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Reactions of the type X +N& —+ Y',+Yz, where N and Nt, are nucleons, and Y, and Yz are hyperons,
occur with significant probabilities in the interactions of energetic antinucleons. Particular examples which
have been studied recently are the reactions p+p —+ A+A, A.+Z, 2'+A, 2 +Z+. Pais has discussed some
consequences for the reaction cross sections and the polarizations of the final particles of the presumed
invariance of the relevant strong interactions under the parity and charge-conjugation operations. In the
present paper, these considerations are extended to encompass two-particle spin correlations in the Y„Yq
system. Measurements of the correlation parameters would provide tests for charge conjugation, parity,
and CP invariance in the strong interactions of strange particles, and could, in addition, be used to check the
relation between antihyperon and hyperon decay asymmetry parameters predicted on CPT and T invari-
ance for the weak interactions, that o.Y———o.Y. Moreover, measurements of the spin correlation parameters
would provide valuable information about the spin dependence of the reactions, hence, some tests for the
models have been proposed for the reaction mechanism. Calculations by Bessis, Itzykson, and Jacob, and
by Sopkovich using speci6c models suggest that the correlation parameters may be measurably large. We
consider 6nally in an Appendix the relation between the Wolfenstein-Ashkin spin transition matrix which
is used in the body of the paper, and the relativistic parametrization of the transition amplitude in the
helicity representation. The general partial-wave expansions of the coeScient functions in the transition
matrix are derived.

I. INTRODUCTION

EACTIOXS of the type
k.

N.+N p
—+ Y.+Ys,

where N and N~ are nucleons, and Y, and Y~ are
hyperons, occur with significant probabilities in the
interactions of energetic antinucleons. ' ' Particular
examples which have been studied recently include the
reactions p+P —+ X+A, p+P —+ A+ZP, p+P —+ ZP+A,
and p+P ~ 2 +2+. The strong interactions are pre-
sumably invariant under the parity and charge-con-
jugation interactions, and under the combined operation
CI'. Some consequences of these symmetry operations
for the reaction cross sections and the polarizations of
the Anal particles in reactions (1) have been discussed
by Pais. ' It is the purpose of this paper to extend those
considerations to the two-particle spin correlations in
the V., Yd system. Because of the parity violations in
the decays of the hyperons, and the concomitant spin-
dependent decay asymmetries, the two-particle spin
correlation parameters can be determined from the
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angular correlations in the over-all decay distributions.
The reactions are therefore essentially self-analyzing,
and it is not necessary to perform second scattering
experiments with the decay products.

The spin dependence of reaction (1) is considered in
Sec. II using the spin transition matrix methods of
Wolfenstein and Ashkin. 4 The cases of even and odd
relative (Y., F'~) parity are both considered; the results
are quite general, "and could be applied, for example, to
reactions involving spin ——, hyperon isobars as well as
to the reactions previously noted. The most general
form of the transition matrix which is invariant under
the parity operation involves eight independent func-
tions of the scattering angle for either even or odd rela-
tive (Y., Ys) parity. The operation of charge con-
jugation relates the transition matrix for reaction
(1) to that for the charge conjugate reaction,
N p+N. —+ Yd+ Y,. In the special case of a self-charge-
conjugate reaction, N+N ~ Y+Y, the transition
matrix involves only six functions of cos0. The general
forms for the production and decay angular distribu-
tions are easily derived; the latter may be expressed in
terms of the polarization and spin correlation parame-
ters for the Y„Y&system.

These general results have several interesting appli-
cations. For example, a failure of any of the equalities
Ip(W, cos9) = Ip(W, cos8), P,=P„Pd= Pg, C i= Ci,
which relate the differential cross section, polarizations,
and spin correlation parameters for a reaction and its

4 L. Wolfenstein and J. Ashkin, Phys. Rev. 85, 947 (1952); also
L. Wolienstein, in Annual Reuiews of Nuclear Science (Annual
Reviews Inc. , Stanford, California, 1956), Vol. 6.

4'Note added in Proof. Spin correlation phenomena have been
considered in detail by S. Sarshay I Phys. Rev. 113, 349 {1959)j
for the special case in which the final state is restricted to orbital
angular momentum zero (production at threshold). Correlation
phenomena have been considered for particular models by several
authors (Refs. 5—7).
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charge conjugate would evince a violation of CI' in the
reactions. In addition, a nonzero polarization for either
final particle along a direction lying in the reaction
plane, or a nonvanishing two-particle spin correlation
with respect to the normal to the reaction plane and a
direction in that plane, would signify a violation of
parity. If invariance of the strong interactions under C
and P is assumed, the results may be used to test the
symmetry properties of the hyperon decay processes.
The assumption of CI'T and T invariance for the weak
interactions leads to the prediction, as yet untested,
that the asymmetry parameters for the decay of a
hyperon and its antiparticle are related by 0.&= —nz.
As was noted by Pais, ' the equality of the polarizations
of the hyperons produced at the angles 8, p, and of the
antihyperons produced in the charge-conjugate re-
action at the angles vr —0, m+p, permits a direct test of
this a prediction. However, the absence of significant
polarizations does not preclude at least a partial test of
this relation if any of the two-particle spin correlation
parameters are nonzero. The angular asymmetries in the
decay distribution may also be used to provide lower
bounds on the asymmetry parameters. More conven-
tionally, measurements of the spin correlation parame-
ters would provide valuable information about the spin
dependence of the reactions, and can be used to test
various models which have been proposed for the re-
action mechanism. I'or example, quite different pre-
dictions for the correlation parameters are obtained from
the single K* exchange model proposed by Bessis,
Itzykson, and Jacob, ' the modified E*plus E exchange
model of Sopkovich, ' and the E* Regge pole model of
Chan. " Detailed calculations based on these models
suggest that the spin correlation parameters may be
measurably large.

We consider finally in an Appendix the relation
between the Wolfenstein-Ashkin spin transition matrix
M,4 and the relativistic transition matrix as parame-
trized using the helicity representation for angular mo-
mentum. ' It is shown in particular that the 3f-matrix
approach is correct relativistically if all spin expectation
values are referred to the respective rest systems of the
particles in question. The general partial-wave expan-
sions of the coefficient functions in the transition matrix
are also derived, and the appearance of certain angular
factors in the spin polarization and correlation co-
efficients is demonstrated.

II. SPIN CORRELATIONS IN THE
REACTION N I-Nf, ~ F,+ Fg

a. General Properties of the Transition Matrix

The spin-dependent features of a reaction c+0 —& c+d
involving only spin--, particles can be described using a

'D. Bessis, C. Itzykson, and M. Jacob, Nuovo Cimento 27,
376 (1963).

