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and (b) the charge states available here are not as favor-
able to E*E~ production as in the E+p interactions, if
we think of the E*E*final state being produced through
the OPE diagram, which appears to be the case for E+p
interactions. ' The relative suppression of various charge
states is illustrated in Fig. 7 where we show the lowest-
order Feynman diagrams for the reactions in question.
The number next to each vertex represents the relative
strength of that vertex as compared with the corre-
sponding vertex for the E+p ~E+~ n+p reaction. We
assume dominance of 7= 1/2 state for the Em interac-
tion and of 7=3/2 for mX interaction.
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FlG. 7. One-pion-exchange diagrams leading to
the three charge states under study.

appears in marked contrast to the high-energy E+ data. '
This can be easily understood because (a) the threshold
for the E*X*final state is approximately at 1.7 BeV/c
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It is shown that a unitarity relation holds for vertex functions in a form analogous to the one for form fac-
tors and that the one-particle irreducible parts of scattering amplitudes satisfy unitarity by themselves. The
second half of the present work considers the case of nonrelativistic 8-wave scattering with one bound state.
Interrelations among the 5 matrix, the denominator function, and functions for the bound state, such as the
form factor, the propagator, and the vertex function are discussed under certain general restrictions.

1. INTRODUCTION

HE 5-matrix theory of strong interactions con-
siders physical quantities on the mass shell. By

contrast, most fundamental in the Green's function
approach are such functions as propagators and vertex
functions which require knowledge of quantities off
the mass shell. The connection between the two
approaches has not been well understood, although it
would be very desirable to see if an 5-matrix theory
could incorporate any new principle which is absent
in Green's function theory. In some processes, such as
electron-nucleon scattering and weak decay of strongly
interacting particles, it becomes necessary to know
about form factors. In 5-matrix theory a link. between
scattering amplitudes and form factors is provided by
the unitarity relation for the latter, although its

*This work was supported by the U. S.Once of Naval Research,
f On leave of absence from Department of Nuclear Science.

Kyoto University, Kyoto, Japan.

solutions are known to have the ambiguity of Omnes.
5-matrix theory does not directly deal with propa-

gators and vertex functions, but the single-dispersion
parts in Mandelstam's representation for scattering
amplitudes are closely related to them. Because of their
importance it seems worthwhile to ask to what extent
an 5 matrix can determine these functions. The main
purpose of the present work is to study the problem
for the case of nonrelativistic scattering under certain
general restrictions. Properties of the form factor, the
propagator, and the vertex function for a bound state
are also discussed. It will be seen that there exists
some kind of correspondence between the scattering
amplitude and its one-particle irreducible part and
between the form factor and the vertex function.

We shall begin with a relativistic case. After a brief
summary in Sec. 2 of the main properties of a propa-
gator and a vertex function, it is shown in Sec. 3 that
a unitarity relation holds for the pion vertex functions
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in a form analogous to the one for the pion form factors.
It is also shown that the one-particle irreducible parts
of the full scattering amplitudes satisfy the unitarity
relation by themselves.

In the remaining sections we shall discuss non-
relativistic S-wave scattering with one bound state.
In Sec. 4 we discuss how to construct the denominator
function from the phase shift. YVe also derive a general
effective-range formula, which may be useful for
phenomenological analysis. These are discussed under
the requirement that the S matrix have a pole with a
positive residue at the point corresponding to the
bound-state energy.

In the last section we study the problem of construct-
ing the form factor, the propagator, and the vertex
function of the bound state from the denominator
function. Levinson's theorem is assumed and the
Omnes ambiguity is discarded. It is shown that one
free parameter enters in' due to the inevitability of a
CDD pole. ' This pole cloes not correspond to an elemen-

tary particle, contrary to what is frequently said about
CDD poles. Finally we discuss whether the phase of
the one-particle irreducible part of the full amplitude
can determine the binding energy and/or the coupling
constant of the bound state. Our answer is negative.
In a certain case, however, we can determine one of the
two parameters when the other is known. Explicit
examples to illustrate the discussion of Sec. 5 are given
in the Appendix.

2. SUMMARY OF LSZ's RESULTS

As the propagator is a Herglotz function( Z (s) can
be expressed as

s—p' "
j Z. (s')

~

'o (s')
Z. (s) =1y ds'

S S Zg

+ (s—p')g
n S~—S

(2.4)

ImZ (s)=(s—p,') +m. P c 8(s—s„), (2.5)
(s—„')'

where
r(s) =—Z. (s)K(s).

