull. Am. Phys. Soc. g, 523 (1963)."J.B. French and M. H. Macfarlane, Nucl. Phys. 26, 168
(1961).
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The production of bremsstrahlung by the interaction of polarized electrons with the Coulomb 6eld
of a nucleus is considered. An exact calculation of the angular distribution of the outgoing photons, and the
azimuthal asymmetry in this distribution is presented. Numerical calculations were done for an incident
electron energy W&=1.25m, a photon energy k=0.75 (W& —m), and a nuclear charge Ze=79e.

I. INTRODUCTION

PPROXIMATE expressions for the asymmetry in
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the distribution of photons in bremsstrahlung
production from polarized electrons have been devel-
oped by the authors and others. '' The numerical re-
sults of these calculations indicate the asymmetry to

*This work was supported in part by the U. S. Atomic Energy
Commission.

f Permanent address: Physics Department, Loyola College,
Baltimore, Maryland.' W. R. Johnson and J.D. Rozics, Phys. Rev. 128, 192 (1962).' E. S. Sobolak and P. Stehle, Phys. Rev, 129, 403 (1963}.

be a maximum for an incident electron energy 8 &

=1.25nt and for a photon energy k=0.75(Wr —rrt). At
these energies the validity of the Born approximation is
doubtful since nZW, /pi for the incident electron is of
order one for gold. For this reason a more detailed
analysis of the asymmetry seems desirable. Using a
method similar to that used by Iaeger and Hulme, one
can compute this asymmetry exactly. '

An exact calculation of the differential cross section

e J. C. Jaeger and H. R. Hulme, Proc. Roy. Soc. (London)
A138, 708 (1935).



EXACT CALCULATION OF BREMASTRAHLUNG

for the production of unpolarized bremsstrahlung from
polarized electrons, summed over the spins and inte-
grated over the angles of the outgoing electron; and of
the azimuthal asymmetry in the photon distribution, is
presented here. The wave function used was the Darwin
series solution of the Dirac equation for an electron in
the Coulomb field of a nucleus, given by

(if.""(pr)fl-(') ~~~ "(p, ,i)=4 ZI'-(p, {.)l'
k g„~"&(p.)n „„(r)i'

where p is the linear momentum of the electron and f
is a unit vector in the direction of the electron's spin.

I'-(p, t.)= fl..'(P),
where e is the "large component" of the Dirac plane
wave spinor.

0„„=Q C(l-',j;p —m, m) V( „„(r")X",

f.~"~(pr) and g„&"&(pr) are the radial parts of the
wave function normalized so that asymptotically the
wave function looks like a plane wave plus an incoming
or outgoing spherical wave. '

The numerical results of this calculation indicate the
absolute value of the asymmetry to be a maximum at
about 70' and 150'.

II. CALCULATION OF THE CROSS SECTION

The cross section for this process is given by

n Bg
d'0 = p2W2kdkdQ~ p dQ» p l

M l',
(2m)' pg e

where

M= dr +~'&t(p, , r, (2)n ee
—'"'e&'&(pg, r, (g),

where C(abc; m mt, ) is the Clebsch-Gordan coefficient,
I'~, are the spherical harmonics, and I are the two
component Pauli spinors. 4

j, l, and 1' are determined from ~ in the following way:

where the subscript 1 refers to the incident electron,
2 to the final electron; k is the momentum of the out-
going photon, and a is its polarization vector. Substi-
tuting for the +'s and writing

e
—'~'= 4' P i—'j((kr) 1'g „(k)I') „*(r),

l'=
k —1, z&0

k —1, ~&0

~&0
where j&(kr) is the spherical Bessel function of order /,

l
M

l

' is then given by

IM I'= (4~)'
«1,~1,&2,m2, L,~ &1,m1, ig, rn2, l,m

I army(pl){ 1)I lymph (pl)f1)I antn2 (p2){2)+i2%2(p2){ 2) I t m(k) 1 1m (k)

where
X {+zlmlztm2lmIltla2l ~—zl, ml, —I&2,m2, l,mAla2l) X{~ ilml&2m2lS~ iii&21 '4 —rlmlr2m2l, m~ ,—ici&, 2ll , 1,

and

I„,„,~ —— r'dry 'jq(kr)g„, ~"*(p~r)f„,~o'(p&r)

r'dri' 'j&(kr) f„,&'&*(p2r)g„, '"&(p&r)

&eymganmnlm= dflr1 l,m*(&)& K2mg &'&fl—alml ~

Writing o and a in a spherical basis and making use of the Wigner-Eckart theorem, A„, ,„, ,~ can be written,

(3D)D '))'"
ztmta2my tm =

I l
C(ll2 li; 00)e*m+tB2 slf-

47r/lg)

X QC(ll jl ml pl i'll)C(l2 j2 m2 pl X pl+lb)C( 1 pl X)C(ll2'/1 m m2 pl X)5X,~,—,,

with La) = 2a+1. After summing over spins f~, integrating over the angles of p2, and summing over e, one is then
able to carry out the sums over R2, m2, m, and m. Introducing the spin projection operator for the incident electron,

The angular momentum coupling coefBcients and the spherical harmonics used in this paper are those defined in M. E. Rose,
Elementary Theory of Angular Momentum (John Wiley Bt Sons, Inc. , New York, 1957).

