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The connection between the limit of perfect SU3 symmetry and the zero mass approximation for the
pseudoscalar meson octet is discussed. The well-known quadratic mass formula for the pseudoscalar meson
octet and the linear mass formula for the baryons are derived. A simple model of strong interaction is
presented which leads to two mass formulas for the nine spin-1 mesons:

2Mp+M p+M„=4M~~ and M p
—M„.

The general invariance property of this model which contains, among others, a baryon octet, a pseudoscalar
octet, and a vector nonet is examined.

I. GENERAL DISCUSSION

'HE question whether the strong interactions are
approximately invariant under a SU3 transfor-

mation has been discussed extensively in the recent
literature. ' There exists by now a rather impressive
body of experimental evidence' supporting such an
approximate invariance. Part of this evidence is based
on the remarkably accurate "mass formulas" which are
obtained' by treating, among other assumptions, the
symmetry violating interactions as small. On the other
hand, since the mass differences among, say, E, m., and
q which are members of the same multiplet are not
small compared to their actual masses, the violation of
SU3 symmetry is apparently not weak. The additional
fact that these mass formulas are linear functions of
masses for the baryons, but quadratic functions for the
mesons, seems to further veil the foundation of such an
approximate symmetry. In this paper, we shall attempt
to clarify some of these questions.

The existence of an approximate symmetry under
SU3 for the strong interactions suggests that the total
Hamiltonian H contains a part, called primary inter-
action, Ho, which is invariant under SUB, and represents
the main contribution to the interaction. The remaining
part, called secondary interaction, h=H —Ho is small
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compared to Ho and has symmetry violating properties.
The typical energy scale' (or level spacing) due to the
primary interaction Ho is M which is assumed to be
of the order of a few BeV. The energy shift caused by
the secondary interaction h is I which is of the order
of a few hundred MeV's. The smallness of the phenome-
nological dim, ensionless constant

}—= (m/M)«1 (1)
makes possible the use of h as a perturbation.

We shall further specify the primary interaction Ho
by assuming that it contains eigenstates corresponding
to an octet of pseudoscalar mesotts of sero mass. The
perturbation h can be written as

h=hp+hr, (2)

where we assume that ho is invariant' under SU3 and
hl transforms like the isotopic spin=0 component of
the octet representation' of SU3. Both Ho and h trans-
form in the usual way under the inhomogeneous Lorentz
transformation and conserve charge, parity, strangeness,
etc.

We now apply these considerations to the mass shifts
of the pseudoscalar meson octet. Let g, ~, E denote the
familiar members of this octet and E„, E~, E their
respective energies. By our assumption, these mesons
have zero mass in the absence of h (i.e., X=0).Therefore,
the zeroth-order values of the energies Z„(p), Err(p),
E (p) are given by

&.'(P) =~E'(P) =&-'(P) =P, (3)
4 It is difficult to give a precise de6nition of the typical energy

scale without a concrete picture of the dynamics. For a more
detailed discussion on the meaning of this energy scale M associ-
ated with the primary interaction, see the special model given in
Sec. II and the related example discussed in Appendix II.

~ We are reminded of the analogy with the electromagnetic in-
teraction which, while violating the isotopic spin conservation,
contains a part that is invariant under the isotopic spin rotation.
Similarly, the weak interactions, which do not conserve strange-
ness, nevertheless have a part, such as the P decay, that does con-
serve strangeness. In analogy with the relative magnitude of the
isoscalar and the isovector terms of the electromagnetic inter-
actions, we assume ho and h1 to be of comparable magnitude.
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where P is the magnitude of the three-momentum of
the particles. The application of h conserves the three-
momentum p but brings an energy shift to each of these
particles.

To use perturbation theory we must choose p to be
nonzero and 6xed. Mathematically, to 6rst order in h,
as a result of its assumed transformation property, these
energies satisfy the linear relation

3E.(P)+E-(P)=4E~(P) (4)

From Lorentz invariance, any first-order correction to
E;(p) must be of the form'

'(P)= '(P) —P= "/( P) ()
where i= g, K or x and m; is the corresponding mass of
the particle. Therefore, we obtain

3m '+m~'= 4m''

which is valid also to the first order in h. Thus, we are
led to the mass-squared formula by the requirement of
Lorentz invariance and the assumption of zero mass for
the pseudoscalar mesons in the unperturbed situation.

