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The consequence of elastic unitarity and analyticity for the isobar model of isocalar three-pion scattering
are derived. All recoupling eRects are retained and a careful discussion of real pion exchange is presented. In
this way we show how the isobar model may be made to satisfy Watson's theorem. We display the common
origin of both these phenomena and obtain the modifications they generate in the partial-wave discontinuity
equations. In preparation for a forthcoming treatment of one and two-pion exchange forces, the ill/D equa-
tions are derived for the J= 1 isoscalar amplitude. The eRect of recoupling in the narrow width approxima-
tion is demonstrated by a calculation of the eRective p —7i- phase space and suggests that recoupling is
important.

1. INTRODUCTION in only one angular momentum state and one isotopic
spin state is very nearly, if not exactly, true. Hence we

retain the first characterization of the isobar model and
seek the form of the dependence on the resonance
energies which will not violate the unitarity equation
$Eqs. (3.17), (3.19)$. It is simple to show that this form
also satisfies Watson's theorem' which amounts to the
unitarity equations for the two particle-resonance
channels. It is true that, in this paper at least, we set
up the N/D equations for an approximation to the
form we have derived. Nevertheless we now know the
extent to which the approximation violates Watson's
theorem and. the direction to proceed should we wish

to improve upon it.
In Sec. 2 we develop the formalism of the isobar

model for isoscalar three-pion elastic scattering. The
absence of spinning particles and the existence of a pure
elastic region make the calculations comparatively
simple, The unitarity equation and assumed analyticity
of the isobar amplitudes are discussed and discontinuity
equations derived in Sec. 3. In particular, we note that
the contributions from the real exchange of one pion
(Fig. 1)' and the recoupling terms in the discontinuity
equations have a common origin. Mandelstam ef al'. '
have discussed the phenomenon of real particle exchange
for the 2rr+N~ 2sr+N amplitude but they neglect
all the recoupling terms. Harrington's' more recent
study of three-pion scattering proceeds similarly.
Frazer and tA'ong, ' on the other hand, included the
recoupling terms in the discontinuity equation for the

HIS is, hopefully, the first of a series of papers in
which a careful treatment of the isobar model is

applied to various reactions involving three-particle
initial and/or final states. The isobar model is charac-
terized by the assumption that the amplitude in ques-
tion may be written as a sum of terms, each one of
which involves a definite pair of particles from the
three-particle state appearing in a state of de6nite
angular momentum and isotopic spin )Eqs. (2.7),
(2.8)).The sum is an approximation because it is finite.

Experimentally, the model is motivated by the domi-
nance of two-particle resonances in three or more
particle final states of production processes. ' Theoreti-
cally the model has been studied by several authors~7
in the past but always with an assumed form of the
dependence on the energy variables of the resonating
pairs. This form violates the unitarity equation in the
principal channel and is usually claimed to be a good
approximation if the two-particle resonances are
"narrow. " The p meson and the —,', ~ pion-nucleon S*
are not narrow, however, and the approximation in
these most important cases seems unjustified. Regard-
less of how broad the resonances are, their appearance

* Supported in part by the U. S. Atomic Energy Commission.
$ Present address: Physics Department, University of Washing-

ton, Seattle, Washington.
~ The name "isobar model" has been applied to a wide variety

of schemes for calculating reaction amplitudes. The only justi6-
cation is that all these schemes assume that the amplitudes being
computed are dominated by the excitation and subsequent decay
of two-particle resonances, commonly called isobars.' M. Roos, Rev. Mod. Phys. 35, 314 (1963); this paper contains
a large collection of further references.

3%'e are referring here to the more recent calculations aimed at
determining the form of the reaction amplitudes via the unitarity
constraint and not the calculations of momentum distributions in
Gnal states as done by R. M. Sternheimer and S. J. Lindenbaum,
Phys. Rev. 123, 333 (1961}.

'P. Carruthers, Nuovo Cimento 22, 867 (1961); P. G. Feder-
bush, M. T. Grisaru, and M. Tausner, Ann. Phys. (N.Y.) 18, 23
(1962).

5 S. Mandelstam, J. E. Paton, R. F. Peierls, and A. Q. Sarke
Ann. Phys. (N. Y.) 18, 198 (1964).

e D. Harrington, Phys. Rev. 127, 2235 (1962).
r W. R. Frazer and D. Wong, Phys. Rev. 128, 1927 (1962).