5 See, for example, W. R. Johnson and R. T. Deck, J. Math. Phys. 3, 319 (1962).' See Ref. 4, p. 85.



the sums over m& and m& can also be done. The resulting expression is given by

where

and

dQ» +~M~'=P AiPr(cos8)+tl l i P BrPr„i(cos8) I
f2 L=O L=l

Ar, =192(22r)2 Q Q kikski[l][l][li])"[li])"(—1)'+"C(liliL;00)W(li2Lji; jili) + T»)2»tt
K1K2K1 I, l

{)[L] & 1/2

Br,= 192(22r)si
~ g p kikski[l][l][ll]' '[li]'t2( —1)'+"

L(J.+1)I
XC(li2iL;00)X(jiLji, liLli, —,'1—,,') P T»»2Itt { ),

ff
with

T»»)e tt»&= 228„[f]-C(l-tL; 00)W(Llq, f; Zq, )+'II/SC(1 12; 00)[f"[f]W(fj221 ' lf) 2 r [L'] 'C(lEL'; 00)

XC(L'2L; 00)X(2LL', fj il; fjil)
and

{ J KIKQKIKsll Kl&12l KIK2t I Kl,—K—2,—Kl—Kill ~ KIK2l 'KIK2l -KIK2 Kl Ke—ll — KIKKl~ KIK2l D—Kl K2KIK—2lt ~ I 2Kt~KKI 2lK

with
D...„-„-,ti = [l2']' '[l2']' 'W(ll2'ji-,',' lif )W(ll2' ji-,' ', li f )W(1-,' fl2', ',j 2) W—(1,' fl2' ', ——,

' j2)C(l/2'li', 00)C(llsli, 00)

8 is the angle between pi and k, and tl=kXyi/~ kXpi~. Pt ~(cos8) are the associated Legendre polynomials.
W(abed; ef) is the Racah coefficient and X(abc; def; gki) is the 9-j symbol.

Substituting this expression into the differential cross section one obtains

n H/"g 00 QO

d O'= P2W2kdkdD)e{ Q A LPL(cos8)+'8 l 1 Q BIPL 1(cos8)) .
(22r)' pi L=O L=l

The asymmetry function P(8) is given by

P(8) = n l'2 P B—r.Pr. i(cos8)/P AiPr. (cos8).
L=l L=O

If one integrates over the angles of k, then the cross section differential in photon energy only is given by

4mo. IVY
d~= p2W2kdkA, .

(22r)' pi

III. THE RADIAL INTEGRALS

(Ir +m)'& Ir —
m)'& e' "+' &e&"'e"'»' r(e —1)l(e —1)l&e )l(K)

k 2Wi I 2W2 8pipsk 1'(bi)1'(b2) 1'(b2)

Xxr'yl's' '{(yi—2vl)[(y2 —2v2)A —()t2+2v2')B] —()ti+2vi')[(K2+Zvs')D —(y2 Zvs)C]) I

W i—nt)' '(W2+tnl, ' ' e'~"+' +&m"'+e2'K 1'(tti —1)1'(tt2—1)1'(tt2)1'(d)

2Wi ~ ~ 2W2 & 8pip2k r(b, )r(b, )r(b,)

XS y s {(pl svl)[(Y2 tv2)A+ (K2+2v2 )B] (Kl+Zvl ) [(K2+1v2 )D+(|2 2v2)C])

Following a procedure similar to that used by Jaeger and Hulme, one can express the radial integrals I„„,i and
J y 2 ) in terms of the Pz functions which are generalized hypergeometric functio~ s of three complex variables. '
Since these integrals are not absolutely convergent, it was necessary to introduce a factor of e ""in the integrand
and then take the limit as X went to zero. The integrals are given by:

P. Appell, I)onctt'ons hypergeometrsqiies et hypersphertqltes potynomes It'he-nntte (Gauthier-Villarse Paris, 1926), p. 114.
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with

where

A = Pg(d; al, a2, ao, bl, b„b, ; x, y, s),
B=F~(d; al, az —1, az, bl, b2, bo, x, y, s),
C=Fg (d; al—1, a2) ao, bl, bz, bo i x, y) s),
D=Fg(d; al —1, a2 —1, az,. bl, bz, bz, x, y, s),

bl ——2yl+1, bz= 2y2+1 ) bz= 2l+2, y, = (&.'—n'Z')'",

al ——pl+1 —Zvl ) a2 ——F2+1—Zvz, ao= 1+1,

2pl 2p2g=—
) S

Pl+P2+~+Z~ Pl+P2+fo+Z~ Pl+P2+~+Z~

v, =nZW, /p;, v,
' =nZM/p, .