In contrast, the linear mass formula for the baryon
octet follows if the corresponding baryon mass eigen-
value 350 of the primary interaction Ho is large com-
pared to the mass shifts due to the perturbation h. In
that case the zeroth-order energy of the baryon octet
(E,A,Z, ) is given by

E~'(P) = E~'(P) =E~'(P) = E=-'(P) = (P'+Ms')'" (7i)

To first order in h, the perturbed energies satisfy the
following relation:

3Es(P)+Ez(P) =2EE~(P)+E=-(P)j (g)

By using E,= (P'+M,s)'", the first-order correction in
E,(p) must be of the form

E,O —(p2+M 2)—1/2M 3M, (9)

where M,=Me+3M; and'i =X, A, Z, ".Hence, Eq. (8)
can be written as

because of the zero mass character of pseudoscalar
mesons, the axial vector currents in weak. decays can be
conserved. ' This conservation law is broken due to the
presence of the secondary interaction h. Since the scale
of the primary interaction M is also much larger than
the nucleon mass ns~, we expect the ratio of the Gamow-
Teller coupling constant G~ to the Fermi coupling con-
stant Gy to be of the form'

Gg/G v = —1+0(m~/M),

which makes it reasonable to assume the scale M to be
of the order" of 10 BeV. Furthermore, in the absence
of h, the well-known Goldberger- Treiman formula"
holds' Deviation from the Goldberger-Treiman formula
occurs only as a result of the secondary interaction and
is therefore relatively small.

II. A MODEL

It seems natural to explore the possibility that the
large energy scale M of the primary Hamiltonian Ho and
its invariance character under SV3 indicate the existence
of some massive triplets with very strong interactions
which can form compound systems corresponding to
the known octets and decuplets. "

In this section we give a special model of the primary
and the secondary interactions, partly to illustrate some
of the discussions given in the previous section. We
assume the existence of two massive triplets (no,nt, ns)
and (Ps,P„Ps) under the SUs transformations. The
charges of (ns, nt, ns), and (Ps,Pt,Ps), are given, respec-
tively, by (q, q+1, q) in units of e. The baryon
numbers of the u's and the P's are, respectively, tt and
(m+1) where q and tt are any integers including zero.
One of these triplets, say, P, consists of fermions while
the o,'s represent bosons. " Under the isotopic spin
rotations, crs and Pq behave like states with I=O;
(crt, crs), and (Pt,Ps) like states with I= s. Let a, and P;
be the antiparticles of a, and P, . The primary interaction
Ho can be written as

3Mg+Mz ——2(Miv+M„-. ) . (10) Hs ——Ht...+H;„t, , (12)

LNote that to first order in h, (10) is identical with
3M''+ Mz'= 2 (M-.'+Miv'). )

Similar considerations can be easily extended to other
multiplets. The difference between a quadratic and linear
mass formula lies solely in the diGerent magnitude of
the masses of these multiplets in the absence of the
perturbation h.

In this connection it is interesting to note that zero
mass pseudoscalar mesons appear also in certain theories
with ys invariance. ' In the absence of h (i.e., X=O),

' For the physical case, in order that Eqs. (4) and (5) be a good
approximation we must choose states with p»re;, The resulting
formula (6) is obviously independent of p. In Appendix I we give
a trivial but explicit example illustrating the use of the perturba-
tion method.

r See, e.g., Y. Nambu, Phys. Rev. 122, 345 (1961).
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J. Schwinger in which some similar ideas are discussed. We wish
to thank Professor Schwinger for communicating his results to
us before publication.

"An equally adequate model can be constructed if we exchange
the roles of n's and P's.



I M PLI CATIONS OF APPROXIMATE SU3 SYMMETRY 8469

where

=P {(~&+p) t I&

l
gt ~ (k) g, (k)+g, 't (k)g ' ~ (k)]

+ (3II"+0')'"Lbt'(k) b, (k)+b,'t(k) b"(k)$), (13)

We are led to the following simple expression for h:

(15)
where

M and 3f' are both of the order of a few SeV, repre-
senting the zeroth-order (i.e., Jr=0) masses of tr; and P,.
The g;(k), g"(k), b;(k), b"(k) are respect;ively the an-
nihilation operators for a;, cr; and P;, P, with momentum
k, and gt'(k), g t(k), bt'(k), b t(k) are their Hermitian
conjugates:

and hp is given by

xLgt'(k) g, (k)+g, 't(k) g"(k)j) (16)

Lg;(k))t=gt"'(k), jg"(k)jt=g 't(k)
(14)

Lb, (k))t=bt'(k) and Lb"(k)jt= b t(k),

where $ denotes Hermitian conjugation and i=0, 1, 2.
In all these formulas, the spin dependence is suppressed.

The particular form of H;„t, is not too relevant at
this point. We only require that there are strong at-
tractive forces between n; and n;, P; and P, , and also
between rr; and P, . The forces between all other pairs
such as (n, ,n;) or (P,,P;) are assumed to be repulsive.
As a result of these strong attractive forces the zero
mass pseudoscalar meson octet of HQ can be regarded
as a composite system of ni and n; and is denoted by
(crtr)s where the subscript 8 indicates the dimension of
the group representation. Similarly, we regard all other
known strongly interacting particles also as composite
systems of n; and P;. We denote (PP)s, (PP) i, and (a~P)s

to be the appropriate bound states of P,, P; and of cr, , P;
which transform like the spin. -1 meson octet, the spin-1
meson, and the baryon octet,"respectively. In contrast
to the pseudoscalar meson states, the baryon octet has
a large mass 3fQ in the absence of the secondary inter-
action. Furthermore, we assume the force between 0,;
and cx, depends on the representation; as a consequence,
the pseudoscalar singlet (nn)i, if it exists, may have a
different energy from the pseudoscalar octet (nn)s.