N. J. Sopkovich, dissertation, Carnegie Institute of Tech-
nology, 1962 (unpublished).

C. H. Chan, Phys. Rev. 133, 8431 {1964).
s M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959).

4X4 transition matrix M which expresses the spin de-
pendence of the final wave function in terms of that of
the initial wave function. In particular, if the density
matrix of the initial system is p;b, that of the final
system is given by

P-,g
——MP;bM~.

If we assume, furthermore, that p;b is normalized,

Tl pub= 1 7

(2)

&ij o lio 2j ~

Here, o-0 is the 2)& 2 unit matrix, and the o-j with j= 1, 2, 3
are the usual Pauli spin matrices. The o-;j satisfy the
orthogonality relations

Tro-, jo-A, )=46,1,6j).
Since these matrices span the space of 4X4 matrices,
3f and p may be written in the form

3I=Q;, nz;, og, .

P Eii Pij+ij )

p;, =-,'- Tro-ijp, p;;*=p;;.

It is well known in the case of nonrelativistic elastic
scattering, 4 that the matrices o ~ and o2, which appear in
the expressions for the density matrix, can be inter-
preted as the Pauli spin matrices for the initial or final
particles. This interpretation is also valid for inelastic
processes and for relativistic particles provided, in the
latter case, that the spin operators are assumed to refer
to the rest systems of the respective particles. This point
is discussed in more detail in Appendix B. We will
henceforth follow the convention that the operators o ~

and o2 act, respectively, on the spin indices of the anti-
particles and the particles.

The invariance of the strong interactions under
proper inhomogeneous Lorentz transformations implies
that we need consider 3f only in the center-of-mass
system, and that it must transform in that system as a

and that the elements of M are properly normalized
transition amplitudes referred to the center-of-mass
system, the differential reaction cross section in that
system is given by

dir/dQ= Trp ,d =T-r3lp. sMt,-

where the trace extends over the spin indices only.
More generally, the expectation value of any spin-
dependent operator 3 is given in the final state by

(A) Trp ,d TrAp;-g.——

The 4&(4 matrices M and p may be expressed con-
veniently as linear combinations of the sixteen in-
dependent matrices o-... i,j=0, 1, 2, 3, formed by taking
direct products of 2&&2 matrices,
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TABLE I. Transformation properties of the rotational in-
variants which can enter the general transformation matrix
M (eg,e3,i,m, n).

Invariant

1
(e,+e,) .n
(e1—e2) n
e1 leal
0'1 m0'2 n
e1 ~ Ile2 ~ n
e1 le2 m+e1 me& 1

e1 102.m —e1 me2 ~ 1

(e1+e2) 1

(e1—e&) 1

(01+e2) m
(e1—e2) m
e1 le2. n+e1 ne2 1

e1 ' 10'2 ~ n —e1 ~ ne2 '1
01 e me2 6 m+0'1 ~ Ile2 ~ m
0'1 ~ me2 ~ n —0'1 ~ Ne2 ~ m

Signature, Signature, Signature,
P C CP

scalar under rotations. The sixteen independent com-
ponents of M must therefore be expressed in terms of
scalar products formed from the initial and final
momenta, and the Pauli spin matrices e~ and e2. The
discussion is greatly facilitated by the introduction of
three orthogonal vectors which define a right-handed
coordinate system in the center-of-mass frame, 9

I=p'+p= 2l cos-,'8,
m= p' —p= 2m sin-,'8, (6)
n= p Xp'= 6 sin8.

Here, p and p' are unit vectors in the directions of
motion of the incident and emergent antiparticles; the
scattering angle in the center-of-mass system is defined

by
cos8=p p'=p(N. ).p(Y,) .

A complete set of sixteen independent rotational scalars
constructed from these vectors and the Pauli matrices is
given in Table I. These operators may appear in the

general expression for the transition matrix multiplied
by complex functions of the scattering angle and the
total energy in the center-of-mass system. The in-
variance of the strong interactions under space in-
versions requires that M transform as a true scalar
(pseudoscalar) if the relative parity of the final particles
is the same as (different from) that of the initial par-
ticles. Under the parity transformation e -+ e, I -+ —I,I—+ —I, and n —+ n. Thus, it is necessary that

M(et, es, l,m, n) =t)„M(et, e2, -l, -m, n), (8)

where t)~ is equal to +1(—1) if the relative intrinsic
parity of the initial and final particles is even (odd).
The charge-conjugation operation changes the anti-
particles in reaction (1) into particles with the same spin
projections and momenta, and conversely. However, the
basic vectors are always dehned in terms of the mo-
menta of the antiparticles, and the relabeling of the
particles therefore induces the transformation l~ —1,I—+ —I, n —+ n; in addition, the roles of the anti-
particle and particle spin matrices e~ and e2 are inter-
changed, ei —+ e2, e2 —+ e~. The assumption of charge-
conjugation invariance for the strong interactions con-
sequently implies that

M(oi, os, l, m, n)=r),M'(e2 4ri —I, —m, n) lt) I
=1 (9)

where M' is the transition matrix for the charge-
conjugate reaction, N&+N, ~ Yd+Y, . We note also
the effect of the combined operation CI',

M(o, ,e,,l,m, n) =2)„M'(e„e„l,m, n), lq„l =1. (10)

The time reversal invariance of the strong interactions
unfortunately does not impose any further useful re-
strictions on the structure of M: the time inverse
reaction, Y,+Yq~N, +Ns is not accessible experi-
mentally.

The most general form for the transition matrix that
transforms correctly under rotations and rejections is
easily determined. For even relative (Y„Yd) parity, '6

M M1+M2e1' e2+M3(e1+ e2) n+M4(el e2) 'n+Msel'le2'I+M6el ™2™
+Mr[et. les. n+et. ne2 lj+Ms[ei le2 m —oi.me, Ij, 1) =+1. (11)

The coefficients M; are functions of the total energy 8'
and the scalar product P P'=cos8. Charge-conjugation
invariance imposes the additional restriction that the
functions M; be related to the functions M as

M,'(W, cos8) =M;(W, cos8), j/4, g,
M4'(W, cos8) = —M4(W, cos8), (12)
Ms'(W, cos8) = —Ms(W, cos8) .

9 The particular choice of basis vectors is governed by the re-
quirement that M have simple transformation properties under
C and P. Other possible choices, for example, the set P', n, n)&p',
which is natural for the helicity transformation f of Appendix 8,
lead to rather complicated relations between the coeKcient func-
tions, in this case under C.

The phase conventions have been chosen so that q, = j..
It should be noted that 0 is always the scattering angle
of the antiparticle, and thus refers to different particles
in M; and M,'. In the case of the self-charge-conjugate
reactions N+N-+ Y+ Y, the restrictions noted in
Eq. (12) imply that M4(W, cos8)=M3(W, cos8)=0.
These relations follow also from the more general re-
quirement of invariance under the combined operation
CI'.