Taking the limit s ~ ~, we obtain the sum rule

(2.6)

j. +gj."
1=lim Z (s)+— ds+P c„.

scca ~ 2 (s p2)2
(2.7)

Since we know that

1)lim Z (s))0

and all the c 's are nonnegative, we obtain LSZ's
inequality

I+yI1)— ds.
9" (s—~')'

(2.8)

where c„&0,s &y', and there can be at most one such
pole in the interval p'(s&9p, '. Ke find

Since we have
~xF7 P+W~xFr++ gl,

where
S 4tll~y i~2

p~gis) —=—1—
8~ s)1 1 " o. (s')

id p'(s) = +— — ds',
p —S 7r g~' S —S—Ze

(2.1)
we are led to write

For later convenience and for fixing our notation we
summarize the main results of Lehmann' and of
Lehmann-Symanzik-Zimmermann' (LSZ). The pion
propagator can be represented under general conditions
as (2.9)

with the spectral function given by

o (s) = K+yK/(s —p')'. (2.2)

" Il'~m~'p~~
ds.

P)
(2.10)

K(s) stands for the matrix elements of the pion source
operator between the vacuum state and states which
can be produced by a virtual pion, and p(s) is the
phase-volume factor. Ke define a function related to
the pion renormalization constant by

Z.—'(s) =—A~'(s)/6 p(s)

s—p' o.(s')—&$
7l gp,

2 S S Z6

' We cannot, however, exclude the possibility that a knowledge
of the phase shifts in other angular momentum states may
uniquely determine the parameter.

'L. Castillejo, R. H. Dalitz, and F. J. Dyson, Phys. Rev. 101,
453 (1955).

3 H. Lehmann, Nuovo Cimento 11, 342 (1954).
4H. Lehmann, K. Symanzik, and W. Zimmermann, Nuovo

Cimento 2, 425 (1NS).

From this it follows that

lim F~p(s) =0.
$~00

(2.11)

S= 1+2ig"'Tg"'

satisfies the unitarity relation

(3.1)

(ImT), ;= (T+yT);, (3.2)

for the center-of-mass energy s larger than its respective
physical threshold s;;. By the physical threshold s;

3. THE UNITARITY RELATION FOR
VERTEX FUNCTIONS

The scattering amplitude T defined from the S
matrix by
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for the state i we mean the square of the sum of the
rest masses of the particles in the state. s;, is then given

by the larger of s, and s,. Ke confine ourselves only to
states which can be produced by a virtual pion, and we
choose g so as to be identical with the phase-volume
factor which appeared in the expression, (2.2), for the
pion propagator. The form factor, K(s), satisfies the
unitarity relation

rewrite both sides of Eq. (3.4):

g —1

ImT=ImU+Im r rr
p —$

Z -' (K+ K)= ImU+Imr rr+r* rr
p' —s (s—p')'

(ImK);= (T+gK);= (K+9T); (3.3)
p —s

for s larger than its respective physical threshold s;.
We shall derive a unitarity relation, analogous to

Eq. (3.3), for the vertex function F(s) defined by Eq.
(2.6). For the imaginary part of I', (s) we have

Iml', (s) = ImLZ (s)1(';(s))
=Z (s) 1m', (s)+K,*(s) ImZ (s).

Z —1

=U+9U+ (U+pr)
JLP $

(K+9K)r'+r*- r&
(s—p')'

(ImU), ,= (U+yU). .. for s) s,, (3.6)

This kind of unitarity relation was erst noted by
Blankenbecler et a/, ' for the case of nonrelativistic
potential scattering when no subtraction is necessary
with respect to the momentum transfer variable in the
Mandelstam representation for the scattering ampli-
tude. It should be emphasized that in our derivation of
Eqs. (3.5) and (3.6) we have used expressions only for
the imaginary parts of K, (s), Z '(s). Therefore, our
results are independent from possible necessity of
subtractions for these functions.

As an example of an application of our results, we
consider the elastic scattering of a nucleon-antinucleon
pair in the 'Ss state with isotopic spin one. The unitarity
relations, (3.2) and (3.6), give an upper limit on

~
T~p(s)

~

and
~
Ua iv(s) ~, respectively. We find

(&'e&)
ImI', (s) =Z (s) (T+9K),+IV,*(s)

Z -'*(s)
+—r* —r+ qr, for s)s, .

p' —s

If we put
T= riA, 'r'+U,

where F~ stands for the transposed matrix of I.",we can
write

ImI', = (U+gI ), , for s) s, .