FIG. 1. One-pion
exchange.

e K. M. Watson, Phys. Rev. 88, 1163 (1952).
r, 9 This phenomenon has been neglected in the otherwise more

ambitious calculations of L. F. Cook, Jr., and B. W. Lee, Phys.
Rev. 127, 183, 297 (1962); and J. S. Ball. W. R. Frazer, and M.
Nauenberg, ibid 128, 478 (1962)..
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unitary cut but made no mention of real pion exchange.
Ke believe this is the first work which has attempted to
treat both effects on an equivalent basis." In Sec. 4
the J= 1 amplitude is projected out with an eye to a
subsequent study of the influence of one- and two-pion
exchange forces on the appearance of the co meson. In
carrying out the projection the angular integration
sweeps over the real pion exchange (R.P.E.) pole, at
certain energies, and thereby destroys the real analytic
character of the partial-wave amplitude. This fact and
its consequences for the unitary cut were first pointed
out to the present writer by Paton. "The result is that
the discontinuity across the unitary cut is proportional
to

M( s )~M(. s~ )
rather than

M( .s . )M( s+. )

as Harrington assumes. We also claim, although the
tedious algebraic derivation is not presented, that the
R.P.E. cut into which the R.P.E. pole is projected must
be approached from below in evaluating the physical
amplitude. Paton has suggested the following argument
for understanding this result; starting with Eq. (2.16),

s+st+t= o+o'+2', ',
we may regard t as being essentially the variable of
integration in the partial-wave projection. It is there-
fore forced to remain real. Holding s, o-, and 0-' fixed
and real we notice that if the variation of t brings u up
to the R.P.E. pole, then the physical amplitude is
obtained by letting I pass over the pole, i.e.,

e —+ I+i,e e)0.

To maintain Eq. (2.16) we are forced to give s a small
negative imaginary part which means that in the pro-
jected amplitude s must pass under the branch points
of the R.P.E. cut. As it stands this argument is not
foolproof since it is not t, but some coso which is con-
strained to be real in the partial-wave projection.
Nevertheless, the result is the same. Finally in Sec. 5
we introduce the "resonance approximation, " widely
used in calculations of this sort, to reduce the problem
of solving the unitary cut equation to a one-dimensional
one. Deriving the "reQection properties" that are true
of the partial-wave amplitude, we cast the discontinuity
equation in a form amenable to the E/D method. The
general equations of that method are then derived for
this particular problem.

A short appendix indicates the modification suffered

by the effective phase space, R(s), from recoupling
effects in the extreme approximation of replacing the

"The study of singularities on unphysical sheets by R. Hwa,
Phys. Rev. 130, 2580 (1963), considers real particle exchange but
assumes a form for the discontinuity equations which is incon-
sistent with the existence of the R.P.E. diagram."J.Paton (private discussion). See also J, E. Paton, Princeton
University, 1962 (to be pu'blishedl.

m-z scattering amplitudes in the integrals by appro-
priately normalized delta functions.

The discussion of anomalous, or structure singu-
larities, has been postponed to the second paper where
it will complement a "solution" of the 1V/D equations
developed here with the insertion of unphysical singu-
larities from one- and two-pion exchange.

1 2 3 3 1 2 3 2 3 1

+ l(p p )p &7 (2 3)

where we have suppressed the "in" and "out" signa-
tures. In other words, BC3 is the fully symmetrized
subspace of BCs. Notice that Eq. (2.1) is a consequence
of Eqs. (2.2) and (2.3). The factor s in Eq. (2.3) is
chosen so that the mormalization,

((pl ps )ps I (plp2)p3& 2~(psyps )I ~(pl)pl )~(psyps )
~(p p')&(p p')7, (24)

yields for the unit operator in K3

dprdpsdpsIptpsps&(ptpspsI (2.5)

"In the language of wave mechanics, the state vectors (2.2)
correspond to the isoscalar projection of a product of a single-pion
wave function and an isovector two-pion wave function.

2. THE ISOBAR MODEL

As a matter of convenience we restrict our con-
siderations to isoscalar states from the outset. The
three-pion isoscalar "in" or "out" state satisfies the
symmetry,

IPtPsPs~&= —IPsPrPs+)= IPsPtPs~), (2.1)

required by the generalized Pauli principle. Conse-
quently, this state vector does not facilitate a discussion
of scattering mechanisms which require an asymmetric
treatment of the pions at intermediate states of calcu-
lation. Such a mechanism is provided by the isobar
model which assumes that each scattering event is
initiated by the formation of a two-pion resonance,
involving a particular pair of incident pions, and
terminated by the decay of such a resonance, involving
a particular pair of final pions. For this reason we
introduce extensions of the physical, isoscalar, three-
pion Hilbert spaces,

Iplpsps~)y

to Hilbert spaces of lower symmetry. We denote these
new vector spaces by 3C3+ and write"

I (ptp )p ~)= —
I (p pt) ps~& (2 2)

for the general element of the corresponding asymptotic
basis. We interpret Eq. (2.2) as that state which in the
distant (future, past) consists of three pions, the
bracketed pair of which interacts (last, first) in the
isovector state. The relation between X3 and, 'R3 is
defined by
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where

&P =d'PI2ps' ~(p, p') = 2P~'(P —1t') FIG. 2. Disconnected part.