The general form for the transition matrix in the case

"%'e assume, of course, that the (X,Xf}relative parity is even,
hence, that the (¹,i76) parity is odd.
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of odd relative (F„Fz)parity is given by

Ml(471+422) 'I+M2(471 472) 'l+M3(421+472) ™+M4(471 472) 'm+Ms[421'1472'n+ 471'no2'I]
+M6(421 & 472) 'm+M7[421'm+2'n+ 471'n472 m]+Ms(471 24422) 'I gy= —1, (13)

b. General Results for Spin
Correlation Phenomena

The density matrix for the final state in the reaction
14I,+X3~ F,+Fz is completely specified by the six-
teen coefficients p;, in the expansion in Eq. (5). These
coeKcients may be identi6ed with the usual spin po-
larization vectors P-, and Pd, and the joint spin correla-
tion parameters C;;, i, j=/, m, e, defined according to
the relations

IOPcj= Troljpid )

IOPdj Tro 2jpcd )

(15)

(16)

IOC;j=Trig;0-2jp;d.

Here, the crj are the components of e in the l, m, and n
directions, and Ie(W, 8,&) is the differential reaction
cross section,

Io(W,0,$) =Trp-, g
——TrMp,-sMt. (18)

An additional spin parameter C is also of interest,

C= Ctt+Cmm+Cnn ' (19)

this parameter represents the expectation value of
e~ e2 in the final state, hence, measures the relative
weights of the singlet and triplet spin configuratioris.

In the situation most likely to be encountered 1n
practice, the initial particles are unpolarized. The
density matr1x p-g is then equal to 4 times the 4)&4
unit matrix, and p-,~ is given by

p-,g= —MM~. (20)

We will con6ne our attention to this case, although it
will become clear that more general situations must be
considered if the structure of M is to be determined in
full.

A number of general properties of the polarization
and spin correlation parameters may be deduced with-
out explicit calculation. It is readily verified that the
parameters P-„., P@) and C;j are all real and less than
unity in absolute value. "The joint spin parameter C

"The reality of the parameters I'; and C;; follows from the
Hermitian character of the density matrix and the operators 0;;.
The bounds on the absolute values are readily established by
applying the Schwartz inequality to the expectation values of the
operators (1+0;;)'.

with the additional restrictions, implied by charge-
conjugation invariance, that the coeKcient functions
Mj and Mj be related as

M;(W, cose)=M (W, cose), j=2,4,6,8

M;(W, cos8) = —M (W, costt), j= 1,3,5,7. (14)

is.also real and is restricted to the range —3&C&1.
The invariance of the strong interactions under the
combined operation CP', and the resulting symmetry
properties of transition matrix, Eq. (10), lead to several
relations between the parameters for the reactions
I4r,+1V3~ Y,+Fs and ¹+X,—& Yd+Y, : (i) The
total cross sections and the angular distributions of the
antihyperons are identical for the two reactions. (The
production angles are defined in terms of the mo-
menta of the antiparticles, different in the two cases. )
(ii) The polarization of the antihyperon (hyperon)
produced at the angles 8, p in the Y,Fd reaction is the
same as that of the hyperon (antihyperon) produced at
the angles 7r —8, 7r+p in the charge conjugate YdF,
reaction. Relations (i) and (ii) have been noted pre-
viously by Pais. ' (iii) The spin correlation parameters
C47 and C;, for a reaction and its charge conjugate are
related by C;j=Cj;. These results may be sharpened
somewhat if it is assumed that the strong interactions
are invariant under P and C separately. Conservation
of parity leads to the familiar restrictions, (iv),
P,t=P ,m=Pdt=-Ps„=-0, and (e), Cr =C„t——C„„
=C„=O. Charge-conjugation invariance adds new re-
strictions only in the case of self-charge-conjugate re-
actions, for which, (vi), Pr-=Pr, and Ctm ——Cm~. We
note 6nally several general requirements which follow
from the rotational invariance of MMt: (vii) For
forward production of the antihyperon, it is not pos-
sible to distinguish the m and 8 directions, but l is well
de6ned. Consequently, for 0=0, P'-, =Pd, =0, C „=C„,
Ct„——C7„=0, and C 3

——C 4=0. (viii) For 0=7r, 772 is
well defined, but l and 8 are not, and one finds that
P~= Pd,=0) C)g= Cnn) C)m= Cnm= 0) and C~)= Cm)1, =0.
In stating relations (vii) and (viii), we have assumed
that parity is conserved. The results for the differential
cross section, polarization, and spin correlation parame-
ters specific to the cases of even and odd relative
(F„Fz) parity are given in Appendix A. It is not pos-
sible to distinguish the two cases in general; however,
particular models for the reaction mechanism, for
example, single-particle exchange, may lead to quite
different predictions for the spin correlation parameters
for the different relative parities. ' '

The violation of parity in the decays of the hyperons
and antihyperons, with the concomitant dependence of
the decay angular distributions on the particle polariza-
tions, provides a powerful tool for the analysis of spin
correlations in reactions which lead to AA. , Z—2+, AZ+,
2 A, or + final states. Spin correlations in systems
which involve Z' or Zo hyperons can be analyzed using
the asymmetry in the decay of the h. or A, produced in
the fast electromagnetic transition Zs ~ A+7 or



L. DU RAN D, I I I, AN D J. SAN DAVE I SS

Z'~ X+y, but with some loss in sensitivity resulting
from the loss of polarization in the intermediate step.
Because of the absence of any significant decay asym-
metries, it does not appear feasible at the present time
to measure spin correlations in two-particle systems
which involve a 5+ or Z hyperon. Ke shall therefore
restrict our attention to those cases for which a decay
asymmetry is expected, and calculate the resulting spin-
dependent correlations in the angular distributions of
the decay nucleon and antinucleon.

The density matrix p-,~=4'-MMt specifies the proba-
bility that the antihyperons produced in the 8, g direc-
tion in the center-of-mass system, and the hyperon
produced in the ir —8, s-+P direction, be found in defi-
nite spin states when observed in their respective rest
systems. "The subsequent decays of those particles are
described in their rest systems by the transition
matrices"

M ,=A .+B-,er p-i- (21)

Ms=As+Bsos ps, (22)

where pi and ps are unit vectors in the directions of
motion of the resultant antibaryon and baryon, re-
spectively. "The coefficients 3 and 8 are the J= —.,' 5-
and I'-wave decay amplitudes, normalized according
to the relation""

IAI'+!BI'=(4 ) '. (23)

p = M-,Mgp-, gMg~M;t. (24)

Because it is not feasible at present to measure such
quantities as the polarizations of the decay nucleons,
we will consider only the angular distribution of those
particles.

The cross section for producing V, and I'~ in a
E„Eq collision, with Y, emerging in the center-of-mass
system in the 8, P direction in an element of solid angle
dQ, and the decay antibaryon and baryon emerging in
dQ& and dQ2 in the rest systems of F, and Vd, respec-
tively, is given by Trp,

d'o/(dQdQ, dQs) = I(W,8)$,8„$„8s,ps)
=TrM;~M-, .MgtMd p;g. (25)

"This restriction is discussed in detail in Appendix B."T. D Lee and C.. N. Yang, Phys. Rev. 108, 1645 (1957);
J. Leitner, Nuovo Cimento 8, 68 (1958).