It is easy to see that we also have

We note here that if Z '(s) has a simple zero at a +r' (r+9U) .
point larger than s;, then its imaginary part and, hence, p, —$
K, (s), should vanish at the same point. I', (s) can thus
have no poles for s)s;, and we need not take into From Eqs. (3.2), (3.5), and (3.5)' it thus follows that
account possible CDD poles of Z (s) when we consider
ImI', (s) for s)s, . From Eqs. (3.3) and (2.5) it follows
that

Imi', = (F+9U), , for s) s, . (3.5')

It is to be noted here that our argument given above
does not forbid I', (s) from having poles for s(s;. As
for the pion-nucleon vertex I'~i7(s), for instance, we
have seen that it can have no poles for s&4m'. It has
no poles for s(p' when the Lehmann representation for
the pion propagator holds without subtraction. How-
ever, it could have poles at the points in the interval
p,'(s(4m', at which the pion propagator vanishes.

The first term in the expression (3.4) for the full
amplitude T is equal to the Born contribution with all
the radiative corrections included. The second term
U is what is sometimes called the one-particle irre-
ducible part of the full amplitude. ' In order to show
that U satisfies the unitarity relation by itself, we

' K. Symanzik, Lecturesin Theoretica/Physics (Federal Nuclear
Energy Commission of Yugoslavia, Belgrade, 1961), p. 485.

~
Txz(s)

~
pxz(s) (1,

~
U~iv(s)

~
p~g(s) (1,

(3.7)

(3.7')

it follows from the inequalities (3.7) and (3.7)' that
for s)4m' we have

i
I'~iv(s)

i
'/

i
Z. (s)

i

= (s—p')
i T~iv(s) Usii7(s)i—

1—(p'/s)
=-16m

p~i7(s) L1—(4m'/s) $'"
2(s —p')

6 R. Blankenbecler, M. L. Goldberger, N. N. Khuri, and S. H.
Treiinan, Ann. Phys. (N. Y.) 10, 62 (1960).

for s) 4ris', where priv(s) has been given by Eq. (2.9).
Since

Z -'(s)
I'xp(s) I'~iv(s) = T~iv(s) Uzriv(s), —

p, —$
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If we introduce a vertex-renormalization function it follows that

where
ZNi7i ($) =I NN ($)(pivN (Zz ) 1

I'ivN(z ') —=v2g,

Iml" „($')

(3.9)

(3.8) 1 1
—L ($)=U ($)—K— —d$'. (3.19)
$ zr s, ~ ($'—Zi ) ($' —$—ze)

the above inequality becomes

Z. ($)
I g Ll —(4~($)l—)— for $)4zzz'. (3.10)

I
Ziv,v($) I

' 8zr 1—(zi'($)

When s goes to inanity, we find

L +1iK
F=lim'-" K+pK

(3.20)

Equation (3.20) can also be expressed as

When the pion-renormalization constant vanishes, the
assumption of no subtraction for E„($) led us to the
requirement

I z-($) I
g'

lim'-" IZiv-($) I' 8
(3.11)

lim
K+gK

$U„+ K
-=-0

) (3.21)

As another application, we discuss decay of the m

meson into a lepton pair through weak interaction.
The weak form factor E„($), which was written as
F($) in a previous work, " satisfies the unitarity relation

since we have
"Iml' (s)

ds.
p,

2 s p
(3.22)

ImK„($) =T„+gK, for $)9zi', (3.12)

Imi'„($) = U„+tel', for $)9zz', (3.13)

where the weak vertex is defined by

I'„($)—=Z ($)K„($), (3.14)

and U„ is the one-particle irreducible part of T
that is,

T„=rz~, 'r„+U. . (3.15)

In general, one must add delta functions to the right. -

hand side of Eq. (3.13) corresponding to possible poles
of I'„($) because the argument which excluded poles
of I', ($) for $)$; cannot be used in this case. In order
to avoid such poles, T„($) was divided in the previous
work into two parts in a somewhat different way:

F
T„($)=K($) +—L ($),

p, —s s
(3.16)

where Ii is the decay constant defined by

where T„ is the scattering amplitude from an initial
lepton pair to final states of strongly interacting
particles. By an argument similar to that used to
derive Eq. (3.5), we find the unitarity relation for the
weak vertex,

The implication of Eq. (3.20) has been studied by
Nishijima' more explicitly for a simplified model.

