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by simply giving the I=O member Pp of the triplet a
different mass than the I= a members Pi and Ps. An
additional symmetry-breaking interaction Lagrangian
is also needed. Furthermore, in any model which has
only one triplet it is dificult to understand why there

should be nine approximately degenerate spin-1 meson
multiplets while there exist only eight approximately
degenerate pseudoscalar meson states. For this reason,
it appears that the special model discussed in Sec. II
is a more realistic one.
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Examination of a separable potential model in Geld theory, when the interaction is attractive enough to
produce bound states, shows that the t = ~ ~ limits of the Heisenberg fields do not always have a particle
interpretation but are superpositions of eigenfields. In this model the commutators of the in-fields of particles
that are well enough localized to have a Gnite interaction energy are operators.

I. INTRODUCTION

A SYMPTOTIC 6ields play a central role in the
axiomatic formulation of 6eld theory given by

Lehmann, Symanzik, and Zimmermann' and in many
discussions of the analyticity of the S matrix based on
their work. The properties of asymptotic fields have
been extensively examined by Zimmermann, Haag,
Nishigima, and Ruelle. ' In order to provide an illustra-
tive example that displays the Heisenberg fields for
large times, the inhelds and their interrelation, we ex-
amined a separable potential model in 6eld theory. '
Within the framework of this model it is shown that:
(a) The limits implied in the formal definition of in-
fields' exist only after taking their matrix elements.
(b) When the interaction is attractive enough to pro-
duce bound states, the Heisenberg field of a particle of
momentum k has two terms which oscillate respectively
with frequencies cp(k) andi'„((ii), as t ~ &~.The first
term has the usual particle interpretation and repro-
duces the scattering states, whereas the second term
cannot be interpreted as a particle since its energy is
below the continuum. The latter term consists of an in-
finite product of fields and vanishes throughout a sub-
space that is free of heavy mesons (the target). (c) The
commutator of the in-fields of those particles which are
well enough localized to have a finite interaction energy
is an operator.

* Work supported in part by the U. S. Atomic Energy Com-
mission.
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H p Mpt q+ ——dk&p(k) ~t (k) ti(k),

G= f(k)u(k)dk, (2)

)a(k),at (k') j= 5(k —k'),

Lp, 9'j=1, (k) = (I"+k')".

at(k) and ppt are creation operators for a light boson of
momentum k energy cp(k) and a static boson of mass M,
respectively. From Kqs. (1) and (2)

LH, at(k) j=cp(k)ut(k)+X(pt(pf(k)Gt.

In terms of the quantities defined above, the Heisenberg
fields are

e'~'at(k)e '~'=at(k, t),
aiH tata tHt ~t(])—'

G(t) = f(k)a(k, t)dk.

Since q t y is a constant of the motion it follows from
Eqs. (3) and (4) that

—i(d/dt)at(k, t) =-pp(k)at(k, t)+'Aptyf(k)Gt(t). (5)

This is a linear equation in at(k, t) that can be solved by

II. SOLUTION OF THE EQUATIONS OF MOTION

The Hamiltonian for a light boson that interacts via
a separable potential with a static boson of mass M is

H =H p+X pt yGtG,

where
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and combining this with Eqs. (32) and (33) it gives

Gt(t), eirriGt~ iHt—

From Eqs. (37), (39), and (41) it is found that

[UtU, at(k)]=0,
u;„t (k, t)

dk —P s+'"'A.tr„P„. (34)
D (te(k))

thus'

U~U=1. (43)

By the same procedure it follows that
This result will be useful in constructing the in-field
for p~. A

a;nt(k) =at(k') (1+rx)slk, (35)

IV. TRANSFORMATION FROM FREE TO IN-FIELDS

In this section the transformation from the free to
the in-fields will be further examined since it turns out
to be useful in constructing the in-fields for the heavy
bosons in the next section.

Let

[UUt, at(k)]= )iq—trt f(k) P — P„UUt,
co(k) —tr„

hence

UUt = 1 )irpt y—Q A „tA „r.P

() 4'V)'+- —Q A„tA„tA„A„r„sP„. (44—)
2t n

where repeated indices imply integration, this by com-
parison with Eq. (19) gives

f(k) f(k')
QI!t;rttg= —XP P

D'(cu (k) )(&u (k') —tu(k) —ie)

Thus, as stated above, U is not unitary and as will be
made clear below UU~ projects out all bound states. In

(36) the absence of bound states (for example, )t)0)

Note that
a;~ (k) = (1+crt) is i a (k ) .

f(k') f(k")r P„—)tv'v Z" (~(k') —t -)(~(k")—t -)

(37)

thus (1+rx) is an isometric matrix when the system has
bound states. ' This is closely related to the correspond-
ing property of the Mfiller matrix.

It will now be shown that the transformation which
leads from at(k) to a;„t(k) is not unitary when bound
states are present. Let us first construct an operator U
such that

From the commutation relations of the in-fields and
Eq. (36) it follows that

(1+nt) (1+u) = 1,

a;„t(k)= Uat(k) Ut,

which follows from Eq. (38). In general

at(k) = Uta;„t(k) U.