'4 The convention used in Eqs. (21) and (22) follows that of
recent experimental papers in using the direction of motion of the
nucleon rather than that of the pion in the 0"p term. With this
convention, the asymmetry parameter in the decay of a polarized
hyperon is equal to the helicity of the nucleon in the decay of an
unpolarized hyperon.

"This normalization is appropriate to a situation in which
both hyperons are observed to decay. Only such events are useful
in determining the two-particle spin correlations.

The production of the hyperons, and their decay as
seen in their respective rest systems, is therefore com-
pletely described by the density matrix

This expression may be simplified using Eqs. (21),
(22), and (23).

and
t~,=(4 )-'L1+ -, , p,3, (26)

3II&t3E&= (47r) 'I 1+«os p&31 (27)

where, in each case, n is the asymmetry parameter for
the decay"

= 2 R A*B/L
I
A

I
'+

I
B

I
'g . (28)

Using these results, the expression for the cross section
may be written in the form

I= (4~) 'Tr(1+~.~r pt)(1+~d~s'ps)Pid
=- (Ip/16'')L1+n-„. P-,. pt+ndpd p,

+~-.«Z CvPr, 'Ps, fj (29)

for unpolarized initial particles. The transition matrix
Mz, which describes the decay of the 2, is given with an
appropriate normalization by

Mr, ——(Ss.) '"o.psXe

This equation displays clearly the remarkable fact that,
as a consequence of the parity violation in the decays
of the hyperons, the complete set of polarization and
spin correlation parameters for the reaction can be de-
termined from observations of the asymmetries in the
decay angular distributions, and the angular correla-
tions of the decay momenta p& and p2. Measurements of
the reaction cross section Is(W, cos8), the hyperon and
antihyperon polarizations, and the five independent,
nonvanishing spin correlation parameters, provide
eight restrictions on the eight complex amplitude func-
tions M;(W, cos8) for given values of W and 8. Fifteen
independent quantities are necessary to determine these
functions up to an over-all phase. The extra conditions
on the M, can probably be obtained from studies of the
asymmetries and angular correlations in an experiment
in which the incident antinucleon or the target nucleon
is polarized, but this has not been checked in detail.
The case of self-charge-conjugate reactions is somewhat
more favorable, since the functions M4 and M8 in
Eq. (11) must vanish. The number of independent
parameters in the transition matrix is consequently
reduced by four, while the number of independent ob-
servables is only reduced by two i'„=I'd CAn Cmgj. -

The analysis of the reactions p+P —& X+Zs and

p+p —+ 2'+A is complicated both experimentally and
theoretically by the rapid, parity conserving, electro-
magnetic decay of the 2' or 2'. For simplicity, we will
restrict our attention to the first reaction. The density
matrix p, which describes the production of the A,Z
system, decay of the Z', Z' —+ A+&, and the subsequent
decays of the A and X hyperons, is given by

p= M xM~MzpxzMztM~~M x~,
where
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for even relative (Zs,A) parity. In the unlikely circum-
stance that the relative (Z', A) parity should be odd, "
the decay matrix would be given by

+A, p+p~ Z +Z+, and p+p-+ @++ —permits a
direct test of this relation provided the polarizations are
large enough to give a significant decay asymmetry. '
The equality of the polarizations of the hyperon pro-
duced at the angles f), P in a given reaction, and the anti-
hyperon produced at the angle z.—0, z-+g in the charge-
conjugate reaction, permits a second independent test
of the equality O.p= —n& using general reactions
ItI,+ItIs &F—a+ V,. The absence of significant polari-
zations, to be expected on the basis of single-particle
exchange models for reactions of this type does not
preclude the study of o.p if the angular correlation
parameters cx-,n&C;; for the two-particle decay distribu-
tion are measurably large. The equalities C;;=0;;,
which relate the spin correlation parameters in a re-
action and its charge conjugate, permit a direct com-
parison of the products n-,o,~ and n.n~., these should be
equal. If, say, n-„. is known to be equal to —n, from some
independent experiment, a direct comparison of o.~ and
n~ is possible. There are in general five possible experi-
ments of this type, corresponding to the five non-
vanishing correlation coefficients. We note also that, if
the angular correlations are measurably large, the limits
~C;,

~

&1 provide lower bounds for the products ~n ,rra~, -

hence, if one of the asymmetry parameters is known,
lower bounds for the absolute value of the second
parameter. In the case of self-charge-conjugate re-
actions, assuming that o.p= —n~, one obtains a lower
bound on ~cry~'. These bounds could, in principle, be
more sensitive than those obtained from the values of
jrrP~. The argument may be inverted by using the
upper bound ~n ,era~ =1-in conjunction with measured
angular correlation parameters to obtain a lower bound
for ~C;, ~. In the special case that the joint correlation
parameter C exceeds unity in absolute value, as de-
termined using either the foregoing bound, or known
values for the product ~n,-era I, C must lie in the range
—3&C(—1. The sign of the product o.;a~ is then the
negative of the sign of e-,a&C determined from the decay
ang ular correlations.

One may also use polarization and spin correlation
phenomena to test for possible violations of CI', I', or
C in the strong interactions involving strange particles.
Possible tests are as follows: (i) A failure of any of the

Mz=(8rr) '"rr e. (33)

Here e is the polarization vector of the photon, e pq =0,
and pa is a unit vector in the direction of motion of the
decay A as seen in the rest system of the Z'. The most
general result for the correlated production and decay
angular distributions is given by Trp,

I(A,Ze) =d'a/(dQdQadQrdQs)
=TrMt tMtMztMt tMaMzpt-, z, (34)

where the elements of solid angle refer successively to
the direction of motion of the A. as seen in the center-
of-mass system, and to the directions of the A., anti-
nucleon, and nucleon in the decays of the Z', A, and A,
each referred to the rest system of the decaying particle.
The trace includes a sum over the photon polarizations.
The products of decay matrices are easily reduced, and
after summing over the photon polarizations, one
obtains

I(A,&")= (47r) ' Tr(1+rrIrrr pr)

X(1 ere—s Pprrs Pg)pIr„
= (Io/64& )t 1+&Ipa'pl —rrLLps'papa'Pz

ctZctAPs'Pa Q CtjP1~PAj7 )
2,)'=l, 77b, n

irrespective of the relative (Z',A) parity. The non-
vanishing polarization and spin correlation parameters
can again be determined by measuring the asymmetries
in the angular distribution, and the correlations between
the directions of motion of the decay nucleon, anti-
nucleon, and the intermediate A. The expression for
I(X,Z') may be simplified, but with some loss of in-
formation, by integrating over the direction of motion
pI of the A in the Z' ~A+y decay; this results in an
expression of the form given in Eq. (29), but with
o, ;,.=o.q and nd= —3+A.