4. THE S MATRIX AND THE DENOMINATOR
FUNCTION

Because of the many-body character of the relativistic
scattering problem, it seems very difficult to investigate
it without a drastic approximation. In the remainder
of the present work we shall deal with the much simpler
case of nonrelativistic scattering, which will enable us
to discuss some questions untouched in the previous
section.

For simplicity, we consider the 5-wave scattering
of two spinless particles, which we call "nucleons, "
with one bound state. Our problem is to construct such
functions as the denominator function, the form factor,
the propagator, and the vertex function when the
5-wave phase shift is given. It has long been known that
the phase shift of an angular momentum state cannot
uniquely determine the denominator function, or the
Jost function, when there is a bound state in the same
angular momentum state. ' "Our problem should then
be to study whether, and if possible how, we can reduce
ambiguities under general restrictive conditions. We
begin with the denominator function.

According to van dampen" and Omnes, " the
denominator function is expressed as

F=E„(zz') . (3.17) D($) = C($+$zi)

The poles at s=0 are of kinematical origin. From Eqs.
(3.15) and (3.16) and from Xexp

$+$s 8($')d$'
(4 1)

p s sg s —s—z6

s—p
I'„($)=F+

z M. Ida, Phys. Rev. 132, 401 (1963).

Iml'„($')
d$', (3.18)

s„~ ($'—p') ($' $ ze)—— K. Nishijima, Phys. Rev. 1M, 81092 (1964).
R. Jost, Helv. Phys. Acta 20, 256 (1947).

0 N. G. van Kampen, Phil. Mag. 42, 851 (1951).
"R.Omnhs, Nuovo pimento 8, 316 (1958).
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where s denotes the center-of-mass momentum squared
and s&=—mB, with 8 the binding energy. The phase
shift is normalized so that 6(0)=0, and C is a constant.

Since the S matrix can be written in the form

S(s)=D"(s)/D(s), (4 2)

where Drr(s) stands for the denominator function in
the unphysical sheet, it would not have a pole at
s= —sn if Drr(s) should vanish at the same point. A
state corresponding to the "lost pole" cannot be
regarded as a bound state of the nucleons, for its wave
function vanishes identically. In order to exclude this
kind of "neutral" interaction we require that:

(I) the S matrix have a pole at s= —
span.

Thus, the exponential factor of Eq. (4.1), or the Omnes
integral, should have a pole at s= —s~ when analytic-
ally continued into the unphysical sheet. In addition to
this pole it may have other poles in the unphysical
sheet, which make redundant poles" in S(s). We then
present the second restriction:

(II) the residue G' of the pole of S(s)
at s= —s~ be positive.

When there is only one pole in S(s) with a positive
residue, (II) is enough to single out a bound-state pole.
If there are more than one with positive residues, each
of them is eligible to be a bound-state pole.

It should be noted here that analytic continuation
of D(s) into the unphysical sheet cannot be performed
unless the phase shift is given by means of an analytic
expression. When the phase shift is known approxi-
mately, one can determine the binding energy with
some confidence only for the case of a loosely bound
state. The well-known correlation in this case of the
lour-energy behavior of the phase shift with s~ and 6'
vri11 be discussed in a way more general than is usually
done.
j"- From what we have seen under the restriction (I),
it follows that D(s) should be written in the form

D(s) = [s 'I'+ zs'I'j[P ( )+ss'z"P(s) j, (4.3)

has a pole at s= —sii of the form G'/( —ss —s). From
Eq. (4.4) we find

1+pl, s—a)6'=2s '
1—

q (—sn)

and the restriction (II) now becomes

{II')
I p( —$~)

I
(1.

(4 ?)

{4.8)

It is now easy to express the phase shift in terms of
spaz and y(s). The phase shift can most conveniently
be written in the form

s'" cot8(s) =—szi't' q (s) s

1+q (s) 1+9 (s) ski' ' (4.9)

which is reminiscent of the ordinary effective-range
formula,

1 r
s"' cot8($) =—+—s.

8 2
(4.10)

From Eq. (4.9), p(s) can be written as

$+SB
p(s) = —1.