Let T be the scattering operator. Since the p meson
is a vector particle" the isobar model is characterized
by the equation

((P P )P ITI(PP)P& Z—Z lr (P, )

&(((q'; l)I, ')ps'
I
T

I (q; »)ps)I'ty*(ps, Q3), (2.6)

where X, X' and q, q' are the helicities and four momenta
of the initial and Anal p mesons, respectively. The
angles ps and ns are the polar and azimuthal angles of
pt in the center-of-mass system of the pair (ptps). The
s axis of the coordinate frame points along —p3 ~ Similar
considerations apply to the angles Ps' and rrs'. '4 Through
Eq. (2.6) the three-particle scattering problem pre-
sented by the matrix element

(pr'ps'ps'
I
T

I ptpsps)

is reduced to an effective two-particle problem with the
complication that one of the "particles" has a variable
mass

=0 j g =0

Let (j,j,,js) denote that even permutation of (1,2,3)
which starts with j.Using this notation we can write

(pt'P2'ps'I T
I prpsps)

the disconnected events, we have (from the inter-
pretation of Ks)

((P,'P ')P '
I To I (P'.P'.)P')

=3&(p' pt')(ptt'pttl rl p',p'. ) (2 1o)

where the factor of 3 is necessary to yield

(Pt'Ps'Ps
I
TD

I ptpsps&= 2 2 ~(p', Pt')
7 22

&& (P 'Pt 2'
I
T

I P'.P'.&.

Writing Tg ——T—TD and factoring out the total four-
momentum delta function, we have

((q, 1X')p,
'

I
To I (q, ; »)p, )

=P(&—&')((q, ', 1X')p
I
i.

I (q, ; 1X)p,), (2.12)
I' =q~+P'; I"=q'+P'

and we assume ((q'; 1X')p'
l i. I (q; 1X)p& to be an analytic

function of its scalar variables.
What are the scalar variables? If the squared

"masses"
q2 g 0 g2 0 (2.13)

are held fixed, then the scattering process described by
Eq. (2.12) is kinematically identical to the familiar
two-particle case" with the variables

= l & ((P 'P ')P 'I T
I (P' P' )P') (2 7)

and

&(p;, p,.)p, I Tl (p,.p,.)p,&= Z Z 1'-.(i2i, ',-,")
X'=—l X=1

s= (q+P)'= (q'+P')'

i= (q' —q)'= (P' P)', —
~= (q' —P)'= (q —P')'.

Thus we can write

(2.14a)

(2.14b)

(2.1«)

X((q; »')p
I Tl (q, ; 1X)p,)I »,*(p;,cr;), (2.8)

((q'; »')P'Ii
I (q; »)P&=i "'"( ', s, i,g; tr) (2»)

where
I I IP,2+P, t qt P22 +Pt 2 (2.9)

These variables are not all independent. They are
connected by

Now among the scattering even ts there are those in
which on, e of the pions never interacts but passes
through as a free particle while the other two pions
scatter (Fig. 2). Although these events do contribute
to the scattering amplitude, they do not involve the
three-particle interaction and hence are not interesting.
Furthermore, we eventually wish to work with ampli-
tudes which are analytic functions of their variables and
these disconn ected events contribute three-momentum
delta functions which confIict with the desired
analyticity. Writing TD for that part of T con tributing

"J. Anderson, V. Bang, P. G. Burke, D. Carmons, and N.
Schmitz, Phys. Rev. Letters 6, 365 (1961); A. R. Erwin, R.
March, W. D. Walker, and E. West, ibid. 6, 628 (1961).

'4 We have followed the conventions of M. Jacob and G. C.
Wick, Ann. Phys. (N. Y.) 7, 404 (1959) in choosing angular
variables.

s+i+I= 2p '+o.+o.'. (2.16)

3. UNITARITY AND ANALYTICITY

The scattering operator T satisfies

T—Tt=2iTt'T (3.1)

in the physical Hilbert space. Operating in the three-
pion isoscalar subspaces X.3+ the approximation to

"G. F. Chew and S. Mandelstam, Phys. Rev. 119,467 (1960).