c. Ayplications of Spin Correlation Phenomena

'~ Present values of the asymmetry parameters for hyperon
decays are as follows: A ~ P+z. , na=0 62&0 07 P.J. W. .Cronin
and O. E. Overseth, Phys. Rev. 129, 1795 (1963}j; Z+ —+ p'+7r,
nz = —0.79 0 M~ LR. D. Tripp, M. B. Watson, and M. Ferro-
Luzzi, Phys. Rev. Letters 9, 66 (1962); E. F. Beall, B. Cork,
D. Keefe, P. G. Murphy, and W. A. Wenzel, ibid 8, 75 (1962);.
B. Cork, L. Kerth, W. A. Wenzel, J. W. Cronin, and R. L. Cool,
Phys. Rev. 120, 1000 (1960}g; " ~A+z. , n-. = —0.50&0.13
PL. W. Alvarez, J. P. Berg, R. Kalbsfeisch, J. Button-Shafer, F.
T. Solmitz, M. L. Stevenson, and H. K. Ticho, 196Z International
Conference on High Energy I'hysics at CERN, edited by J. Prentki
(CERN, Geneva, 1962), p. 433j, and n-. = —1.0+e, &6

'
LL. Bertanza, V. Brisson, P. L. Connolly, E.L. Hart, I.S. Mittra,
G. C. Moneti, R. R. Rau, N. P. Samios, I. 0. Skillicorn, S. S.
Vamamoto, M. Goldberg, L. Gray, J. Leitner, S. Lichtman, and
J. Westgard, ibid. , p. 437). The convention for the sign of n is in
each case that noted in footnote 14.

The assumption of CI'T and T invariance for the
weak interactions leads to the prediction, as yet un-
tested, that the asymmetry parameter for the decay of
an antihyperon is the negative of that for the corre-
sponding hyperon, aI-= —n&. The equality of I'p and
P& in the self-charge-conjugate reactions p+p~X

"Even (Z,A) relative parity is strongly favored by the in-
variant mass spectrum of Dalitz pairs in the decay Z ~ h.'+e++e
(EI. Courant, H. Filthuth, P. Franzini, R. G. Glasser, A. Minguzzi-
Ranzi, A. Segar, W. Willis, R. A. Burnstein, T.B.Day, B.Kehoe,
A, J. Herz, M. Sakitt, B.Sechi-Zorn, N. Seeman, and G. A. Snow,
Phys. Rev. Letters 10, 409 (1963)g. In addition, odd KZN parity'
is favored by the data of R. D. Tripp, M. B. Watson, and
M. . Ferro-Luzzi, Phys. Rev. Letters 8, 175 (1962), while odd KAN
parity, hence, even Zh. parity is favored by the experiment of
Block et al LM. M. Block, .E. B. Brucker, J. S. Hughes,
T. Kokucki, C. Meltzer, F. Anderson, A. Pevsner, E. M. Harth,
J. Leitner, and H. O. Cohn, ibid 3, 291 (1959)j. .
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equalities Ip= Ip, P-= P(') Pd Ppy C'j Cj ' which relate
the differential cross sections, polarizations, and spin
correlation parameters for a reaction and its charge
conjugate would evince a violation of CP. (ii) A non-
zero value of any of the parameters P'-,

&,
P'-, , P«, Pd,

C~, C ~, C, C„would indicate a violation of P.
There do not appear to be any tests for C invariance
which do not at the same time test CP or P.

In addition to the foregoing, relatively simple appli-
cations, the study of spin correlation phenomena pro-
vides a useful, or indeed, essential, adjunct to the
determination of possible mechanisms for the reaction
3I,+1Vp~ Y,+I'4. Although it has been seen that a
complete evaluation of the transition matrix for the
reaction is not possible on the basis of only those
measurements that we have discussed, much useful
information may nevertheless be obtained from the com-
parison of the predictions of specific models with the ex-
perimental results. The relevance of spin correlation phe-
nomena to tests of the single particle exchange model
for the reactions p+P -+ A+A. , A+X', &+A, and
Z +2+, has been emphasized by Bessis et a/. ' The ex-
perimental cross sections for the AA, AZ', and ZA
processes are strongly peaked in the forward direction
at high energies; the data for the Z Z+ reaction are less
conclusive, but some peaking may be indicated. The
striking tendency for the antiparticle to maintain its
original direction of motion is suggestive of a long-range
exchange mechanism for the reaction. Although it has
been argued"' that a single E-meson exchange mecha-
nism is unable to account for the angular distribution
in the AA reaction, assuming the E meson to be pseud-
oscalar relative to the AÃ system, this conclusion is
incorrect: For reasonable values of the EAT coupling
constant, the S-wave transition amplitudes exceed the
limits imposed by unitarity. Reduction of these ampli-
tudes to the unitarity limits results in a reasonable
angular distribution. Alternative models for the AA re-

action based on the exchange of a single J= 1 E*meson
(885 MeV IC—4r resonant state") have been studied by
Bessis et al. ,' Sopkovich, ' Chan, ' and Watson. "These
models also lead to reasonable angular distributions for
the production process. In addition, the exchange of a
spin-1 particle can lead to nonzero spin correlations in
final state. The joint correlation pa~.ameter C was cal-
culated by Bessis et aL' for the AA, AZ', 2'A, and Z Z+

processes for an incident momentum of 3 BeV/c. This
parameter was found to be small in the angular region
in which the cross section is large, and would conse-
quently be dificult to measure. What is perhaps a more
realistic model was considered by Sopkovich, ' who
modified the single E~ exchange mechanism by includ-

ing single E-meson exchange, and, in addition, some
absorptive eBects. The latter were calculated using
an optical potential matched to the pp elastic scat-
tering cross sections. This model predicts measura-
bly large values of C and C„„at forward angles for
the reaction P+P -+ A+A at 3.3 BeV/c incident anti-
proton momentum. "The correlation parameters were
not calculated for AZ', Z'A, and 2 Z+ reactions, but
should not diGer greatly from those calculated for the
AA reaction. Measurements of the hyperon and anti-
hyperon polarization and spin correlation parameters
for these reactions would be of great interest in them-
selves, and would also serve as a useful check on the
validity of the various single particle exchange models.

APPENDIX A: RESULTS FOR THE REACTION CROSS
SECTIONS, POLARIZATIONS, AND SPIN

CORRELATION PARAMETERS

The results for the differential cross section, and the
polarization, and spin correlation parameters for the
reaction I1I,+I'�&~ F,+F4 are easily derived for the
case of even (F'„I'd) relative parity from the general
form of the transition matrix given in Rq. (11).