$—ss $ cot6(s)
(4.11)

By calculating the differential coefficient of io(s) at
s=0, we find

1 r 1 dp(0)——+—ss=szi ~z 1+—
c 2 G ds

(4.12)

1 r
s'" cot6(s) =—+—s+

8 2
(4 1o')

Thus, the condition

dq (0)/ds=0 (4.13)

where a and r are now defined as the coeKcient of the
effective-range expansion,

where both A (s) and B(s) are real on the positive real
axis, and their left-hand singularities cancel each other
for D(s). We thus find

is equivalent to the familiar relation"

r
+ SB SB

8 2
(4.14)

s '"—zs"'s '"—zs'"p(s)
S(s) =

$ +zs $ ~ +zs lo($)

where the function p(s) is defined by

v ($) =»"'J3{$)/~ ($), — (4.5)

and is real for s)0. Ke have normalized the coupling
constant G so that the scattering amplitude

a = —(1+y)/snil', (4.15)

where q
—= y(0). When Eq. (4.13) holds, the effective

range is given by

=L2z/(1+v) j(1/ (4.16)

From Eq. (4.9) we see that the scattering length
can be expressed as

T(s) = (1/2zs"')[S(s) —1j—
"S.T. Ma, Phys. Rev. 69, 668 (1946);?1,195 (1947).

(4.6)
'3 J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear I'hysics

(John Wiley @ Sons, Inc. , New York, 1952), Chap. 2.
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It follows that In the nonrelativistic case their bound is given by"
—2r/a=4'/(1+ q)', (417) G'&4s '" (4.19)

and that 0& —(2r/a) &1 for p) 0 and —(2r/a) &0 for
p&0. q thus has two real roots. One is smaller than
unity in the absolute magnitude, and the other larger.
Under Eq. (4.13) and the assumption of a small binding
energy, y(s) is almost constant in the interval 0)s
&—s~, and we may discard the root larger in absolute
magnitude by the requirement (4.8). The scattering
length and the effective range can then uniquely
determine q and, hence, s~. The coupling constant C'
is obtained by replacing p(—s&) in Eq. (4.7) with p.i4

For the 'Si rs pscatteri-ng we find in this way that

—1— —1 —1 025,
r r

It can also be expressed in terms of the function q (s) as

q (—sii) &s (4.20)

We see that the constant p for the 'Si e-p scattering is
smaller than —', . In other words, the deuteron coupling
constant satisfies the GI bound":

( '/no&4(8/m)'"=0. 19.

It should be emphasized, however, that the GI bound
is a necessary, but not sufhcient, condition for the
vertex function to have no poles. Indeed, in the non-
relativistic models the vertex for a bound state must
have a pole under certain general conditions.

1/ss'" ——a/(1+ p)~4.3 F, (or 8= ski/m —2.2 MeV)
&

sv 'p (s)s'" cotB(s) =
1+v (s) 1+~(s) sv'"

(4.18)

Equation (4.17) is still true when Eq. (4.13) holds. For
the 'Ss ts-p scattering we find in a way similar to that
for 'Si ri pscattering that-

t" =—0.05,
Er I kr

1/sv'I'=a/(1+rp) 25 F (or sv/nz 67 keV).

The sign of the scattering length discards one of the
two roots for y.

Recently Geshkenbein and Ioffe" (GI) obtained an
interesting upper bound on coupling constants, under
the assumption that vertex functions have no poles.

14 Incidentally, the coefficient cV of the asymptotic form of the
normalized radial wave function for a loosely bound state,

e(lrl) ~Ne '&'~s~'& as Ir[ -+ ~,
is approximately given by N'~2ss' sL1 —(se)'~'rg '. (See Rei. 13,
Chap. 12.}By substituting Eq. (4.16) into the above expression
and comparing it with Eq. (4.7), we are led to the familiar result,
Q~G2

' B. V. Geshkenbein and B. L. Iofte, Phys. Rev. Letters 11,
55 (1963).

which is to be compared with the experimental value
of 8, 2.226 Mev, and

6'/~=2I (1+p)/(1 —~)j(&/res)"'=0 16.

The good agreement for 8 and Eq. (4.12) indicate that

I v '(o)
I
&«'.

