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exhibits the p correla, tions, and P dependence in each
c.m. separately, which no SZE or MSZE process can
produce.

We may conclude that an analysis of polarization
correlations can distinguish three cases:

(1) Exchange of one spin-zero meson (SZE): No
correlations of C and D polarizations are possible.

(2) Multiple spin-zero meson exchange (MSZE):
There may be correlations between components of

polarization along the momentum transfer direction
in the C c.m. with components of polarization along
the momentum transfer direction in the D c.m.

(3) Higher spin exchange: Violations of the two SZE
criteria of Treiman and Yang, as well as correlations of
the Treiman- Yang angles of directions in the two c.m. 's,
may occur.

I wish to thank S. B. Treiman for suggesting the
study that led to this paper.
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Orthonormal vector harmonics for the three-nucleon system are presented.

INTRODUCTION

'HE wave function of a system consisting of three
nucleons depends on the coordinates v.;, o-;, r;,

i = 1, 2, 3, where v, is the two-valued isospin coordinate,
r; is the two-valued spin coordinate, and the space
coordinate r; ranges over three-dimensional Euclidian
space. The possible wave functions P(r;,o, ,r;) are
classified according to their transformation properties
under translations, rotations, and reAections of the
coordinate system and under permutations of the
particle coordinates. The functions that belong to a
definite representation K of the translation group are

PK exp(i=K R)P(k, p,o„r;), i=1, 2, 3 (1)
where

R=-', (rt+rs+rs),
2=6 '~'(rt+r, —2rs),

y =2—"'(ri—r,) .
(2)
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The vectors X and p are invariant under translations.
The internal wave functions f are chosen to have
definite parity and to belong to definite irreducible
representations of the quantum-mechanical rotation
group SU~, and the permutation group S3' ' where the
Pauli principle specifies that P must belong to the

antisymmetric representation of S3'". The problem
that will be considered here is the construction and
parametrization of the functions P.

A function P that belongs to the antisymmetric
representation of 53"" can be split into parts that
belong to definite irreducible representations of S3',
S~, and 53' separately, where 53', 53, and 53' are the
groups consisting of permutations of isospin, spin, and
space coordinates only, respectively. Since these groups
do not leave the Hamiltonian invariant, the three-
nucleon wave function cannot belong to a single
irreducible representation of one of these groups, but
must be a linear combination of functions, each of which
belongs to a single irreducible representation of each
of the groups 53', 53', S3'. Since the irreducible represen-
tations of 53' have definite total spin, the rotational
classihcation is completed by requiring that the space
part of the function have definite orbital angular
momentum L and definite parity, besides belonging to
a definite irreducible representation of S3'.

THE GROUP 83 AND ITS REPRESENTATIONS

The group S3 has three irreducible representations:
a one-dimensional symmetric representation Rg, a
one-dimensional antisymmetric representation Rz, and
a two-dimensional mixed representation R~. If p
belongs to R8, then I"p= p, where I" is any permu-
tation in S3. Similarly, if p belongs to R&, then I'"y = e, p
where e;= ~1 is the sign of the permutation I".If q j.
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and ~/92 belong to RM, then P'(pl P——ll'yl+P21(q2 and
P 322= P12 pl+P22 Ip2 By choosing a linear combination
of y~ and y~, the matrices P„,' can be put into a standard
form. Since 53 is generated by E("' and P("'& it is
sufhcient to specify standard forms for P„,&"& and
P„,&"" in the mixed representation. These are taken
to be

1 0 —2'%3

P (12)
~ ~

P (123)
~ ~

(3)
&0 —1i 4 —-', V3'

Then, for example, the standard form for I'&"& is

——,'%3
p(») —p((») p(») =

~

( —-,'K3

Here the permutation I-'&"'~ is understood to mean:
where r& appears in p, replace it by r2. where r2 appears,
replace it by I'3, etc.

As an example, consider 2 and y
..

P(")0 =6 '/'(r2+ri —2r3) = 2,
P""9=2 "'(r2—rl) = —9

P("')2= 6 '"(r2+r3 —2ri) = —-'2—-'@3'

P(1»)g= 2 "'(r2—rl) = -,'%30 ——,'y.

Hence for p~ ——2, y = y 8&") and P&"'~ take the forms

(3), and 2 and t) are the correct linear combinations
to give the standard representation. The notation
RM(k, y) is used to indicate that 2 and y generate RM
in standard form. In general, if x~ and x2 are known
to belong to R~, then it is necessary to find linear
combinations of y~ and y~ that are even and odd under

One off-diagonal matrix element of 8&"') is
needed to determine the correct relative factor.