Ip PV, cos0) =
I
M & I

'+
I
M&

I
'+ 2 sin'81 Ms I

'+ 2 sin'8
I
M4 I

'+
I Ms+ 2 (1+cos8)M 4 I

'
+ ) M,+2 (1—cos8)Mp )

'+4 sin'0L [Mr ['+
) Ms ('], (A1)

IpP =IpP 6= 211 si-n8{Ret-M&*(Ms+M4)+Ms*(Ms —M4)]
+4 Im(Ms*Ms —(1+cos8) (Mr —Ms)*Ms+ (1—cos8) (Mr+Ms)*Ms]}, (A2)

IpPd=IpPs6= 28 sin0{Re[Mt*(M3 M4)+Ms (Ms+M4)]
+4Imf —Ms*Ms —(1+cos8)(Mr+Ms)*Ms+(1 —cos8)(Mr —Ms)*Ms]}, (A3)

IpCn=2 Ret Ms*(M&—Ms)+2(1+cos0)Mt*Ms —2(1—cos8)Ms*Ms]
—8 sin'0 Im[Ms*Mr M4*Ms] ) (A4)—

IQ =2 Re/Ms*(Mt —Ms) —2(1+cos8)Ms*Ms+2(1 —cos0)Mt*Ms]
+8 sin'8 Imt Ms*M7+M4*Ms], (A5)

"H. D. D. Watson, Nuovo Cinmnto 29, 1338 (1963)."M. Alston, L. W. Alvarez, P. Eberhard, M. L. Good, W. Graziano, H. K. Ticho, and S. G. Wojeic~i, Phys. Rev
Letters 6, 300 (1961).

20 &he correlation parameters quoted by Sopkovich refer to a different coordinate system than that used in the present paper.
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IpC„„=2 Re[Mp*(M i—Mp) —2 (1+cos0)Mp*Mp —2 (1—cos0)Mp*M p

—4 sin'0M p*Mp)+4 sin'0[1 M7
I'

I Mp
I
'] (A6)

IpC~ 4——sin0 Im[(1+cos0)(Mp —M4)*Mp —(1—cos0) (M3+M4) Mp

+Mp*M4]+4 sin0 Re[Mi*(Mq+Mp)+Mp*(M7 —Mp)], (A7)

IpC~~ =4 sin0 Im[(1+cos0) (Mp+M4)*Mp —(1—cos0) (Mp —M4) *Mp
—Mp*M4]+4 sin0 Re[Mp*(Mz+Mp)+Mi*(Mv —Ms)), (A8)

C) =C„)——C .=C. =0. (A9)

The symmetry properties of the polarization and spin correlation parameters noted in Sec. IIb, the properties of
the M; under charge conjugation given. in Eqs. (12), and the angular factors which appear explicitly in the fore-

going expressions, are easily checked when these relations are used.
The general expressions for the differential cross section, the polarization, and the spin correlation parameters

for the reaction N, +N& ~ F,+Fz may be derived for the case of odd (F„F&)relative parity using the transition
matrix given in Eq. (13):

Ip(W, cos0) =4(1+cos0)[IMil'+ IM& I
'+

I
Mp I'+sin'0 IM

+4(1—cos0)[IMplP+ IM4l'+ IMpl +sin'0IM&l'] (A10)

IpP~ ——IpP-8=4'8 sln0 Re{(Mi —Mp)*[(1+cos0)Mp+Mp]+ (Mp —M4) [(1—cos0)M7 Mp]}
+48 sin0 Im{ (Mi+Mp)*(Mp+M4)+ [(1+cos0)Mp—Mp]*[(1—cos0)M7+Mp)}, (A11)

IpPd=IpPd8=4n sin0 Re{(Mi+Mp)*[(1+cos0)Mp —Mp)+ (Mp+M4)*[(1—cos0)M7+Mp)}
+48 sin0 Im{(Mi—Mp)*(Mp —M4)+[(1+cos0)Mp+Mp]*[(1—cos0)M7 —Mp)}, (A12)

IpCtq ——4(1+cos0)[)M& )'—
) M& ['—

) Mp )')+4 sin'8(1 —cos0) [My )'
+8(1—cos0) Im[(1+cos0)Mp*Mp+M4*Mp), (A13)

I,C„=4(1—cos0) [IMpI' —IM4I' —IMpI']+4»n'0(1+cos0) IMpI'
—8 (1+cos0) Im [(1—cos0)M i*M~

—M p*Mp), (A14)

IpC„„=8(1+cos0)Im[(1—cos0)Mi*Mi+Mp*Mp) —8(1—cos0) Im[(1+cos0)Mp*Mp —M4*Mp], (A15)

IpC~~=4 sin0 Re{(Mi+Mp)*(Mp —M4) —[(1+cos8)Mp+Mp] [(1—cos0)M7+Mp]}
+4 sin0 Im{ (Mp+M4) *[(1—cos0)M q

—Mp) —(Mi —Mp)*[(1+cos0)Mp —Mp)}, (A16)

IpC~~= 4 sin0 Re{(Mi —Mp)*(Mp+M4) —[(1+cos0)Mp—Mp]*[(1—cos0)M7 Mp)}
+4 sln0 Im{ (M,—M4)*[(1—cos0)M7+Mp] —(M&+Mp)*[(1+cos0)Mp+Mp)} ) (A17)

C)„——C.)——C =C„=0. (A18)

The symmetry properties of the polarization and spin
correlation parameters noted in Sec. IIb are again
readily checked.

APPENDIX B:GENERAL THEORY OF THE
REACTION N~+Nf, —& Y,+ Yg

In this Appendix, we will consider in greater detail
the formal structure of the Wolfenstein-Ashkin spin
transition matrix M(W, 0,&), in particular, the inter-
pretations to be accorded this matrix in a relativistic
theory, and the structure of the coeKcient functions
M;(W, cos8) in terms of the partial-wave transition
amplitudes. It will be convenient in this discussion to
parametrize the relativistic scattering matrix using the
helicity representation for angular momentum intro-
duced by Jacob and Wick'; we shall rely heavily on
results derived in their paper.