If the pole of the S matrix moves downward through
the origin along the imaginary axis of the k plane, where
k=s'", it no longer represents a bound state, but
corresponds to a virtual state. When Sir(s) has a pole
at s = —sy all expression analogous to Eq. (4.9) is
obtained by replacing sii"s in Eq. (4.9) with —sv"':

S. THE FORM FACTOR, THE PROPA(yATOR,
AND THE VERTEX FUNCTION

Ke next study the form factor, the propagator, and
the vertex function when the denominator function is
known. From the unitarity relation (3.3) for E(s),
its phase is given by 8(s). We restrict ourselves to the
case in which

(III) E(s) and Zii '(s) have no poles.

We do not require that I'(s) and Z&(s) have no poles.
The reason for this is simply that in field theory the
functions corresponding to the former are expressed
as matrix elements of Heisenberg operators, while those
corresponding to the latter are not. E(s) can now be
written in the form

E(s) =GI'(s) exp
S+SB 5(s')ds'

, (5 1)
p s sg s —s—z6

where P(s) is an arbitrary polynomial normalized so
tllat P( s+) = 1. From (I) it follows that Err(s) has a
zero at s= —ss. Zii '(s) is defined, in analogv to Eq.
(2.3), b I(l()

5.2
'r e (s +ss) (s —s—se)

s+ss E s s ds
Zii—'(s) =1—

'6C. J. Goebel and B. Sakita, Phys. Rev. Letters 1I, 293
(1963).

'7N. Levinson, Kgl. Danske Videnskab. Selskab, Mat. Fys.
Medd. 25, No. 9 (1949).

except for further subtractions, if necessary.
In order to fix the asymptotic behavior of the phase

shift, we also require that:
(IV) the phase shift satisfy Levinson's theorem. "

Since we are concerned with the case of one bound
state and the phase shift is normalized by 8(0)=0, it
follows from (IV) that 8(s) tends to —s as s —+ oo.
The exponential factor in Eq. (5.1) increases linearly
with s, apart from a possible logarithmic factor and
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i
E(s') i'(s')'isds'

X , (5.3)
p (s +sg) (s —s ie—)

where d is an arbitrary constant. The vertex function is
then given by

I'(s) =E(s)/Zn —'(s), (5.4)

and the phase of U(s) is, by Eq. (3.5), equal to that of
I'(s). I'(s) has no zeros because of the conditions (V)
and (III). We also note that Ze '(s) increases like ssl'

and I'(s) decreases like s 'I', again apart from possible
logarithmic factors, as s goes to infinity.

We have seen that we have one free parameter d in
determining the propagator and the vertex function
from the denominator function under our restrictive
conditions. This situation may be related to the well-
known ambiguity" —"one encounters in determining
the potential from the denominator function when
there is a bound state.

Equation (5.3) means that the Lehmann represen-
tation for the propagator needs one subtraction":

id''(s) = S+Se
+if+

f
E(s') ['(s')'"ds'

(5.5)
(s +sn) (s s $e)

The subtraction should be made at a finite point, in
spite of a contrary statement in Ref. 16. The propa-
gator still is a Herglotz function, and since it tends to
—~ as s goes to —~ it must have a zero below —s~.
We call its position —s~, where s~&s~. It follows that
I'(s) has a pole at this point and, hence, the one-particle
reducible part of T(s) or the first term of Eq. (3.4)
does too. Thus, the one-particle irreducible part, U(s),
should have a pole at the same point to cancel the
pole of the one-particle reducible part unless the zero
of the propagator happens to coincide with a redundant
pole of 5(s). It is to be mentioned that the CDD zero
at s= —s~ is inevitable and has nothing to do with the
introduction of an elementary particle. Since d is
determined when s~ is given, we may regard sj as a

"V. Bargmann, Rev. Mod. Phys. 21, 488 (1949).' I. M. Gel'fand and B. M. Levitan, Doklady Akad. Nauk
SSSR??, 55 (1951).

'P R. Jost and W. Kohn, Phys. Rev. 87, 977 (1952).

Eq. (5.2) requires at least one more subtraction. Here
we confine ourselves to the simplest solution by further
requiring that:

(V) E(s) have no zeros;

that is, E(s)=1. E—quation (5.2) should now be replaced
by

(S+se)'
Zn '(s) =1—d(s+sn)—

free parameter to represent the ambiguity we have
encountered.