Let us first consider a particularly simple example
for the secondary interaction k where the only violation
of SUB symmetry occurs through additional mass shifts
m; and m, ' (which may be of the order of a few hundred
MeV) for the triplet particles n; and P;, respectively.

'4 The choice of the baryon decuplet is rather free at this stage.
In a model it is easy to invent selection rules such that in the ab-
sence of the secondary interaction h, the baryon decuplet is com-
pletely stable. As an example, we may arbitrarily assume the exist-
ence of an SU3 fermion singlet y with baryon number 1, but charge—1.The compound state (n'y) &o can represent the baryon decuplet.
By adding an appropriate term to Eq. (15) for the secondary
interaction h, both the energy shifts and the transitions of the
decuplet can be regarded as caused by h. To Grst order in h, we
have the well-known equal level spacing formula for the decuplet.
The width of these levels are second order in h. Therefore, the use
of perturbation theory could be easily justi6ed. (However, if we

compare these results with their experimental values, the fact that
the width of N*, the I=-,' member of the baryon decuplet, is not
much smaller than the decuplet energy spacings makes it question-
able whether this particular example of the decuplet has much
value other than being a simple concrete mathematical example.
We wish to thank K. Huang and I'. K. Low for pointing out the
importance of the large width to us. }

XLbt (k)b;(k)+b,'t(k)b"(k)g}, (»)
where the isotopic spin conservation is insured by
choosing

my= m2 and my =5$2 .1 I

Since we have already assumed that the primary
SU3 invariant Hamiltonian HQ contains, besides the free
term (13), also an interaction term that lifts the
degeneracy between singlet and octet states for the
pseudoscalar mesons and the baryons, it now follows
from the transformation property of (15) that the mass
formulas such as (6) and (10) hold for the pseudoscalar
meson octet (an)s the baryon octet (Pu)s, respectively.

To discuss the mass formula for the spin-1 meson
states we impose a further condition on the primary
interaction. We require that the strong attractive forces
between P; and P; that result from IIo are essentially
itrdepettdettP of i and jver, y much like the Wigner
forces for nucleons. Therefore, in the absence of h,
the states (PP)s and (PP)i are degenerate. For definite-
ness, we assume the mass of these states to be fairly
large.

Most of the degeneracies among these nine states are
removed to the first order in h. Let p, co, E* and P be
the physical resonances and (P;P;) the bound-state wave
function of the system P; and P;. Using the Eqs. (15)
and (18) we make the following identifications for the
vector meson states:

and

l 4') =PoPo

l
)=2 '"(P ~+a.~-),

lp')= —P~,

I
(&*)+)=i o~,

(19)

where (P, (i,) has the same transformation property as
the state b,'tb»IO). The other five states p, p', (E'*)o,
etc. , can be obtained from p+ and (IC*)+through the use

""As a model, we may assume the existence of an additional
neutral (SU3) singlet Geld X. The primary forces between p; and p;
are generated by a Lagrangian of the form g Z; bt'bi plus a similar
term for the antiparticle p;. Therefore, the primary forces between
p; and p; are independent of i and j.On the other hand, because
of the difference in spin and statistics the forces between, say,
2; and 0.; are due to a completely diferent origin and do depend
on the particular singlet or octet representation of (un).
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of isotopic spin rotation and charge conjugation. In
terms of the two I= 0st—ates te and P, the unitary singlet

(PP) i becomes"

(PP) i= (s)'"(PoPo+PiPi+PsPs) = (s)'"4+ (s)'"~, (2o)

tian conjugates. I-et hp be given by

hp (17——)+)I,tPss+ Xs (P,'+Pss)+ XsQs'

+X'(Qi'+Qs'), (26)
where

while the I=-0 member of the octet is given by
and

P,'= (bt'bt)b, 'tb'&+b»'b, (bi'tb"), (27)

which agrees very well with the known experimental
values of these masses. /Note that similarly to the
baryon mass formula Eq. (10), to first order in Jr Eq.
(22) can also be written as 2M&'+M„'+M, '=4Mx*'.j
If we use (15) as the explicit form of Ir, then these masses
can be explicitly calculated in terms of mo' and m&' of
the triplet masses. We find, by using (19),

Mg ——Mi+ 2mp'$,

M„=Mt+ 2mi'$,

Mp Mi 1(m ——i+m s)(,
and

Mrce=Mi+ (roars'+nzi') e, (23)

where M~ is the zeroth-order mass of these nine states
and $ is the expectation value

(Py (M"+ k')—'~'M'bt'(k)bs(k)) (24)

evaluated for the state (PsPs) in its center-of-mass
system. The precise numerical value of P depends on the
wave function (PsPs). (See Appendix II for an example
of such a calculation. ) From (23) and (18) we obtain
another interesting relation:

(25)

which agrees reasonably well with the experimental
values.