Table I gives the rules for forming the direct product
of two irreducible representations of $3.

SPIN AND ISOSPIN FUNCTIONS

The classification of isospin and spin functions
according to irreducible representations of 53' and 53'
is well known. Since definite transformation properties
under SU2 are required, vector-coupling coefficients
are used in forming products:

{ (1) (2)) '=2-(--"' --""-( ) --( ), (4)

etc. , where the left-hand side of (4) will be written
simply {s(1),s(2)), since the M value is immaterial.

The three-particle isospin functions are

T"'= {{~(1)~(2))'~(3))'"
T "'={{&(1),&(2))'&(3))"'

T "'={{&(1),&(2) &'&(3))'"

The function T'~' belongs to Rg of 53) while T~'~' and
T2'~' belong to R~ in standard form. The spin functions

and P2'i" are defined analogously. The

TABLE I. Products of representations of S3.

Rs(()SRs(x) =Rs(3x)
Rs (39)8RM (Xl)X2) = RM(19xlp 39X2)

Rs(2)8RA(x) =RA(qx)

RM(31)32)8RM(x,x2) =Rs((9ixi+ 3 lxl)
6RM(P2X2 391xly 391X2+992Xl)

(E)RA ((91X2—392x1)

RA(&P)8RM(xl)X2) =RM(3lx2l Pxl)

RA(3)RA8 (x) =Rs(2 x)

isospin-spin (TS)/2 functions can now be constructed
with the aid of Table I:

(3 3) —T3/2g3/2

(1 1) —2—1/2(T 1/2g 1/2+ T 1/2g 1/2)

(3 1) (T3/2g 1/2 T3/2g 1/2)

(1 3) (T 1/2+3/2 T~l/2+3/2)

(1 1) (2
—1/2[T 1/2+ 1/2 T 1/2+ 1/2g

2-1/2[T 1/2g 1/2+ T 1/2g 1/2g)

(1 1) 2—1/2(T 1/2g 1/2 T 1/2g 1/2)

(6)

SPACE FUNCTIONS

From these preliminaries, it is clear that what is
required now is a classification of functions f/2L(X, y)
according to irreducible representations of the rotation
group 03 (specified by L) and S3' (specified by subscript
S, cV, A). The materials available for these functions
are the three vectors 2, y, and 2 ~ g. Hence there are
three independent scalars P', p', and 2'y. Any I.=O
function must be a function of these three scalars. It
follows immediately that there are no odd-parity L, =O
functions.

TABLE II. Wave functions associated with space functions
belonging to a de6nite representation of SP.

Space functions

Rs(fsL)

RM(flL~f2L)

RA(fAL)

Wave functions

A' "'=((kk) A~fs')'
)(M""=f(3 3)M2~ fl' (3, '3)Mli f")'—

= ((3,3)M2, fl' (-' -')Ml, f2'1'—
0M' "'=((4 3)M2& fl' —(3 3)M1, f2L)'
13A' '"=((l,l) f )s'A

=(($L) fA )s

The subscripts S, 3/I, 3 indicate the representation of
53" to which the isospin-spin functions belong. Qith
the factors 2 '~' as shown, the functions are orthonormal.

Thus, if space function(s) fiiL(/3, 2) is given, con-
struction of possible antisymmetric functions fzrsL~
with space part fsL follows from Table I and is given
in Table II. In Table II, the vector coupling is between
the spin part of (TS)/2 and the space functions f /2MLL

making up f/2L.
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Rsr" (cos4p) sin4ip) =2 cos3yRsreRsr' (13)

and is therefore not 5-independent of R~ and R~'.
Similarly,

The L=0 even-parity functions will now be classified but
according to irreducible representations of 53. Since
P,,p) belong to Rsr in standard form, Table I gives for
the bilinear scalars:

P g (st, ss )f;=0
i=0

implies g, =0 for alii, where the g, (st ss. ) are functions
of the symmetric scalars s&, s2 -. All space functions
with definite L can be generated from the 5-independent
space functions with that value of L and the symmetric
scalars. The value of this procedure is due to the fact
that, as will be seen, the number of independent
symmetric scalars is finite and equal to three, and the
number of 5-independent space functions with a given
L is also finite. '

It follows that the symmetric scalar r=X'+p' may
be ignored in constructing further L=O functions.
Because of the special role played by p' —tP and 2X y,
it is convenient to introduce s and p by

p' —X'=rs cosy, 0&s&1
2X g= rs sing,

'

(9)

so that the bilinear mixed representation is S-equivalent
to Rsr (s cosy, s sing). Further irreducible represen-
tations can only be generated by the direct product of
this mixed representation with itself, which gives
(Table I)