The reaction N, +Np ~ Y,+Yq can be described in

complete generality in the center-of-mass frame in
terms of a helicity transition matrix f(W,0,&), the
elements of which are the transition amplitudes in the
helicity representation,

fq q~, q.q, (W,0,$)= (2n/iP)(0/X;Xq~S —1~00K,-) p) . (81)

In this expression, ~0$Xikp) is the plane-wave helicity
state defined by Jacob and Wick, in which particle 1
moves in the 0, g direction with helicity Xi, and particle 2

moves in the opposite direction with helicity X2. The
momentum of either incident particle in the center-of-
rnass frame will be denoted by p, and the total energy
in that frame, by W. The initial state of the system can
be described by a density matrix p in the helicity space;
the final state is then described by the density matrix
fpf" The differenti. al reaction cross section, polariza-
tions, and helicity correlations can be calculated by
standard methods. For example, for spin ——,

' particles
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with no initial polarization,

Ip(W cosg) = 4 Trfft= ~ Q ~
fz-,z, , )„-z, '. (82)

[) ]

The plane-wave helicity states have the property
that the helicities are unchanged by Lorentz transfor-
mations along the directions of motion of the particles,
provided those directions of motion are not reversed.
In particular, the helicity of a particle is preserved. under
the transformation to its rest system. Thus, the particles
described by the helicity state ~0&X&X2) have spin pro-
jections X~ along the e, g direction, and X2 along the
vr —8, n.+p direction, when observed in their respective
rest systems as reached by a simple Lorentz transfor-
mation from the center-of-mass system. The indices on
the helicity amplitudes in Eq. (81) are therefore
equivalent to ordinary spin indices in the particle rest
systems, referred, however, to a different axis of quan-
tization for each particle; and the transition matrix
expressed in terms of helicities is completely equivalent
to a transition matrix connecting proper spin states
(spin states in the particle rest frames). The Wolfen-
stein-Ashkin 3SI-matrix is obtained by re-expressing this
result in terms of proper spin states quantized with
respect to a common fixed coordinate system. Since the
original description. in terms of helicities was correct
relativistically, it is clear that the M-matrix approach
is also completely general and relativistically correct,
provided that spin expectation values are referred
always to the individual rest frames of the various
particles.

For the construction of the coefficient functions
Mg(W, cose), it will be convenient to change from a
plane-wave representation of the transition amplitudes
to a representation in terms of the total angular mo-
mentum quantum number J, and the s projection of
the angular momentum J,=M. The necessary trans-
formation' is provided by the representation coeKcients
for the rotation group, "
(8&Xghg

i
JMXg'X2') = $(2J+1)/4m 7"'

&&~~,~, 4,&,, D~, ~, ~, *(4,0, —p), (83)
with

This transformation leads to the result of Jacob and
Kick.,

The rotational invariance of the interactions implies
that the S Inatrix connects only states of the same J
and M, and that the elements of S are in fact inde-
pendent of 3I. If parity is conserved in the reaction, the
partial-wave matrix elements SJ transform according

2' M. E. Rose, Elementary Theory of Angular 3IIomentum (John
WiIey R Sons, inc. , New York, 1957).

with the transformation properties

P
) JM+; XIX2)= &r112(—1)

~
JM+; XIX2) . (87)

Here g» is the relative parity factor for particles 1 and
2. Since the matrix SJ connects only states with the
same parity, it has at most eight nonvanishing elements
in this representation. Ordering the parity eigenstatesas. . . —,—, —,—, , one
easily obtains the most general forms for SJ consistent
with the conservation of angular momentum and
parity.

I gJ
bJ+SJ——
0

. 0

bJ
CJ
0
0

0 0
0 0

ri, =+I,J eJ
eg+ fg .

(88)

0
0SJ=

AJ

0
0

CJ
DJ

,g J+ PJ+
CJ DJ

0 0
0 0 g

where q„=rI,-pg;q ——+1(—1) for even (odd) relative
(V„Vd) parity. For either case, the matrix elements
3+ are of the form 2+=3~A '. The elements of SJ are
functions of 8' alone. Time reversal invariance does
not add any new restrictions on the matrix elements,
since the time reversed interaction F,+I'~ ~g,+1V~
is not accessible to experiment.

The final symmetry which we shall impose on SJ is
that of charge conjugation invariance. The application
of C to an antiparticle-particle helicity state

~
JMX&X2)

interchanges the roles of 1 and 2, without changing
the helicities. Since the antiparticle index is conven-
tionally written first, this interchange induces the
transformation

C
~

JMII,g„)= (—1)J—
'~ JM&-,II, ,), (81O)

where the phase factor is obtained using the methods
of Jacob and Wick. ' The corresponding properties of
the parity eigenstates are easily deduced. However, it
must be recalled that the antiparticle helicity index in
Eq. (86) is restricted to positive values. This restriction
introduces an extra minus sign in the transformation of
the state

~
JM—;+—). The imposition of charge-

conjugation invariance leads to relations between the
elements of the matrices 5~ of Eqs. (88) and (89), and
those of the corresponding matrices SJ' for the charge-

to the relation

S,(—Xp, —X, )
—X—.,

—X,) =ri,Sg(X-,X, ; X.-X,) ) (85)
where g~ is equal to +1 (—1) if the relative intrinsic
parity of the initial and final particles is even (odd).
This result can be cast in a more useful form by intro-
ducing eigenstates of the parity operator
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X Ug1br (8)g)Sg(W)Upper(0)0), (811)

where the unitary matrices UzIII(8, &) connect the eigen-
states of J, M, and parity with the plane wave helicity
states. If the latter are written as column vectors in

er I+y» I+ —» I

—+» I

——» U~~(84)
found to be

DMOJ DMOJ-

1 0
UJ,M(8)$)

0

-DMO

DMl DM, —1

DMl DAf, —I

DMO

(812)

The rotation coeKcients Db„~(&, 8, —p) appear with
the indicated arguments; in the special case 8=&=0,
DI,„~(0,0,0) =81,„.As noted previously, f(W,O, &) can be
interpreted as a transition matrix which connects initial
and final proper spin states with the quantization axis
for each particle chosen along its direction of motion in
the over-all center-of-mass system. The Wolfenstein-
Ashkin spin transition matrix M(W, O,@) is obtained
from f(W,O,&) by re-expressing this matrix in a repre-
sentation in which the proper spin states are quantized
relative to a common axis. The necessary transforma-
tion is easily derived. We will denote by I

XIX&) a two-
particle spin state in which the spin components of
particles 1 and 2 along the s axis (the direction of motion
of the incident antiparticle) are equal in their respective

conjugate reaction. All of the matrix elements of SJ
and SJ' are in fact equal with the exceptions of eJ and
eq' in the even parity case (g„=1), and A q, A g'Cq, and
Cz' in the odd parity case (I1„=—1), and these simply
change sign, e.g. , eJ'= —eJ, etc.

Returning to the matrix notation, we can express
the helicity transition matrix f(8,&) in terms of Sz as

f(~OA)=(»p) ' Z (2J+1)

rest systems to ) & and X2. In the initial helicity state
IOOX,-Xb) in Eq. (81), the antinucleon is assumed to
move in the positive z direction, and the nucleon, in
the negative z direction. Noting the phase conventions
used by Jacob and Wick, ' this state is seen to corre-
spond to the spin state

Bb,

Similarly, the final helicity state IO/X;liq), in which the
antihyperon moves in the 8,& direction, and the
hyperon, in the Ir —8, or+& direction, corresponds to a
spin state

(—1)~"' exp( —i88 S) exp( —iprS~, „)I
XP ~),

S= S-,+Sg.
In these expressions, S; is the spin operator of particle

j in its rest system, and the azimuthal orientation of
the y axis is arbitrary. With these conventions, the spin
transition matrix M is given by

M(W, O,&)= (—1)l "'(—1)i "'exp —iOn S
Xexp( —iorSd, „)f(W,O,&) expkrSb, „. (813)

The 4&(4 matrix M can be expressed as a linear com-
bination of the sixteen independent matrices a-;, defined
in Sec. II a; the necessary relations are given in Eqs. (5).
We will use the convention that the Pauli matrices e~
act in the 2X2 proper spin space of the antiparticles,
while the matrices e2 act in the spin space of the par-
ticles. The result for M in Eq. (813) may then be re-
written in terms of the Pauli matrices as

M(W, O,y) =exp[——,'H. (eI+rro)]op, f(W, O,y)a„. (814).