From Eqs. (35) and (41) it is found that

Uta; t(k)=at(k)Ut,
a; (k) U = Ua (k) .

(45)

P„A„U=U~A ~P„=O. (46)

V. IN-FIELD FOR HEAVY BOSON AND BOUND STATES

By taking the Hermitian conjugate of Eq. (41) and
using (27) the following, to be used in the next section,
are obtained

[P„A„,U]= —UA „P. „,
consequently

(38)Uat(k) =a;„t(k)U,
which gives

In this section an in-field for the heavy boson is
defined by analogy to Eq. (38); a more direct approach
using Eq. (17) is left to the Appendix. Let

after using Eq. (35); U and Ut are found by inspection U ~= ~Up =pin )to be

U= 1+at(k')a(k")us s"+(1/2!)at(k')at(k")a(k"')
/ L////'IXis(I'r )ixs a" rxs"s""+

Ut= 1+at(k')a(k") (nt)s. s-+ (1/2!)at(k')at(k")
X~(k"')~i(k"")(~t)s s -(~t)s"s""+

From this it follows that

(4o)

a solution to this equation is~

(p;„1'= U (ptUT'.

From Eq. (38) and (45)

[~'-'(k) v '-']= [&'-(k) ~'-"]=0

(47)

(48)

[Ut,at(k)]=at(k')(rxt)s sUt. (41)

'K. C. G. Sudarshan, Brandeis Summer Institute Lectures in
Theoretical Physics (K. A. Benjamin Inc. , New York, 1961), Vol.
2, B. 204.

s Additive terms to the right-hand side of Eq. (45) that depend
on ptp are excluded by the observation that Ul U(s»)"!0)
= (p~}"0), as follows from Eq. (40).

r From Eqs. (44) and (45), Uat (k) Ul = UU a;,t (k) =a; t (k) UUt
/a; ~(k), whereas in a subspace that is free of bound states
Ua~{k) U~= a;.~(u).



EXPLICIT CONSTRUCTION OF ASYMPTOTIC FIELDS

From Eqs. (2) and (43)

Lv'v, v'-"7= v'-',

Lip )p t7= UUt.

after using Eq. (8). For o)(tz combining Eqs. (12), (14),
(24), and (27)

(50) G'(o)) = (1/2zrz) (2+(o))—2—
(o)))

Thus one encounters operator valued commutators
whose appearance in this model is directly traced to the
presence of bound states. When the coupling constant is
made less negative p,„moves to the right and Xr„de-
creases and. UUt ~ 1. In the absence of bound states
Ut U = UUt = 1. As consequence of Eqs. (28), (46), (48),
and (49)

$FI,y;„t7=IrIp; t. (51)

If instead of the Hamiltonian of Eq. (28) tha, t of Eq. (1)
was used then on the right-hand side of (51) terms
proportional to e would also be present.

Fields that create bound states will now be examined;
let

f(k)ut(k) 1 1

(k) —(v (D+( ) D ( ))
(59)

f(k)az(k)
dk P r„P„5(o)—p, „)

o) (k) —co

= —g A„tr„P 6(o)—)M ).

By comparison with Eq. (7) this gives

A„tr„E„
az(k, t) =7,ptipf(k) g e'&"'

n o)(k) —tz

and note that
yz)t(1) —=AitPiq; t

L pe(1),~'-'(k)7=Le ~(1) ~'-(k)7=0

(52) " Gt(o))e'"'Co)
+l (k)e'"&")'. (60)

„o)—o)(k) —zzt

as a consequence of Eqs. (29) and (48). From Eqs. (28),
(30), and (31), it follows that

With the aid of Eq. (58) the second term in the paren-
thesis above is equal to

LFI, v e'(1)7= (~+t i) v ~'(1)

whereas from Eqs. (46), (47), and (52),

(53) f(k') l (k') dk'
~its (A') t

„D (o) (k') )(o) (k') —o) (k) —zrt)
(61)

L~~(1),~'-7= P~e(1) v»-'7=0 (54)

L&pe(1), qzit(1)7 is again an operator since the first and
second term of the commutator are different from zero
in subspaces having diferent numbers of heavy bosons.

It is clear from Eq. (52) that

~~'(1)~~'(1) =0

This relation has a rather simple interpretation and will
be discussed in the last section.

In the same way the asymptotic field for a light
boson bound to e heavy bosons is

v e'(~) =A-'P-(v -')" (56)
and

LFI, yi)t(zz)7= (rzM+tz„) pzit(zz) .
From Eq. (46) and (56) it follows that

If the numerator in the integrand is treated as a con-
tinuous function, then as t —+ —~ this integral can
readily be shown to vanish. ' Since l(k') is not a con-
tinuous function, only matrix elements of the Heisen-
berg field lead to the disappearance of the second term
of Eq. (60). Thus the remaining terms oscillate with
discrete frequencies tz„and o)(k). The last term of Eq.
(60) is proportiona, l to at (k);„and asymptotically
crea, tes mesons of energy o)(k). In the first term the
P„'s can be removed by expressing them as infinite
products of pter. This term is diQprent from zero in a
subspace containing at least one heavy boson and there
acts as a creation operator Lsee Eq. (32)7. However,
since p,„(p it has no particle interpretation. Both of
these terms can be obtained by a small modification of
Eq. (17) which then may be taken as the definition of
an eigenfield. Consider

ipzi(zz) UUt=0, (57)

this justifies the earlier statement that UU~ projects out
all bound states.