In the above, the mass formulas (23) and (25) are
derived from the simple form (17) for hp. Actually these
formulas are valid under a general class of secondary
interactions. We may consider, in addition to (17), the
hp part of the secondary interaction to contain a general
quartic dependence of the b, (k), b"(k) and their Hermi-

'6 The @ and co mesons are therefore mixtures of a unitary singlet
and the I=O member of an octet. The mixing angle obtained
through (20) and (21) agrees numerically with the one calculated
on semiempirical ground by J. J. Sakurai LPhys. Rev. 132, 434
(1963)j.See also M. Gell-Mann (Ref. 1); S. Okubo, Phys. Letters
S, 165 (1963).

I6~ Note added in proof. After this paper was submitted for publi-
cation, we received an unpublished report by G. Zweig (An SU3
model for strong interaction symmetry and its breaking) in which
a similar mass formula for the vector mesons is also discussed in
the model of a single triplet with fractional charge and baryon
number.

(l)'"(2PA PA— PP—)= (-')'"4 —(l)'" . (21)

From (21) and the general transformation property
of h LEq. (2)), it follows (as will be proved under more
general conditions in the next section) that the masses
of these resonances satisfy'"

(2M'+ M„)+M„=4Mrc*, (22)

III. FURTHER DISCUSSIONS OF THE MODEL

In this section we wish to investigate in the above
model some general conditions under which the primary
interaction Hs should contain nine degenerate (PP)
states but only eight degenerate (ncr) states and eight
degenerate (crP) states. It is useful to introduce the
following operators:

T =Pa fa»(k)a, (k) —a, t(k)a r(k)

+b»'(k) b;(k) —b, 't(k) b'&(k)$, (29)

(30)

(31)

where
V; =S; ——,'S, S,',
~= sL1+ (—1) j,

N =Qg Put'(k)u;(k) —a,'t(k)a"(k)7.

(32)

(33)

(34)

Q,
&'= e,r, e&m" (b 'tb'r)(bt~g ) (28)

in which we suppress the momentum dependence and
sum over all repeated indices. The P~, X2, P3, X4 are
constants and e;,&,

e'&~ are the third-rank antisymmetric
tensors whose only nonvanishing components are &1
depending on (rj'k) being even or odd permutations
of (012). It can be readily verified that the mass formula
(22) holds if X4=0 and the mass formula (25) holds if,
in addition, A3=0. Comparison with the experimental
values of these masses indicate X4=0 and P 3—0.

Physically, the mass formula (22) holds if the second-
ary forces between (P,P, ) do not convert the pair (PpPs)
into any other pairs such as (PrPt) and (Pres). The mass
formula (25) holds if, in addition, the secondary forces
between (Psai), (Pcs) and (PsPi) are approximately
independent of the total isotopic spin I=O or 1 of the
compound system.

These massive triplets n, and P;, if they exist, can only
be strongly produced in pairs by using the octet particles
as the beam and the target. Their decays depend on the
particular form of the secondary interaction h. -If the
SU3 symmetry violating part of this secondary inter-
action transforms like the isotopic singlet member of an
octet, then these two triplets would contain stable mem-
bers with respect to strong interactions. If, in addition,
the usual vector and axial vector currents of the strongly
interacting particles that occur in weak interactions also
transform like members of an octet, then the basic
triplets would contain members that are absolutely
stable.
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All repeated indices are to be summed over. The U, ~

are the generators of the SU3 transformation and satisfy
the commutation relation

[U j U kj —okU j , g j U, k (35)

The invariance property of the primary interaction Hp
is given by the commutation relation

invariant term hp and another term hi which transforms
like isotopic spin= 0 member of an octet. For the octets
(un)p and (nP)p the mass formulas Eqs. (6) and (10)
hold. The following theorem gives a condition under
which the mass formula Eq. (22) for the nine spin-1
meson states holds:

1'heorem Z. If

[Hp, U,i3=0. (36) [h(R), v,o(R)j=0, (41)

For clarity, we will restrict our discussions to those
eigenstates of Hp which consist of only the free single-
particle states of either n;, or P; (or a;, P,) and the
various bound states of these particles. Let the totality
of these eigenstates span a subdomain E. in the entire
Hilbert space. The projection 0(R) of any operator 0
in E is de6ned by

&.Io(R) Ik&= &~lol~&

if both states
I ki) and

I
i & are in R; otherwise,

(37)

Theorerrk l. If
&~ Io(R)

I
p&=0.

[Hp, Vp'(R) j=0,

(38)

(39)

then under the primary interaction, (PP)i must be de-
generate with (PP) p. However, Eq. (39) does not imply
any degeneracy between (uP)i and (nP)p, nor between
(can)i and (an)s.

Proof: From (33), it follows that g=0 or 1 depending
on E =odd or even. Let the states lg& and lpp& be
defined by Eq. (19). We find

Uo'l~&=-:l~&,

Up'I pp&= --'I pi&,

vp'I p&= —-',
I p&,

v plK*&=-'IK*& (40)

From the definition Eq. (37), it is clear that identical
equations are satisfied by Up'(R). We note that the mass
splittings given by Eq. (23) are proportional to the
values of VpP for these states. Since VpP [therefore, also
VpP(R)) does not commute with either Up' or U, P, a
necessary consequence of the commutation relations
(36) and (39) is that (PP)i must be degenerate with
respect to (PP) p under the primary interaction Hp.