Finally, introducing the subscripts which refer to
specific pions we write

((qt' i 1~')Pt'
I i. I (q't 1")P,)= i."'"(ot.'; si,,u;;; o;), (2.17)

where the notation is clear.
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where

f(,)=(q; »ItIq; 1z&

is the isovector, I'-wave, x-x scattering amplitude and

((q" 1l '&O'I 2'~
I
(q' »)p) =»(p p')&'(q' q)&—~ ~f(a+),

as a consequence of Eqs. (2.10) and (2.8).
In the previous section we assumed that

((P~'P2')P'I t
I (P~P2)P&= t.(C"~'; stu; aC') (3»)

was an analytic function of its scalar variables, where
C'= (a.'P') and C = (n,P). To extract information from

Eq. (3.9) concerning the analytic structure of the
helicity amplitudes, t,"'", we must relate the left-hand
side of Eq. (3.9) to the process of analytic continuation.
For this we assert a generalized reAection principle
which has been claimed to hold in perturbation theory. '7

Holding the angular variables fixed and letting the
scalar variables assume complex values, we write

t, (C'o'; stu; oC)*=t,(C'o'*; s*t*u~; a*C). (3.12)

From Eq. (2.6) the corresponding relation for the
helicity amplitudes is

(3.10)

t."'"( istuo)*=t —"'—"( '*s*P' ~). (3.13)

We also need time reversal invariance in the form

t,"'"(o'stuo) = t,—"—"'(astuo') . (3.14)

Combining Eqs. (3.13) and (3.14), the left-hand side of
Eq. (3.9) becomes

t,"'"(o~'s+t~u+op) t,'"(o 's —t u o ), (3.13)

where the signatures indicate the manner of approach
to the real axis in the customary fashion.

Notice that we have allowed for the possibility of
singularities in the momentum transfer variables t and

I, notwithstanding our concentration on the physical
region of the s channel. This allowance is superfhsous
in the case of t but the one-pion exchange pole (Fig. 1)
in the I variable does, in fact, lie in the physical region.

Fxo. 3. Contribu-
tions of elastic uni-
tarity.

This is a consequence of the possibility of exchanging
the pion as a real particle in the physical region. Indeed
a little calculation shows that the discontinuity upon
crossing the pole is exactly given by the last term on the
right of Eq. (3.9). Notice that from Eq. (2.14c) the
delta function appearing in that term may be written
as 8(u —u '). If we were concerned with higher energies,
we would also have to consider the elastic branch cut
in I since the real exchange of three pions would be
possible.

We can expand Eq. (3.15) to separate the singularities
associated with individual variables:

t,"'"(o+'s+tu+o+) t,"'"(Ir 's—tu o )
= Lt,"'"(a+'s„tu+o~)—t,"'"(o 's+tu+o+)7

+$1,"'(a's+tu+o+) . t,"'"(o 's—tu+o~)7

+Lt,"'"(a 's turbo+)
—t,"'"(o 's tu o+)7

+Lt,"'"(o. 's tu o~)—t ~'"(o 's tu a. )7. (3.16)

Since each of the terms on the right of Eq. (3.9) have
obvious diagrammatic representations (Fig. 3) we can
follow the prescriptions of 8-matrix theory for asso-
ciating singularities with intermediate states and write

d t't, "'"(a+'s+tu+o+)7= 2zp(o') f(o') ((q'; 1X')p'It, I (q; »)p&+2 p d q"p(a.") p" "'~""(q'p'; q"p")

x~(( " p'&' t '»'(p" ——p)((q—" »")p"
I t. I (q; »)p), (3.»)

d.Lt."'"(~-'s+«+~+)7=5 2 d4q"t (a")dp"((q"; »"It. I
tq' »') p&* ~'(p" —p)((q"; 1l ")p"

I t. I (q; »)p)
) II

d4 III ( Ill)d III/4(PII PIII)gl) ~~;yy~i~( llpll. Illplll)$(( Ill pli)2 P&

x~4(p'" —p&&(q"'; 1V")p"'It.
I (q; 1l )p&, (3.1s)

"See the references in footnote 9.
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d,pt, "'"(o 's tit o+)]=2i-((q; 1X)p~ t,
~
(q'; 1X')p')*+2 + d4q" (o")dp"((q"; 1X")p"

) t, ) (q'; 1l')p')*

Xc'""""(q"P";qP)&'(P" —P)~((q"—p)' —t -') p(~) f(o+), (3 19)

where
d,fF(x+)]= (F(x+)—F(x )).

where
X,= ( (m+1)t 4~

~

it2 (4.2)

To the best of the present writer's knowledge,
previous applications' ' of the isobar model to three-
particle channels have neglected the second terms on
the right of Eqs. (3.17) and (3.19) while the corre-
sponding terms in Eq. (3.18) have been included by
some" and neglected by others. Our derivation points
out the common origin of these terms and in the case of
Eqs. (3.17) and (3.19) these terms sufFice to make the
full amplitude (pi'P2'pa'~t,