Rg($ ) 0+RE(—s cos2p) s sln2(p), (10)

so that it is clear that s is a symmetric scalar and
Rsr(cosy, sing) and Rsr'(cos214, —sin2q) are mixed
representations in standard form. Their product is

Rsr R~' ——Rs (cos3 (p)

0+RE(—cos&p, —sin 14) 0+RE(—sin3q) . (11)

Rsr(k, y) Rsr(k, y)

Rs (~ +p ) 0+RM(p —X 2X' y) . (7)

It is now time to note the special role played by
syrnrnetric scalars (space functions with X=0 belonging
to Rz). If a function QI4rs~~ is multiplied by any
function of symmetric scalars, the resulting product has
the same quantum numbers TSLJR. It is therefore
convenient to consider only "5-independent" space
functions: The functions ft, fs, , f~ are "S-independ-
ent" if and only if

R~Rsr =Rsr &4& (sin3&p sing, —sin3q cosy)
= —cos3 pRwO+ Rm,

R~SR s'r=Rsrt4&(sin3q sin2y, —sin3y cos2q)
=cos3+R~ BR~,

(14)

sin3 p
5~ ——- (sing, —cosy),

(1—cos'3 rp)
'"

S~ ——sin3 p/(1 —cos'3 t4) '".

(15)

The most general symmetric scalar is an arbitrary
function of r, s, and cos3p, or, equivalently, a function

g (r,s, q) that is an arbitrary function of r and s, and is
an even function of y with period 27r/3. The notation
g(r, s, p) will be used exclusively for such symmetric
scalars.

In order to construct functions with L)0, it is
convenient to replace X, and Iohrst by the vectors

r,=X cosp+g sin&p,

r,= 2 sin p —
g cosy,

(16)

belonging to Rg and R~ of S3, respectively. The repre-
sentation Rsl(X, y) can be obtained from (16) and (15):

Rsr(k, y) = [Rs(r,) 85srj,mQ+ [R~(r.)5~jsr (17).
Then r, and r, are replaced by the equivalent vectors

r, (1+cos3&p)+r, sin3p
Rg ——

[r(1—s) (1+cos3q)jt"

and therefore these products give rise to no further
5-independent scalars.

Thus, there are in aH three independent symmetric
scalars: r, s, and cos3p, one antisymmetric scalar:
sin3y, and two S-independent mixed scalars, which will

be taken to be Rsr(cosy, sin&p) and Rsr(sin3psin&p,
—sin3p cosy). It is convenient to divide sin3rp by the
symmetric scalar (1—cos'3 p)"', so that the final
notation for the 5-independent scalars is

Ss=&,

Ssr = (cos(p, sing),

The independent symmetric scalars thus far are r, s,
and cos3y, while the 5-independent scalars are Rs(1),
Rsr(cosy, sing), Rsr'(cos2q, —sin2tp), and R~(sin3q).
Further,

Rsr'SRnr'=Rs(1)0+Rsr" ( cos4p, —sin4p), —(12)

r, (1—cos3q) —r, sin3p
R2 ——

[r(1+s)(1—cos3q&) j'"
which both belong to Rq of 53 and satisfy

E.i' —-R,'=1 Ri R,=O. (19)

4 E. Jezak, Ph. D. thesis, University of Minnesota, 1962 (un-
pub1ished).

Since r, is S equivalent to a linear combination of R&

and R2 and r. is S equivalent to a linear combination
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Rs (Rl8Ss),
~~(RlSS~),
~ll (RlSS~),
&m (R28S~),

Rs (Rp 8Ss),
~~(ASS~),
R~(RlSSll),

M (R2SSiV) ~

(20)

All I.= 1 odd-parity functions are 5-dependent on the
S-independent functions (20).

The only symmetric even parity L= 1 function is

of 5~13R~ and 5~@R2, it follows that the most general
space functions can be formed by using R~ and R& to
form space functions belonging to Rs of S3 and then
using the functions in (15) to generate one symmetric
representation, one antisymmetric representation and
two mixed representations from each of the symmetric
space functions. For example, the odd-parity J.=1
space functions are generated by R~ and R2 ..