In contrast, (aP)i, (a~P)p, (nn)i, and (nn)p are all
eigenstates of Vp' and VpP(R) with the same eigenvalue
0. Thus, Eq. (39) does not imply any additional de-
generacy, and the only degeneracy is that required by
the SU3 invariance. Under the primary interaction Hp,
there are eight degenerate spin--,' baryon states (a&P)p,

eight degenerate pseudoscalar meson states (an)p but
nice degenerate spin-1 meson states (PP)i and (PP)p.

The introduction of the secondary interaction h splits
these degeneracies. According to Eq. (2), under the SUp
transformations generated by U;&, the secondary inter-
action h=hp+hi transforms like a sum of an SUp

then to first order in h, the mass formula

2M~+M„+Mp 4Mx——*
holds.

Proof By u.sing Eqs. (37), (40), and (41), it follows
that

&culhly&= &culh(R) Iy&=0. (42)

Therefore, Eq. (21) remains correct. Theorem 2 is then
established by using Eq. (21), together with the general
transformation property of h under the SU3 group
generated by U,&'.

So far, our discussions are restricted to the single-
particle states and to the bound states of Hp. The exten-
sion of some of the above considerations to the multi-
particle states leads to several unusual results. Suppose
we replace the projection Up'(R) in Eq. (39) by the
entire operator Vp, and assume that

I Hp, vpP$=0 (43)

is valid. Now, Hp commutes with U, ' which, however,
does not commute with Vp'. As proved in Appendix III,
Eqs. (36) and (43) necessitate the invariance of the pri-
mary interaction Hp under a group 6= SU3)&SU3XSU3
which has, among other irreducible representations, a
(PP) nonet, a (aa) octet and a (aP) octet. The group G
also contains the particular SU3 group whose generators
are the nonlocal operators V,' given by Eq. (32). It is
also shown in Appendix III that several unphysical
consequences, such as violation of the asymptotic
condition and the violation of crossing symmetry occur
as a result. Therefore, Eq. (43) cannot be strictly cor-
rect. Nevertheless, it is interesting to explore other
physical consequences by assuming the approximate
validity of (43). Let n be the eigenvalue of VpP. From
(43), we have the approximate selection rule

An=0.

7i+P W br+ rid+ rig,
~+P W K*+hr+riiK+rkil,

(45)

(46)

The (nn) p states are eigenstates of VpP with eigenvalue
v=0. Thus, the decay of the (PP) nonet is forbidden
under the primary interaction Hp. The decays of these
particles such as p —+ 2m, etc. , occur through the
secondary interaction h. Next, let us consider the com-
pound state (7i+p) which has w = —ap. The conservation
law (44) and Eq. (40) yield the following types of ap-
proximate selection rules:
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and
p+ p -I+ g+lcu+rrtK+nrt, (4"/)

where lsr, rrtK, Nrt denote arbitrary numbers of sr, K (or
Z), and rt. On the other hand, reactions

p+ p ~ p+l7r+mK+rtrt (48)
and

(49)

are allowed, provided other quantum numbers such as
strangeness and isotopic spin are conserved. Similarly,
we can consider the compound state (sr+ p) and derive
the approximate selection rule

sr+P +j' (PP)s+ (crtP)s+lsr+rrtK+rtrt (50)

where (PP) s and (nP) s represent, respectively, any
member of the vector nonet and the baryon octet. The
realistic value of such extension of the model is expected
to be limited. As mentioned earlier, there are severe
inherent difficulties of the commutation rule (43) which
must throw doubt on the approximate validity of Eq.
(44) for these collision processes. Furthermore, addi-
tional violation can occur through the secondary inter-
action h which can give sizeable contributions to the
rates for these reactions. It is, therefore, rather surpris-
ing to find some of the above results, Eqs. (47)—(49),
concerning the annihilation process (p+p) seem to be
approximately correct. '~

character of the primary interaction under the SU3
transformation and the existence of a large energy
scale a few BeV's seems to lead rather naturally to a
model containing some massive triplets with very
strong interactions. In the model, so far as the transfor-
mation properties of the known meson and baryon
states are concerned, they can be regarded as the same
as the composite systems of these triplets. While many
different models can be constructed, "the fact that there
are nine vector states but only eight pseudoscalar states
makes it attractive to consider a model which has two
different triplets n; and P;. The derivation of the mass
formula Eq. (22) for the nine vector states gives added
support to the general character of this particular model.
If the approximate degeneracy of these nine states is
regarded as nonaccidental, then the primary interaction
should be invariant under a group much larger than a
simple SUB.
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IV. CONCLUDING REMARKS

The above discussions on strong interactions several
topics have been discussed, which are related but of
rather different speculative nature. If the approximate
SU3 symmetry has a fundamental basis, there should ex-
ist two entirely different classes of strong interactions:
the SU3 symmetric primary interaction and the nonsym-
metric secondary interaction, the former being much
stronger than the latter. The fact that the masses of the
known pseudoscalar mesons are of the same order of
magnitude as their energy differences makes it attrac-
tive to regard all these meson masses as generated by
the same secondary interaction. The zero mass require-
ment for the pseudoscalar meson octet gives a clear
phenomenological definition of the primary interaction.