For completeness we shall discuss the case in which
there is an elementary particle coupled to the S-wave
channel. Applying Levinson's theorem to this case,"
we find that the phase shift tends to zero as s —+ ~.
Therefore, E(s) becomes constant at infinity and the
Lehmann representation for the propagator needs no
subtraction. We also note that the renormalization
constant is nonvanishing because

1 " iK(s) ~'s'"
lim Ze '(s) = 1+— — ds( oo . (5.6)

p ( s+sn)

Thus, for the simplest solution, in which E(s) has
neither zeros nor poles, Zii '(s) and I'(s) can be uniquely
determined from the denominator. Since I'(s) has no
poles, G' should satisfy the GI bound (4.19).

Finally we consider the inverse problem of construct-
ing the vertex function, the propagator, and the form
factor, when the phase r)(s) of the function U(s) is
given. This has been discussed in a different context
by Blankenbecler et a/. ' We encounter various am-
biguities similar to those we had before. We shall
consider only the cases in which the restrictions (III)
to (V) are satisfied. Therefore, I"(s) has at least one
pole but no zeros. When r)(s), normalized by i)(0) =0,
tends to —(1/2+v)s. as s goes to infinity, where ri is a
nonnegative integer, F(s) can be expressed in the form

G sy —sg
I'(s) =

Q ( s) si+s

Xexp
s+sg r) (s')ds'

(s +se) (s —s—is)-
(5.7)

2 See, for instance, M. Ida, Progr. Theoret. Phys. (Kyoto) 21'
625 (1959).

Here Q (s) is an arbitrary polynomial of order e which
has at most one zero in the interval, —s~&s&0, and
no zeros for s& —s~, and is normalized to unity at
s=—$~.

The relation between r)(s) and —si is similar to the
one between 8(s) and —se. In Sec. 4 we could narrow
the possibilities by (I) and (II), but here we do not
have any physically plausible reason to make corre-
sponding restrictions. If U(s) has a pole or poles, one
may choose one of them as —s~. If this is the case, s~

can be regarded as essentially given by i)(s). Of course,
one need not do so. U(s) may even have no poles.
Then, —si is completely independent of r1(s).

Let us confine ourselves to the solution with as small
a number of arbitrary parameters as possible, and
assume hereafter that —si is the only pole of I'(s) or
Q„(s)—=1. From this assumption and (V) it follows
that Ze(s) has no CDD poles other than the one at
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s= —sz. Z~(s) can now be written as

1 "
~

I'(s')
~

'(s')'"ds' s] s+
Z~ is) =— +— c. (5.8)

zl p (s +s+) (s —s z6) sz+s

have opposite signs. The function 1/ (s) is a constant in
our model and we see that it is positive. Therefore, a
and r must be such that a(0, r) 0 and a/2—r) 1. The
constant p is given by

From the normalization condition we have

1 "
~

I'(s) ~'s'"ds
1=Z~(—s//) =- +c,

p (s+s/3)' We then have
(g.93

—1 (1. (A1)

1 " ~l'(s) ~'s'"ds
Sy —Sg C=—

If we put
(5.10)

s+sg

which is a nonrelativistic analog of Eq. (2.2). Since we
know that Z~(s) decreases like s z/' for large s, we
also get

s '"= (I+p)/I~I

p =(»/s)"',

(A2)

(A4)

By substituting Eq (5 10) into Fq (5 9) we obtainzz where sz) s/z, the S matrix is expressed as

p (s+ss)' Sy —sg x s+SB

" ~1'(s) ~'s'"ds 1 1 " ~I'(s) ~'s'"ds (s '"—zs'") (s "'—zs"')
$(s) =

(s 1/2+zsl/2) (s 1/2+zsl/2)
(A5)

"(s,+s) ~1'(s)
~

s'"
dS.

0 $1 SB $ SB

It has a redundant pole at $= —$2. For the form factor
(5.11) given by Eq. (5.1) with P(s) = 1, we hav—e

The form factor is now given by E(s)=F(s)/Z~(s).
The sum rule, (5.11), establishes a relation among

s~, G', and s~. tA"e are thus led to the conclusion that
either s& or G' can be chosen independently from z/(s),
when —sz is a pole of U(s) and, hence, can be regarded
as essentially given by z/(s) and when I'(s) has no poles
other than —sz. If sz is independent from z/(s), then
both s~ and G' can be given arbitrarily. Our procedure
discussed above corresponds to that of Blankenbecler
et al. ' The inevitable introduction of one CDD pole,
however, has made our result different from theirs. The
difference comes from our requirement that Levinson's
theorem be satisfied.