The independent 2+ functions are

{R,)Rl}', {R,,R,}', and {R„R,}' (24)

and the 2—functions are

{Rl)R3}' and {R2,R3}'. (25)

In general, for m = (—)L, there are I.+1-independent
I.vr functions:

f sL={ {{RR }'R}' R }"
R2}"+',R2}"+' R2}L, (26)

With v=0, 1, I.. FOr 7r= (—)L+', there are I=
independent functions:

f ML {fEL——1R }L i 0 1 . . .I 1 (22)

sln3 y
R3——R,)(R,= (21)

(1—cos'3')'" r(1—s')'"

The choices (26) and (22) give

f L~ ()L m—f L (28)

(R3) '=2'"{Rl,Rg} '.
YVhen a vector is to be vector-coupled. , its components
are understood to be

for all functions.
It follows from Table II and the preceding that a

wave function pz~rsL~ is constructed from a symmetric
space function f~L according to

Rp= —iR, ,

R~l ——2 "'(&iE,.—R„).

The choices give

~.,--={(»)'S,f, S.}"
= {((»)zSSz)~., f;}'
= ({(TS)ll,f, } SSs)~, (29)

for R,, R„and R,.

:I:r—( )1—mg 23
where R' is the representation adjoint to R, namely,
Rs —Rg~ RQ —Rs~ RM —R+ —RM,

Consider

ORTHONORMALITY

,T'S'I. ' J'7r'*.( . . T'S'L' J'v '* TSI.J+.(, TSL J2r 7/ T'5'I 'J'7r' TSI.J~
9 ~RR2'Y' QR2'Y'MT' MJ' g 1Y V 1'YMTMJ (R2y''MP''Mg" Rty~r.)gz) &

t&o&

(30)

where g is a symmetric function and pllvrsL~ is constructed from the space function f L~Ss and the isospin-spin

(»)z according to (29).The labels M and X are considered digeree& values of R. The index y is used to
distinguish different space functions with the same L, z, R.

Summation over the isospin and spin coordinates gives

Tf T S'I'J'rr' TSI-J7r 3 r s s s SL' J'C SLJ
(R2'Y M g MJ R1yilf zMP J &RI'R2'&TT'US S'U3f Z'Mg' ~ CmMg'MJ' CmMLlMJ

dgd&gz ""'"*gz '""f lr '"*f lr "(Sll,SSz,)s, (31)

where Table I has been used. It follows from (15) that

(Ss,SSll,) s ——Sly, s, .

Use of (28) together with rotation and inversion invariance gives

(32)

2'Y M& ~~ R& Mz (d'g j ~R1R2 TT'~SS'~MTMT'~LL' JJ' 7r7r' MJMJ'r T'S'I.'J'~ TSLJ~ 3 TSLJ7rR (33)
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() fv

(34)TSLJ& ~I )~+1)—&/~ de& gR&'

L)rTSLJ ~ L ML f 3fL
"

Vj/IL,TSLJ~ gas+1)—1 P gg&gBv'~l yy

3fL

d the azimuthal ang e
'

ns over dQ, an ethat the integrationde ends only on r s andpsot a'""""'""'" .d "l, h.,y.ldcan be performed imme la e y,

FBI'))(2j+1)—1 (f, Im 0—1j0,I )) I m. }0,TSI J 7r*gpgg7I2d X2dA.TSI J~R

8 rs y can be obtained fromThe Jacobian 8(p)p)//8(rsy can e osine of the angle betwee

england

y. T e acwhere p, is the cosine o e

(35)

p'= (r/2) (1+s cosy),

and it is

so that

))'= (r/2)(1 —s cosy),

s sing
)

2 2 1/2(1—s' cos y

8 php)/(3(rsy) = r's/16K'p', —

(36)

(37)

J, TSLJ7rR
TV

2 GO

f df Sds

)r/3

TSLJ)r, TSLJ)r
g~P&v' „,(f ",f ")'

(2I+1)'"
I )r/32 00

, d, d, , I)) I))}0,TSLJ)r~ TSLJ)r (38)
0 0 /

ions o q od 27t- has been used.ions of 3p with perio 7t-hat and (f,f}'are functions o y o )rg
The functions f~~ wil e c

37r2

„,(fv "f~')'=~~
4 (2I.+1)'~'

Then

(39)

1

f 4ff ds= ~all labels '" RYMTMz
0 0

R'y'Mr . . g
TSI I))

i

Clearly,
(41)

f'+= C,~R, ,

f"+= 2/)re.

with L,/0, the relationsFor the functions wit

(1/&3)(A,B}0=—', A 8,
1/(~)3"'{(A,I|)',(&, )')'

A+10
ic a

' rov, d d. The 1+ functioroved, arenee e .which are easily prov

For the 2+ functions, let

2
,R &'&= f), —{R),R0) "&= 0)—(R),R)

—R,,R,) &'& = f0. (46)

(47)