The connection between SU3 symmetry and the ap-
proximate zero mass nature of pseudoscalar mesons
leads to an understanding of the mass-squared formula
for the pseudoscalar meson octet; it also ties in with
work done in the last few years by many authors who
consider the zero mass approximation independently of
SUs symmetry (e.g., conserved axial vector current, '
Goldberger-Treiman formula, ' "emission of soft pions, "
etc.).

As already emphasized in Sec. II, the invariance

"We wish to thank J. Steinberger for a discussion on these
aspects."Y.Nambu and D. Lurid, Phys. Rsv. 125, 1429 (1962).

and the perturbation Lagrangian is

1—h ———
2

'hatt„-'d

r, s

where h is the Hamiltonian for the secondary interaction
and xq are the usual space-time coordinates. It is con-
venient to expand the p„ in terms of the annihilation
operator a„(k) and their Hermitian conjugates a„&(k):

g (r) =P(20k) —'t'Pa„(k) exp(ik r)

+a„t(k) exp( —ik r)$, (f3)

'9 M. Gell-Mann, Phys. Letters (to be published). In Appendix
IV, we give a list of other simple models. For a formal treatment
with two triplets, see also J. J. Sakurai, in Varenna Lecture Notes,
Proceedings of the Irtterrtotionol School of Physics, Cogrse Z6 (Aca-
demic Press Inc. , New York, 1962).

APPENDIX I:A TRIVIAL EXAMPLE

In order to illustrate the use of perturbation formula
for particles which, in the absence of perturbation, have
zero masses, we consider a totally trivial example of an
octet of free spin-0 particles. Let P„(tt=1, 2, 8)
represent the Hermitian field operators of these particles.
The Lagrangian I.o for the primary interaction is
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k=2 2 (4k) 'm'La'(k)a. (~)+a.(k)a'(k)

+a„(k)a„(—k)+a„t(k)a„t(—k)]. (IS)

Let lvac)p and
I
p, , p)p be the ground state and the one

(pth) particle state with three-momentum p for the
primary interaction. The zeroth-order energy of the
pth particle E„P(y) is given by

E„(p)= (p, p I
Hp

I p, y)p —(vac
I
Hp

I
vac)p. (I6)

By using (I4) we have

&.'(I) =P=
I I I

. (17)

The first-order energy shift produced, by h is easily seen
to be

bE„(p) =nz„'/(2p) . (I8)

Therefore, a mass formula similar to Eq. (6) results if
we identify the eight states

I p, y) to be the real 8X8
representation of the SU3 group and if we choose the
appropriate values m„such that h transforms according
to Eq. (2) under SUs. The exact energy E„(p) is given by

& (u) = (w pl He+kit 11) (vacl Hp+kl vac) (I9)

where
I vac) and

I p, p) are, respectively, the ground state
and the one-particle state of the total Hamiltonian
(Hp+k). The familiar formula

~.(~)=p+l( .Vp) —l( '~p)+ "
= (p'+m ')' Is (I10)

can be obtained either by applying the usual perturba-
tion series" to (I9) or by using the canonical
transformation,

a„(k)= Lcosho„(k)]b„(k)+Lsinh8„(jk)]b„t( —k), (I11)

where
tanht28 (k)]„—=(2k'+no ')—'m ' (I12)

which changes the total Hamiltonian to its diagonal
form

where 0 is the volume of the system, k= lkl and k is
the three-momentum conjugate to the space coordinate
r. The Hamiltonians Ho and h for the primary and the
secondary interactions become

Hp ——P P -', kLa„t(k)a„(k)+a„(k)a„t(k)] (I4)

Identical results can be derived for particles of arbitrary
spin by regarding the mass term as the perturbation h.
If h is a linear function in the masses, then the lowest
order energy shift 6J& must depend quadratically on h.

f= 2M'. — (II3)

There are altogether 9 such zero-mass zero-spin states
corresponding to the diRerent values of i and j. In the
following, we assume f is indeed given by (II3).

Similar to Eq. (15), we assume the secondary interac-
tion consists of only the mass shifts of the basic triplet:

m;=M; —M ~0, (II4)

APPENDIX II:A NONTRIVIAL BUT
UNREALISTIC EXAMPLE

In this Appendix, we shall take advantage of the
known solutions of the Bethe-Salpeter equation ob-
tained by Wick" and Cutkosky" and consider another
less trivial but still unrealistic example which, however,
will serve to illustrate further the origin of the "mass
squared" formula for zero mass bound states. We con-
sider a basic massive triplet (under SUs) of spin-0
particles (Ap, At, A:) with charge (q, q+1, q) where q is

any number including zero. Under the isotopic spin rota-
tion Ap behaves like I=0 and (At, Ap) like I=-', . There
exist very strong attractive forces between A; and the
antiparticles 2, which we assume to be of the same form
as that generated through a zero mass zero spin 6eld.
Furthermore we suppose that the Bethe-Salpeter equa-
tion is the correct equation for the compound system
A; and A, .