~ pip2p3) satisfy Watson's
theorem. For our purposes Watson's theorem amounts
to the equation

do 'Dpi'P 'P 'It
I PiP2P )]

and tl, Q are the c.m. polar and azimuthal angles of q
relative to the s axis along which M is defined. We
therefore define

ts" '(o~ s+o.„)= Ks' dQ'dQnsrg. (Q')

&& t,"'"(o+'s+t (Q', Q)u„(Q'Q) o+)n~gs (Q), (4.3)

paying due regard to the signature of the variable N.
It follows from Eq. (4.3) that the partial-wave ampli-
tude does not satisfy a simple reflection property like
Eq. (3.13) since

dpI'2"dpi3 (Pi~ PIs l tI pi2 Pt8 )*

X(P "P "P'It IPPP),
for the final state variables and a similar equation for
the initial state variables. The recoupling terms in

(3.17), (3.19) can be shown to yield these simple crossed
charnel Neitarity eqlatioms for the full connected ampli-
tude. It is also clear from the appearance of the delta
functions of the form, 6((q' —p)' —ti '), in the "re-
coupling" terms of Eqs. (3.17)—(3.19) that these terms
contribute in the same region of phase space as R.P.E.
Therefore a treatment of R.P.E. which ignores these
terms seems inconsistent.

In the next section we project out the J=1 ampli-
tude so we can focus attention on the state in which the
co meson should appear. The existence of the R.P.E.
pole, which lies in the physical region, requires some care
in carrying out the calculations.

4. THE J=1 AMPLITUDE

The states with definite total angular momentum J,
in the c.m. frame, and J,=M satisfy"

t I"'"(o='s a. )=Xs' dQ'dQnsrg, s(Q')*

Xt."'(o 's t(Q', Q)u, (Q'Q) )n„,&(Q).

Consequently when the discontinuity equations for
the partial-wave amplitude are calculated, it will not
be possible to replace expressions like

"s ')*t ""( "s
by

t '""(~ 's ~ ")t """(o"s ).
These considerations have been pointed out by
Mandelstam et al. ' and more recently by Paton" but
they have not, heretofore, been applied to the three-
pion problem.

Bearing in mind the precautions we have discussed,
the derivation of the discontinuity equations for the
partial-wave amplitudes is tedious but straightforward.
Finally, for the case J= 1., the negative parity amplitude
can be constructed according to

t,-(o'so) =-2Lt, ' '(o'so) —ti—"(o.'so)

+ti ' -'(o'so) —t,'-'(o's~))
=M(o'so)

PJM(oP)) = As dQX) jrys(0&, 0) i (q; lX)P), (4.1)
and the resulting discontinuity equations are

d. $M(o+'s+o+)]=2if(o ')p(o') M(o+'s+o+)+2 do"p(s, &")~(o'so")M(&+"s+o+) (4 6)

d, pM(o 's+o+)]= ,'i do "p(s,o-")M(o+'s+o+")*M(o+"s+o+)+',i do."p(s,o.") d "'-o(
p,

s'o)

X M(o+'S~a+")*C(o"So'")3II(o+"'S+o+), (4.7)



RECOUI LING EI. I ECTS iN iSOBAR MODEi . I 8557

d, [M (o+'s+o+)] = 2i M (o+'s+o+)+2 do "p(s,o")M (o+'s+o'+")C(o'"so) p(o)f(o)', (4.8)

where

and

p(s a) = LQ(s,a)/4s"']p(a)

Q(s,o) = (1/2s'") {[s—(a'"y p )'][s—(a'~' p)—'])"',
(4.9)

(4.10)

C(o'sa) =
8x I) I

=~
j) (=x

dQ'dQS//zz. (Q')*(—1)l ~i+"'&C'"' "(q'p'; qp)8((q' —p)' —p ')X)~z(Q) . (4.11)

Notice that to obtain Eq. (4.8) from Eq. (3.19) we must first take the complex conjugate of both sides of Eq.
(3.19) and then project partial waves. Note also that as a consequence of the definition Eq; (4.5), M(o.'so) is
symmetric

M(o'so. ) =M (a so') . (4.12)

The equations (4.6) and (4.8) which describe final- and initial-state interactions can be simplified somewhat if
we factor ~-x scattering amplitudes and threshold factors out of 3f. We write

and using

Q(s, o') Q(s, o)
M(a'sa) = —f(a')F(o'so) f(o)

P(a') P(a)

Q(s,a) q Q(s, a) Q(s, a)
f(a+) = d.[f(a+)]=»— f-(a+)p(a)f(a ), -

-P() — P() P()

(4.13)

which holds in the physical region 4p '&o & (s"'—p )', we find for F(o'so), .