Some simple but explicit examples given in the
Appendix will serve to illustrate the discussions in this
section.
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APPENDIX

Simple examples are given here to facilitate the
understanding of the general discussion of Sec. 5.

I et us consider S-wave scattering with one bound
state, the phase shift of which is exactly given by the
effective-range formula, (4.10). By Levinson's theorem,
the scattering length a and the effective-range r must

"This LSZ sum rule should not be identified arith the one
obtained from the normalization of the wave function for a bound
state. For the latter sum rule, see S. Weinberg, Phys. Rev. 1M,
776 (1963).

( / /z)( / )
E(s) =G

2s '/'(s '/z+s '/')

Zz/ '(s) is then given by Eq. (5.3) as

Z~ '(s) = (sz/'" is'") (sz+s)
2s//'" (sz —sg)

1 1 —/f (s+sz/). (A2)
4$g Sg —sg

It has a zero below —s~, which we caH —s~ as before.
(A2) can then be written as

(s "'—zs"') (s '/'+zs'")
Zgg-'(s) =

2s '/'(s '/' s'—
s —s+(s / s /)(s~/ zs/)

X . (A8)
$2 Sg

d = (1/4s~) —[1/(sz —s~)$. (A9)

It should be emphasized that the only reason to do this
here is to simplify the solution. Z~ '(s) then becomes

Z/. '(s) = (sq" is'") (s~+s) —(A10)
2s/P'(sz —sr/)

The constant d, or equivalently s~, is quite arbitrary.
As the 5 matrix of our model has a redundant pole,
however, we can fix the constant by making the zero
of Z~ '(s) coincide with the redundant pole of S(s),
that is, by putting s&= $2. d is then given a unique value:
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and the vertex function is

We also hand

s 1/2 SBl/2

I (s) =G
S 1/2+isl/2

U(s) = —1/(si'/'+is'") .

For the sum rule, (5.11), we have

G2 S 1/2 SB1/2 2

2$ 1/2 S 1/2 S 1/2 S 1/2 S 1/2

(A11)

(A12)

(A13)

From Eq. (5.2) we find

s 1/2+s 1/2 s 1/2 isi/2

ZB '(s) =
2s '/' s '/' —is'/'

We thus have
I'(s) —=G,

U(s) =—0.

The sum rule, (5.11), is

1=
s '/'+s '/' 2s '

(A18)

(A19)

(A20)

(A21)

where the second term of the right-hand side of (A13)
represents the contribution from the CDD pole of the
propagator.

When there is an elementary particle coupled to the
S-wave channel, a and r must have the same sign. The
constant p is now negative, and given by

(a 2 —1/2

+1 + —+1 —1 & —1. (A14)
kr

22 = —(s/1/S2)'" (A15)

where $2) sB, the S matrix is

Therefore, both a and r must be negative. sB and G'
are expressed by Eqs. (A2) and (A3), respectively, with

22 given by (A14). If we put

s'/' cott/(s) = a//. (A22)

From what we have seen in the text, it follows that ao
must be negative. U(s) is then given by

U(s) =—1/(~ ap
~

'+is—'/2) . (A23)

As U(s) has a pole at s= —ao ', we choose t.his point as
the location of the only pole of I'(s), just to simplify the
solution. We call this point —s~ as before. We thus
have si ——a& ', and I'(s) is then given by Eq. (A11).
Z&(s) is easily calculated, by Eq. (5.8), to be

where the first term of the right-hand side cf (A21)
represents the propagator renormalization constant.

We finally consider the inverse problem, in which the
phase r/(s) of U(s) is given by the scattering length
formula,

(S 1/2 is1/2) (S 1/2+isl/2)

5(s) =
( '"+ '")( '"— '")

(A16)
ZQ(s) =2s&"'(si sii)/(s—i/" is"') (si+s), (A24)

and the form factor is given by (A6). The sum rule,
(5.11), now becomes

E(s) =G
1/2+ . 1/2 1/2 1/2

2$ j./2 $1/2 Z$1 /2
(A17)

It has a zero at s= —s2, instead of a redundant pole.
The form factor is then given by

1= (G'/2s '/')[(s '"—s '/')/(s "'+s '/')7

+G (s 1/ —s 1/2)/(s 1/2+-s / ) (A25)
= (G'/2S~'") L(s "'—»'")/(»"2+»'") 7.

Therefore, it determines G only if sB is given.