In the absence of the secondary interaction h, the
zeroth-order masses M of the triplet A, are all equal:

M jo——iV2' ——M3' ——M.

Let P,&' be the wave function describing the compound
system of A; and 2,. The Bethe-Salpeter equation for
ib,

&' is given in this case by

( f d'k
(P +~')(P +~)A'(P)=I — ——~, (k), (»2)

(p —k)s

where i and j can independently be 0, 1 or 2, p,s, and
Prs are the (4-momentum)' of A; and A, , respectively,

p is the relative momentum of the system. As shown by
Wick," this equation has zero mass bound state if the
coupling constant f is given by

(Hp+k) =-', P P (k'+m„')'"

XLb„t (k)b„(k)+b„(k)b„t(k)]. (I13)

"It is of interest to note that because of the totally trivial
structure of this example, the zero-mass approximation for the
mesons does not lead to any spurious infrared divergence. For a
more complicated case the apparent infrared dif5culty can be
resolved by using the physical mass of the meson as an infrared
cutoff. The only change in the validity of the perturbation series
is that, instead of the condition X«1, we have P. 1n(M/rs„)g«1
where I„is the mass of the mesons and X is given by Eq. (1).

where the inequality is used to exclude bound states
with imaginary mass which appear in this unrealistic
model. In order to ensure isotopic spin rotation invari-
ance we must have

m] —m2 ~

Using the explicit solutions given in Refs. 21 and 22 one
can compute the corresponding mass shifts of these

2' G. C. Wick, Phys. Rev. 96, 1124 (1954)."R.E. Cutkosky, Phys. Rev. 96, 1135 (1954).
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states P,&'. We call these nine (zero spin) eigenstates
I~~~, Ij, Ip, and Ip', where the subscripts refer to the
isotopic spin. To first order in m;, the corresponding
changes of masses of these bound states are given by

[m(Ii)]'= 5M[2mi],
[m(Iz/z)]'= 5M[m, +m ],

[m (Ip) ]'= 5M [2mi],

which merely express the fact that VA,
' possesses tensor

character under the group with generators U, &. Thus
if U, & and Vp' are part of the generators for G, the latter
must also contain all other U, ~ through the repeated
operations such as [~"~Vp']1 'tUL

~
[U"'i Vp']j, etc.

For convenience we introduce the operators

8,'= rzQk [bt'&'(k)b, (k) —-'5 &bt'(k)bi(k)] (III3)

[m(I,')] = 5M [2m,]. (II6) 8;"=—g Qk [b,'t(k)b'&(k) —-', b„&bi't(k)b"(k)] (III4)

The above results are obtained from the relation in terms of which we can write

f=—-', (Mi+Mz)' —(2/5)m' (II7) V.~ —8.~' (III5)

[m(Ip)]'= [m(Ii)]'.

APPENDIX III

(II9)

In this Appendix it will be shown that if R, the re-
stricted Hilbert space defined in Sec. III, is extended to
the entire Hilbert space, then the degeneracy of the
state (PP)z with states (PP)p, originally expressed by
Eq. (39), and now replaced by Eq. (43), implies in-
variance of the primary Hamiltonian Hp under a group
G= SUSXSUSX SU3.

The explicit expression of the operator Vp' appears in
Eq. (43) is

Vo'=-', zt pk [2bz'(k)bo(k)+2bo't(k) b" (k) —bt'(k) b (k)
—bz't(k)b"(k) —bt'(k)bz(k) —bz'&(k)b'"-(k)], (III1)

where q is the projection operator given by (33). The
fact expressed by (43) that the primary interaction H p

commutes with Vp' and U;&', but Vp' does not commute
with all the U;&' implies that Hp is invariant under a
group G bigger than SUp, otherwise (PP)z would not be
degenerate with (PP)p under Hp.

To investigate the structure of G we first establish
the commutation relations:

valid near m'=0 and to first order in M» —M2. Here m
is the mass of the bound state and HEI~, M2 are the masses
of the bound particles. For Mi Mz, th——is relation (II7)
is readily derived from Eq. (54) of Wick (Ref. 21) by
a perturbation expansion in m', and for Mi/M~ by
using an appropriate transformation. (See Sec. IV of
Cutkosky's paper, Ref. 22.) It is instructive to observe
that under the primary interaction (MfP= M), the octet
and the singlet part of |t,&' are degenerate. Similar to
Eqs. (19)—(21), we find the two isotopic spin=0 states
are given by (Ip) = (1/K2) (fi'+fzz) and (Ip') =fpP, both
of which are mixtures of the octet and the singlet rep-
resentations under SUB. Because of the zero mass
nature of these states (in the absence of the secondary
interaction) these masses satisfy the quadratic mass
formulas

2[m(lp')]'+[m(Ip)] +[m(Iz)]'=4[m(li)p)]' (II8)

and

A, '=- U, '—(8,'+8 ') .
'