P(a')
d..[F(o+'s+o+)] =4ip(a')-

(s,o')

„Q(s,a")
do "C(o'so")p (s,o.")— f(o+")I/' —(o+"s+o+),

P(a")
(4.15)

Q'(s, )a
d,[F(o 's+a~)]= 3i do "p(s,o")

~

f(a")
~

F(a+'s+o+")*F(a+"s+a+)+3i do"p(s, o") do '"p(s,a"')
pg ( //)

„„Qs,a") „„„,„,Q(s,a"')
XF(a+'s+o+") '" f(o")C (o"sa'").f(o+'") F(a+'—"s+o+), (4.16)

P(-") P(-"')

Q(s,a") P (a )
d, [F(a+'s+o+) ]= 4i do"F (a+'s+a+")f(o+") p(s, o ")C(o."so) p (o ) .

P(o.") Q(s, a)
(4.17)

If the recoupling terms had been neglected in Eq. (4.6)
and Eq. (4.8) then F(o'sa) would have no elastic cut
in 0-' and 0-. The simplification represented by Eqs.
(4.15)—(4.17) could have been eRected without factoring
the threshold behavior. We assume, however, that these
factors contain the extra kinematical singularities
generated by the partial wave projection, as is the case
with two-particle scattering. This notion is supported
by the appearance of just these factors in the projection
of the one-pion exchange amplitude.

The singularities explicitly represented by Eqs.
(4.1S)—(4.17) are not the only ones lying in the physical
region. The partial-wave projection transforms the
O.P.E. pole into two branch cuts in the s plane for fixed

a and 0'.6 One of these branch cuts lies on the positive

real axis in the physical region and extends between
s( & and s(+& where

s(+)—
a'a+2'' 1

{o 'o. (o-' —4p, ') (o —4p') )'". (4.18)
2p 2p

This cut corresponds to real pion exchange. The other
branch cut lies on the real axis in the unphysical region
between s=0 and s= —~ and corresponds to virtual
pion exchange. Since the first cut lies in the physical
region of the real s axis, why doesn't it contribute to
Eq. (4.16)? The answer is that a careful treatment of
the partial-wave projection of the O.P.E. amplitude
shows that the physical amplitude must b evaluated
by approaching the R.P.E. cut from below. Since Eq.
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Jm S

S( l RPE branch points s(+)

plane

Re S

S. Nja EQUATIONS FOR THE RESONANCE
APPROXIMATION

If we introduce the "kernel"

normal threshold
'branch point

FIG. 4. Distortion of branch cuts to permit continuation from
within interval, 5(—) &S&S(+).

(4.16) gives the discontinuity upon jumping from above
the unitary cut to below it, we receive no contribution
from the R.P.E. cut which we are below from the start.
The evaluation of the physical amplitude "between"
two branch cuts, both of which lie on the real axis, does
not violate the assumed analyticity of the amplitude
since the branch cuts can be distorted to allow con-
tinuations from within the interval defined by Eq.
(4.18); see Fig. 4.

To determine the discontinuity in F(o 's+o+) upon
jumping the R.P.E. cut, we refer back to Eqs. (3.9)
and (3.16)—(3.18). These yield

d„Lt,"'"(a 's tN+~+)7=12if(~ ')p( )aC'"""(q'p'; qp)

X&(N—p.')p(~)f(a+), (4.19)

where C'"""(q'p'; qp) is given by Eq. (3.8). From Eq.
(3.14) and (3.15), we have

's+t~, o,))=d„g.-~-i'(~+s tu, a ')$
=Lt,»'(~ s t~ &+') —t,»'(~ s tN+a+')7*

d„&t,»—'(a s tg~o+') j*=+1»f(~~)p(~)
XC"""'(qp' q'P')*ti(N p') p(a')f(a—')-

so that

d.Lt.""(— +t + +)7=12 f( -)p( )
C'""'"(q'P" qp)&(N p')p(a)f(&+—) (4 21)

But the partial-wave projection of the left side of Eq.
(4.21) is just what we mean by the discontinuity of
M(o s+o+) across the R.P.E. cut. Hence from Eqs.
(4.3) and (4.11) and (4.21) we find

M(o 's+o+) —M(o 's~~o.+)
= 12if(o)p (o')C(oso)'p(o) f(rr+), '('4.22)

where the signature ++ on the left side of Eq. (4.22)
denotes evaluation above both the unitary and R.P.E.
cuts. The corresponding discontinuity for F(o 's+rr+)

is obtained from Eq. (4.13) as

F(a')
P(a 's+a+) F(a 's++o+) = 12i — p(a')C(a'so')

Q (s,o.')