~~i(E+ie) t e
—'~e+") 'at(k, t)dt'.

Gt(or) = f(k)l(k) 8(o)(k) —o))dk,
D (o))

(58)

VI. ASYMPTOTIC LIMIT OF HEISENBERG FIELDS

In this section the in-field will be compared with the
t —& —~ limit of Heisenberg fields. The Fourier trans-
form of the latter is already given in Eq. (7) where for
co)p

This expression is an eigenvalue equation for that E that
yields a finite result for (62) as e —&0. For E=o)(k) it
gives at(k); e'"&"", whereas for E=p,„, the substitution
of Eqs. (7) and (59) into (62) yields

'Ai(ptp f(k)(A„ r„tP„/L (ok)) tz ])e'""'—
The application of (62) to any eigenfunction of energy

8 See H. Ezawa, Ref. 3, for instance.



shows formally, using Eq. (4), that it will result in a
state whose energy is increased by E. For arbitrary E
the norm of the resulting state is zero. Thus (62) defines
an eigenfield for those values of E that make it nonzero.
Therefore, it has been shown that as t —+ —~ ut(k, t) be-
comes a superposition of eigenfields. Those whose
energies are larger than p, are the in-fields.

The Heisenberg and in-fields for the heavy bosons are
discussed in the Appendix.

VII. DISCUSSION

The in-fields given in previous sections can now be
used to construct the full S matrix for channels with an
arbitrary number of particles. As discussed above the
implied limit in the definition of in-fields cannot be
performed before taking their matrix elements. How-
ever, this is not of any consequence for obtaining the
S matrix.

The eigenfields defined through Eq. (62) are a natural
generalization of Eq. (17) which was used to obtain
a;„t(k). From this point of view the large time behavior
of the Heisenberg Geld at(k, t) is determined by the
superposition of two eigenfields with E=cv(k) and ti„,
respectively. The latter term vanishes in the subspace
free of heavy bosons. When there are bound states, the
occurrence of eigenfields that vanish in a given subspace
is expected in any static model.

Some of the corrimutators of the in-field are opera-
tors. This was a very simple explanation which could
have been anticipated. Any, creation of destruction,
in-field heavy boson operator when applied to the sub-
space containing a bound state of energy E~ must yield
zero for otherwise the energy of this new state would be
E~&M. However, in this model since all bound states
and heavy bosons are localized they must have a non-
zero energy of interaction; thus to avoid a contradiction
the statement above must be valid. It should be noted
by comparison with Eq. (50) that its right-hand side is
zero in the subspace of bound states and equal to one
elsewhere. In the rest of the Hilbert space that is free of
bound states the application of q;„~ gives a result differ-
ent from zero since in those states the light bosons are
not well localized and the energy is additive. The
explanation of Eq. (55) is the same; two bound states
in the same place have a total energy that is not addi-
tive. If the right-hand side of Eq. (55) were different
from zero one would reach a contradiction. Note that in
this model two heavy bosons have additive energy since
they have no meson cloud. The cominutators of the
bound-state fields are also operators. Thus the appear-
ance of operator commutation relations is model
independent and is due to localizability.

ACKNOWLEDGMENT

APPENDIX

Consider the expression

which is equivalent to

q ~= U~q'~U.

(A1)

(A2)

The purpose of the following development is to show
that y'&= it; t, where &p;„t is defined through Eq. (17).
Using Eq. (51) the Heisenberg field at time t is

+$(t) —Ut(t) + tU(t)eiilrt (A3)

U t (])—ei H t U te iHt— (A4)

PI, U" ]=KG'(pt pUt f(k)a; (k„)ilk,

thus

—i—U" (t) .
= hat (pGt(t) U" (t) f(k) a;„(k)e

—'"&"i'dk.

I etting U /(0) =- Ut the solution of the above equation is

Ut(t) = U "+i7 q'-(p d/'Gt(t') UtG;„(t')

where
XG;„(t')G;„(t")+

G; (/)= f(k)a; (k)e '"&"&'dk

From Eq. (33)

a;„t(k)
G"(t)= ilk e'"i~i' —g A tr J' e'i'"' (A5)

D—
((u(k))

Using Eq. (38) in U/(t) given above

dt'dt"Gt (t')G/(t"),
XGp(t')Go(t")+ . . Ut, (A6)

In this Appendix the Hamiltonian of Eqs. (1) and (28)
will be used interchangeably. From Eqs. (1), (28),
and (40),

The author would like to thank Dr. D. Mattis for his
suggestions at the beginning of this work and Dr. R. G.
Winter for many penetrating comments.

where

Go(t) = dk 1'(k)a(k)e—' &"&'. (A7)
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