After a lengthy but simple calculation using the ex-
pression for f given in Eq. (812), and the matrix repre-
sentations for UJM and SJ, the transition matrices for
even and odd relative (F„Fb) parity may be reduced
to the forms given in Eqs. (11) and (13).The resulting
coefficient functions M;(W, cosO) are given in the even
parity case by

MI ——(16iP) ' Pq(2J+1) [2az cosOd po +2fqd op 4bq sinOdIp~-

+(cg+dg)(1+cos8)d11 —(cg—dg)(1 —cosO)d 1,1 ] ) (815)

M, = (16iP) ' Pz(2J+1) [2az cosOdoo —2fzd op 4bq sinOd, o-
—(cg+dg) (1—cosO)d11 + (cg —dg) (1+cos8)d 1,1 ], (816)

sinOMo —— i(16iP)—' Pq(2J+ 1)[2aq sinOdpp +4bJ cosOd1p

+ (Cg+dg) S1118d11 + (Cg —dg) S1I18d 1,1 ], (817)

(818)sinOM4 ——i(4ip) ' p&(2J+1)eJdI p

2(1—cos8)Mp= (16IP) Pg(2J+1)[2ar(1—cosO)dpo' +4bg slI18dIo'

+ (cr+dg) (1—COSH)dl]' (CJ—dr) (3+COSH)a —1,1' ] ) (820)

(821)2 SlnOMI= (4Ip) pz (2J+ 1)bg d1p'

2(1+cosO)Mo= —(16iP) ' Pg(2J+1) [2ag(1+COSH)dpp~ 4bq sinOdIo-
—(cq+dq)(3 —cosO)d11 +(cq dq)(1+COSH)d I—, I ], (819)

2 sinOMp ——(4iP) ' Pq(2J+1)eq'dIp (822)
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The rotation coefficients d1„~(0) for the indices of interest are given by

dpp (0) =Pg(c os0),

sin0
d o'(0) =- Pg(COSO),

[J(J+1)]'i'd(cos0)

(823)

(824)

d 1,1'(0)=
1—cos0 d d2

Pg(cos0)+ (1+cosO) Pg(cosO)
J(J+1) d(cos0) d(cos0)'

(825)

1+cos0 d d2

dll~(0) = Pg (cos0) —(1—cos8) Pg (cos0)
J(J+1) d(cos8) d (cos0)'

(826)

where Pz(cos0) is the ordinary Legendre polynomial.
Using these results, it is readily veri6ed that the angular
factors which appear on the left-hand sides of
Eqs. (817)—(822) are contained also on the right-hand
sides. Since these are precisely the factors contained in
the vectors 1, m, and n, the validity of the result for M
given in Eq. (11) is established. In particular, the co-
eflicient functions M;(W, cos0) are nonsingular for
~COSO~ &1 and we may consequently use the angular
dependence of 1, m, and n to obtain some information
about the angular variation of the reaction cross section
and the polarization and spin correlation parameters.
The apparent asymmetry of the result for 3I, in which
el le 1 and ol me&. m appear explicitly, but in which
e ne2-n is absent, is connected with the presence of the
term M2oj 02. Although M2el e2 can be expressed as a
linear combination of the foregoing terms, the co-
efficients are, in general, singular at 0=0 or 0=m, and
it is preferable to use e~ e2 as one of the independent
invariants. However, it may be useful in some situations
to introduce an extra term in Eq. (11),and use an over-
complete set of matrices containing sl ep, el le& 1,
aq m@2 I, and e& F2 n. The coeKcient functions, only
three of which are independent, can be so chosen that
the coeKcient functions are nonsingular.

A similar calculation for the case of odd (Y,V0)
relative parity leads to a spin transition matrix of the
form given in Eq. (13), with coefflcient functions
M;(W, cos0) expressed in terms of the elements of Sg,
Eq. (89), as

2 cos-,'0M'
=-(4'p)- Z.(2J+1)

X [A z sin-', Odlp~ —CJ cos-', Odll~], (827)
cos20M2
= (4ip)

—' pg(2J+1)
X(Bz coskOdpp —Dg sin&0dlp ] ~ (828)

2 sm.—,'0' 3

= («P) 'Z~(2J+1)
X [Ay' cos~Odlp' —Cg' sulkOd 1 1 ], (829)

2 sln20M4
= (4ip) 'Z~(2J+1)

X[Pg' sin —', Odpp +Dg cospOdlp ], (830)

2 cos-,'0 sin03f5
= —i(4ip) 'gg(2J+1)

X [A J COS00dlp +Cg SlnpOd11 ] ) (831)
2 slngM6

=i(4ip) —' Pg(2J+I)
X PBq sin-', Odpp +Dz cos-', Odlp ], (832)

2 sin-.', 0 sin0
= —i(4ip) ' Pg(2J+1)

X [A j sln20dlp +CJ cos20d —1,1 ] y (833)

2 cos~0M8

=i(4ip) 'Qg(2J+1)
X[Bg cospOdpp Dz slnpOdlp —] ~ (834)

As before, one can easily verify that the indicated angu-
lar factors appear on the right-hand sides of these ex-

pressions, so that the functions 3E; are nonsingular for
~COSO

~

&1. It is in fact for this reason that we have
chosen to use the invariants e, x e2.1 and e, x e, m

in Eq. (13) rather than [el ms& n —el ne, m] and

[el nep 1—el le& n]; the latter would be equivalent to
the former as far as their spin dependence is concerned,
but would require coeKcients which diverged for 0 —+ 0
and 0 —+x, respectively. In the even parity case, the
formsel xe& nand [ol Lr&m —el me& 1]are completely
equivalent. These results, and also the difhculty with

the invariants o'1 ep, el lep 1, el mop m, and el.n1rp. n

in the case of even. (V„Vq) relative parity, are special
instances of a rule, that the minimal angular dependence
of the coefficient functions is that of the vectors I, m,
and n in the least complex set of invariants, that is,
the set which contains the least number of factors of

l, tie, or 8 in each invariant. This rule is also valid for
reactions involving only spin —0 and spin ——', particles,
and is probably true in general.