F(o)-
Xp(a) =»V(a'sa).

(s,o)
(4.23)

where Eq. (4.19) was used for the last step. Finally
from Eq. (3.8),

Cti;D'(qp ~ q~pr)+ CD', lx(qrp~. q—p) (4 20)

Q'(2, a)
E(a'so) =-',5(a' —a.)p(s,a) i f(a) i'

~(~)'

, Q(s,a'), , Q(s,a)
+ s p (s a') f(a') C (a'sa) f(a+) p (s,a) (5.1)

F (a') F(a)

then Eq. (4.16) becomes

d, (F(o 's+o+) 7 = 2i do "do'"F (o+'s+a+")*

&&E(a"sa"')P(a+"'s+a+) . (5.2)

Notice that Eq. (5.2) relates the discontinuity in s of
P(o 's+o+) to the function F(o+'s+o+), i.e., to the F
function with all signatures positive. Hence, a conse-
quence of the existence of elastic 0. and a-' cuts in F is
that we cannot apply the S/D method to Eq. (5.2) as
it stands. We must replace the F's on the right of Eq.
(5.2) with F functions having one o. signature negative.
This requires us to solve the integral equations,

F(o+'s~o„")=F(a+'s. go=")

+2 da"'F (a„'s~a~"')H(a"'so' ), (5.3)

and

F(a+"'s~o+) =F(a="'s+o~)

+2 da"H(o"sa'")F (o+"-s+a+), (5.4)

which come from Kqs. (4.17) and (4.15), respectively,
and have the kernel,

Q(sa') F(a)
H(o'so)=2if(a+') p(s, o')C(o'sa) p(o.). (5.5)

&(a') Q(s, o)

In this paper we will not attempt an exact solution
of these difficult equations but instead introduce the
resonance approximation. This approximation is
effected by writing in Kq. (5.3)

da'"F (o+'s+a+"')H(o'"so").
=F(a+'s+m, +') do "'H (o"'so") (5.6)

and correspondingly for Eq. (5.4). One argues that the
resonance behavior of f(a+") results in the in. terval
around 0-" m, ' dominating the integrand and in this
interval one hopes the variation of F to be unimportant.
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The solutions of Eqs. (5.3) and (5.4) become

F(a+s+ + )=F(+s+a—')

F (o„'s+nz, ')
+2n(s,a"), (5.7)

1—2n(s, m, ')

(5.13), we find

M(a+'s~a )e=M(a 's a~)
—[M(a 's„a,) —M(a 's,a,)j .(5.14)

From Eqs. (4.13) and (4.23) we then find

F(a+'spa )*=F(o 's a+)+2iy(a'sa). (5.15)

where

F(m, 's+o+)
+2n(s,a'"), (5.8)

1—2n(s, m, ')

This enables us to replace Eq. (5.10) by

d,[F(o 's+a+)$=2iF(a 's m,+')R(s)F(m, 's+o+)
4y(a—'sm, ')R(s)F(m, 's+o+), (5.16)

which is susceptible to the N/D method.
Let D(o ',s+) be an analytic function of o' and s

possessing as its only singularity in s a branch point at
s=9@ ' with the branch cut running along the positive
real axis. We leave open, for the time being, the de-
pendence on o'. Defining N(o'so) by

(5.9)n(s, o) = da"'EI(a"'sa).

Upon substitution into Eq. (5.2) with yet a~othe~
application of the resonance approximation we obtain

d,[F(o 's+a+)5=2iF(a~'s~m, ')*
XR(s)F(m, 'spa+), (5.1()) F(a 's+o+) D(o 's+)F—(m, 's+a~)=N(o 's+a~), (5.17)

where

R(s) =—

do" da"'E(a"sa"')

(1—2n(s, m, ') )'
(5.11)

X dn'don, .'(n')*t, i'i(a, 's, t(n', n)u„(n', n)a )

X nil), '(0), (5.12)

is real as a consequence of the Hermiticity of E. Finally,
to apply the N/D method we must eliminate the
operation of complex conjugation appearing, on the
right-hand side of Eq. (5.10).'s To do this we write first

we will show that it is possible to choose the discon-
tinuity of D(o', s) across the s cut so that

d,[N(o's+a~) j=.0.