Then the matrix

3)r' 4) 5—'~'{f;,f;)&0&=M,;
42is, according to1s, a

and (39) andnd 42) give

(3)r'/4) -'R0'C,+'= 1=
Hence,

(44)

5
M= 0

1
5

0
3

10
0

5
0
2
5

(48)

f'+= (2/)r)R0. are mutually0) f0) alld 1—0 Bl'e(45 t oIt follows that f1+f0,
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orthogonal; hence, choose

(10)'"
f '+= L{R1,R1} "+{R2,R2} ' ]

where

fl(—y) = fl(y), f2(—y) = —fs(y)

1 10~'/2
fs'+= ——

~ L{R,R„}t'l —{R„R,}t'l j
~ 3)

f '+= (2/tr) (10/3)'"{Rl, R,}&2&.

A similar procedure can be used to orthogonalize the
set of fTLr for any Lsr and hence satisfy (39).

WAVE FUNCTION OF THE TRITON

The triton and He' have T= 1, Jsr= —2,1 . Hence the
possible states ' +'Lg are, according to Table II,
+$,M, Ã, A I s, M, /v, A I M, /v DM, N. There are one f~,

one f'+, and three f'+ functions, and thus sixteen vector
harmonics occur, corresponding to 'Ss,~,x,~, '~s, ~,x,~
4I'~,~, and 4D~,~ ». There are sixteen coupled
partial diGerential equations in r, s, and cos3p for the
sixteen symmetric scalar functions g in

Pl 2;/1/2+ P g 1/2SL1/2+g, 1/2SL1/2+ (50)

RELATIONSHIP TO PREVIOUS CLASSIFICATIONS

According to (15) and the discussion preceding, the
most general mixed scalar is

(gl cosy+g2 s1113y silly, gl silly
—

g2 sin3y cosy) = (fl,f2),

/r 22r ) ( 22r ) /r 22r

fll y+—I=glcosl y+—I+gss'»y»n( y+
3& k 3i 3

2'
= (gl cosy+ gs sin3 y sin y) cos—

3
2'—(gl siny gssin—3y cosy) sin—
3

2~ . 2x
= fl(y) cos—fs(y) sin—

3 3

/' 22r 2
f2~ y+—= fr(y) sin—+f, (y) cos—.

3 3 3

Hence, it is possible to specify the mixed representation
M'(fr, f2) as consisting of functions fl and f2 satisfying
the above restrictions. This halves the "number" of
mixed representations; it also complicates the ortho-
normality relations and confuses the situation as to the
number of independent functions. It has proved useful
in the past, '

The results of the present work are the same as those
given by Clapp' for the triton. However, the present
work generalizes these to all three-nucleon states and
introduces a simpli6ed notation.

2 G. Derrick and J. M. Blatt, Nucl. Phys. 8, 310 (1958).
2 R. E. Clapp, Ann. Phys. (N. Y.) 13, 187 (1961).
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Prediction of p-, d-, and f Wave -Pion-Nucleon Scattering*
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We d.evelop a peripheral method for predicting 21-—X phase shifts up to moderate energies. Precise values
are given for the p-, d , and f wave ph-ase shifts (w-ith the exception of p») up to 400 Mev, and the general
behavior up to around 1 BeV is also predicted. The 600- and 900-MeV 71- —p resonances are clearly identi6ed
with the D13 and ~15 amplitudes, respectively, and it is probable that the 1.35 BeV x+—p resonance is in
+37. The predictions at 310 MeV select the phase shift set spdf II of Vik and Rugge. The method consists in
evaluating the dispersion relation for Ft~(s) =f1+(s)/q21 where ft+(s) is the partial-wave amplitude. The
factor q

"suppresses the unknown shorter range parts of the m —E interaction. Various means are used to
avoid the difhculties arising from lack of knowledge of the inelasticity. The symmetries in spin and isospin
of the dispersion relation calculations of the various interactions are examined, together with equivalent
model potentials.

1. INTRODUCTION

HE various parts of the pion-nucleon interaction
have been studied in detail. ' The parts of longest

range are the long-range Born term (i.e., nucleon ex-
~ This work was supported in part by a grant from the European

OKce of Aerospace Research, U. S. Air Force.' J.Hamilton, P. Menotti, G. C. Oades, and L. L. J.Vick, Phys.

change), and the exchange of a low-energy s-wave pion
pair. Shorter in range are the crossed physical cut term
(which is mainly nucleon isobar exchange) and the
exchange of a p meson. In addition there is a very-short-
range interaction (range (2 10 " cm) about which

Rev. 128, 1881 (1962) (and earlier papers cited there). This paper
will be referred to as HMOV.