Since
I
x

I
)1, it was necessary to analytically continue Fz. The series used to evaluate Fz is as follows:

I'g(d; al, az, ao, bl, bz, bz, x,y, s)

(d, 2u)(8/2)2" F(bl)I'(al —d —2u) e ' &"+2"' (d+2u, s)(1 b,+d+—2u, s)=r"(1 /yf—)"
=o (a,+—', u) (1,u) F (a,)F(b,—d —2u) x"+' .=o (1—a +d+2u, s) (1,s)x'

(b +s, t)(b a, t) —F(b,)F(d+2u —a,) e ' " (a,,s)(1—b +a, s) 1
xQ g I+

(b, t) (1,t) F(d+2u)I'(b —a,) x ' =o (1—d —2u+a, , s) (1,s) x'

with
1=0

(b2+s d 2u, t—) (b,——a2, t)

(bz, t) (1,t)

2pl 2p2 Pl+P2+z&k
X= ) g= Z

Pl P2+zX Pl+P2+zX Pl P2+z)I Pl+P2+tz+8l

and (a,b) =F (a+b)/I'(a). This series converges for
Ix-l», lel &1, -d I.-/2I &1.

IV. NUMERICAL RESULTS

The formula for d'cr was programmed for the Uni-
versity of Notre Dame's UNIVAC —1107 Computer for

an incident energy H/"i ——1.25ns, for a photon energy
k=0.75(Wl —zlz), and for Z=79. From the numerical
results for the radial integrals the sums over ki, k~, and
/ were terminated at ki=10, k~=6, and 1=3.All other
parameters were determined in terms of these through
the selection rules contained in the angular momentum

.8

I'iG. 1. Spin-inde-
pendent part of the
bremsstrahlung cross
section for WI ——1.25
III, k=0.75 (W~ —III),
and Z =79, where 8
is the angle between
pi and k.

M
2

FIG. 2. Spin-de-
pendent part of the
bremsstrahlung cross
section.
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coupling coeKcients. The series in Legendre poly-
nomials was terminated at L=S.

Expressing

d'o = 47rr p'n'Z'(dk/k) dO,„(I(8)+8 fiD(8))

and I'(8) = tl f tS(8) where rp is the classical electron
radius, I(8), D(8), and S(8) are shown in Figs. 1, 2,
and 3. Writing

da =4srr psn'Z'(dk/k)/t p,

CO

& -80

FIG. 3. Azimuthal
asymmetry in the
bremsstrahtung dis-
tribution.

one found co= 2.14.
Comparing the results shown in Fig. 3 for the asym-

metry with those given in the earlier paper, one finds
that the Born approximation can give order of magni-
tude results but not the detailed shape of the curve. '
This is not surprising since the previous work was the
lowest order contribution from an expansion in powers
of v~, and here v~=0.96.

V. SPECIAL CASES

Because of its complexity, two checks were made on
the expression for the differential cross section. The
6rst case considered was that of using a plane wave as
the wave function for the incident electron. The wave
function for the outgoing electron was taken to be the
limit of the exact wave function as ps went to zero,
neglecting terms of order o.'Z'.

For this case, since one is neglecting terms of order
0.'Z' in the outgoing wave function, only ~2= —1 con-
tributes, and the radial integrals reduce to the following:

nM* Wi+sst '"
(8li, lyltfll 8li, l—its t} )

2PPk 2Wi

nZI~* W, —m)//P
Icy—1l=

~
8lz', lgl

2pik' 2Wi )
where

1 m
Sl lQl(W1/pl)+ Ql (W1/pl)

2

1 mt=- (f11)Q/(Ws/Pi) ——Qt'(Wi/Pi)
2 1

m
At = ——Qt'(Wi/pi)

with Iin (2srsnnz/p&)1/2&sei/4+irs —ive tnrs and the Qi(x)
are the Legendre functions of the second kind with

~
x

~
)1, and Qt'(x) = (d/dx) Qi(x). ' integrating over the

angles of k and summing over all remaining indices

See, for example, W. Magnus and F. Oberhettinger, Formllcs
and Theorems for the Functions of 3fathematicat Physics (Chelsea
Publishing Company, New York, 1954), p. 55.

I I I I I

40' 80' I20' I60'
e

except 1, one obtains:

dk 2m'
do = 4srr p'n'Z' — P (2l+1)gP+l0', P+ (1+1)Sts

kpPk i

2(l+1)
+ L(i+1)a+(I+2)a~.h~

(2l+3)

$1$/+(l —1)gt s]O't
(2/ —1)

Using the formulas for summing Qi's, one can carry out
this l sum analytically, and the resulting expression
agrees with that obtained by a direct calculation for
this case. This case was also checked numerically, thus
guaranteeing the computer program for the computa-
tion of Aq.

Since the Qi(x) functions have a singularity at x= 1,
the series representation will not converge for the rela-
tivistic case. This method is thus suitable only to the
lower energy region, and in particular it is well suited
to the calculation of asymmetries.

The second case considered was that of using a dis-
torted plane wave as the wave function of the incident
electron with the same outgoing wave function as that
used for the preceding case. Again only a~= —1 con-
tributed. The angular distribution was numerically
computed for the spin-dependent and spin-independent
parts of the cross section and compared with the results
from a direct calculation of this case, and both agreed.
This case served as a check on the numerical computa-
tion of BI.. In both of these cases the sum over k~, was
terminated at k~ ——10.
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