(5.19a)

(5.19b)

Bear in mind that we are talking about the cut in D or
37 arising from the unitary cut in F, i.e., from Eq.
(5.16), and we cannot conclude that N has no s cuts
in the physical region. Indeed, since we desire D to
carry only the unitary cut, it follows that E must
contain the R.P.E. cut, as well as all unphysical
singularities. Thus in the physical region we will have
to supplement Eq. (5.18) by

N(a 's~+a~) —N(a 's+o+) NO,

D(o 's~+a~) D(o 's+a~)=0. —
The solution of Eq. (5,17) is

which follows from Eqs. (4.3) and (4.5). Next, using
Eq. (3.13) and properties of the rotation matrices, we F(a- s+a+)=N(a —s+a+)

6nd +D(o 's )N(m, 's )/[1—D(m ss )g. (5,20)

M ( s )sc (3/4 ) P ( 1)i(%+i')
/X'), lX/=1

dn'dnn „,'(n')*t, i'&(a 's t(O'n)u (n'n), )

Calculating the discontinuity across the unitary cut
on both sides of Eq. (5.17), substituting Eq. (5.16) on
the left and Eq. (5.18) on the right and finally factoring
out an over-all factor of F(m, 's+o+) we get.

But
X &iuz'(ll) . (5.13) d,[D(o 's+)j=2iR(s)N(o's+m~').

4R(s)(y(a'sm, ') —D(o 's )y(m 'sm —')j (5.21)

t,"'"(o 's tu a~)=t i'"(a 's tu+a+)
—d„[t,"'(o 's tu+a+)),

and from Eqs. (4.19) and (4.21)

d„[t,"'"(o 's tu+ap)]=d [t,i'"(a 's+tu+a+) j.
Therefore, making the appropriate substitutions in Eq.

For the discontinuity across the R.P.E. cut, we 6nd

N(o 's~+a~) —N(o 's+a~) = —[2'( 's )
2iD(o 's+)y(m, sa—)g (5.22)

and a similar equation holds for all unphysical singu-
larities. Equation (5.21) can be simplified by intro-
ducing a function, g(s), such that

' In the simpler two-body scattering problems, if it were not
for the reliection property, f(s+)*=f(s ), of the partial-wave
amplitudes, the N/D method could not be applied to the unitarity
equation

2t Imf(s+) =2tp(s) ) f(s+) )'.
Deaning

d Lg(s+) j=4R(s)g(s-b(m. 'sm, ') (5.23)

(5.24)
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we get from Eqs. (5.21), (5.23)

R(s)
d, [Ig(o 's~)]=2i [cV(o 's+m„+')

g(s+)
+2iy(o. 'sm, ')]. (5.25)

Now that we have separated the unitary cut and
the R.P.E. cut by placing them in diferent functions,
we can display the sense in which F(o's+o+. ) is evalu-
ated "between" two colinear cuts in a very picturesque
manner. Ke simply note that

vania. The topic was suggested by Professor B.%. Lee
and his supervision and guidance throughout was in-
valuable. Thanks are also due Dr. J. E. Paton of
Princeton University for several very enlightening
discussions. He was principally responsible for drawing
the author's attention to the consequences of real pion
exchange.

APPENDIX' EFFECTIVE PHASE SPACE IN
THE NARROW WIDTH LIMIT

If in Eqs. (5.1) and (5.9) we make the substitutions

while

D(o's~) =. lim Dio', s+i,e),
&~0+ pP'(a)

f(o+) =
m p' —o.—iy [P'(o-)/4o'"]

(A1)

&(o 'g+o+) = lim iV(o', s ie,—o+).
&~0+

(5.26)

Hence restricting ourselves to functions defined only
on the physical sheet it is rot possible to write

F i o 's+o+) = 1im F (o ', s+i e, o~) .
e~0+

This does not contradict the analytic character of Ii.
It simply says that Ii is not everywhere the boundary
value of a continuation of Ii into the physical sheet.
In the vicinity of the R.P.E. cut we must erst cross
over the real axis into the second sheet, bypass the erst
R.P.E. branch point, and then approach from below
the real axis and the boundary of the physical sheet.

In the sequel to this paper we will look for the co-

meson resonance as a consequence of one- and two-pion
exchange forces. It follows from Eq. (5.20) that we
need only concern ourselves with D(m, 's+) for that
problem. Hence, as we would expect from an exact
treatment" the position and width of the co will not
depend on 0.' or 0..

yP'/4o'"
rrb (re p' —o.)

(m p' —o.)'+p'Ps/16o
(A2)

then E(s) is easy to calculate. This approximation is
more justified the narrower the width of the p meson,
i.e., the smaller y is. Hence, if recoupling effects are

Ro (e)
7FY P

R(0)
mr p.

9p.' M' (MP P) 2MP +P.
-ReS

Frc. 5. p-m phase space with and without recoupling.

negligible for the case of p-x scattering, "this calculation
should yield an effective phase space, E(s), which
deviates only slightly from the result of neglecting
recoupling
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