(III7)

The A,&, 8,&, and 8,'& satisfy the commutation relations

[A"Bi"]=[A" Bi"]=[8",Bi'"]=o, (III8)

[A;~;A i"]= b, kA zi —b~'A zk, (III9)

[8 jBk] bkBz' bqBk' (III10)

[8 ~z 8 ~k] b kB ~g b FBI k (III11)
and

A '=8'=8 "=-Q
'z w z (III12)

Thus the A;&', 8,&, 8 & are generators of three in-
dependent SU3 groups. Their direct product SU3)&SU3
)&SU3 defines the group G. It is important to note that
if Hp commutes with U, & and Vp", then it must also be
invariant under the entire group G and we have

[Hp, A,']= [Hp, Bg~]= [Hp&8z i]=0. (III13)

In addition, Hp transforms like the generator for
time translations of the Iorentz group, is invariant
under the rotation group, and satisfies the commutation
relations

[H,,C]= [Ho,P]= [Ho,E]= [H,,Q]=0, (III14)

where C, P, X, Q are, respectively, the operators for
charge conjugation, parity, baryon number, and charge.
The operators E, cV, and Q commute with the entire
group G. On the other hand, the charge-conjugation
operator obeys the following relations:

and

CE+EC=0,

CQ+QC= 0,

C8,&C~= —8 "

(III15)

(III16)

(III17)

Then, we find

[V")Vk'] = b'(Bk'+Bk") 4'(8 '—+8") (III6)

so that 8;&' and 8,'&, are also contained in the set of gener-
ators for the group G. The analysis of the group struc-
ture is further facilitated by the introduction of the
operators

[U,' Vk']= b,'Vk' —bk'V' (III2) CA;&'Ct = —A .' (III18)
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T(X)= exp| o2iXVoo]. (III19)

The transformation laws for the states ~p), ipoi), and

~Po) under TP,) are

2'
i P) = exp (2A)

i y),
2'~Po) = exp(A) ~Po),

(III20)

(III21)

The eigenstates of Ho can be labeled by three pairs
of numbers, each pair characterizing a de6nite repre-
sentation of each independent SU3 group. For repre-
sentations with small dimensionality d, d is sufhcient to
de6ne the irreducible representation apart from the
conjugate representation. Hence, in this case, we may
represent the eigenstates of Ho by (x,y, s) where x, y,
s are respectively the dimensionality of the irreducible
representation under each of the SU3 groups generated
by 2;~, 8;~, and 8; '. Thus, the spin —1 multiplet is
represented. by (1,3,3), containing 1X3X3=9 states
with X=0. The pseudoscalar meson octet is represented
by (8,1,1,) with X=O and the baryon octet is (8,1,1)
with /=1. It should be pointed out that only the suf-
6cient condition that G contains the correct varieties of
multiplets is established.

The group G has been constructed arti6cially to ac-
commodate the presently known variety of multiplets.
It has many unusual features which we now proceed to
discuss.

(1) The separate invariance of Ho under 8,'' and 8 '
is a necessary result if the primary force between P,
and p; is independent of i and j. For example, in the
case of two spin-2 particles, if the force between these
two particles is spin-independent, then the triplet state
is degenerate with the singlet. The force is invariant
under separate SU~ transformations for these two spins.
Therefore, the relevant group is (SUoX SUo) which has
a representation containing 4 states.

(2) The projection operator g has been included in
the de6nition of 8;&' and 8 & in order to ensure the
compatibility of having nine degenerate vector mesons
with the fact that apparently only eight spin-2 baryons
states Lidentified with (nP)o j exist. Otherwise g should
be replaced by 1 in Eqs. (III3) and (III4).

(3) As far as the properties of the vector meson
states

~
C,&) are concerned, we can take g = 1 and consider

only the group G'=SU3)&SUB, generated by 8;& and
8,".We shall presently show that crossing symmetry
is violated in the coupling of ~C,') with P; and P;.
Consider, for example, the particular element of the
group G' defined by

which is allowed by G', does not lead to the process

po ~ 4+po, (III24)

which is forbidden by G', in contradiction with crossing
symmetry. Time reversal invariance is however valid
since both (g~po, po) and (po,po(g) are invariant under
G/

It may also be noted that because creation and an-
nihilation operators for the particle p transform dif-
ferently under (III19), a local Hermitian field operator
that one might try to introduce to represent the bound
state g, would not have a definite transformation
property under G'. Thus the group G' (or G) cannot be
applied to local iield operators for the nonet.

(4) An extension of G to the many-particle contin-
uum states may lead to paradoxical results. For example,
the state of one baryon octet (np)o and one antibaryon
octet (Pn)o at infinity should be represented by (8,1,1)
X(8,1,1), with a multiplicity of 64, apart from other
spin-momentum dependence. Yet, if we consider the two
baryon octets as a single system, since g= 1, the system
is also represented by (x,y, s) where @=1 or 8 and
y=s=3. The resulting multiplicity is no longer given
by the product (8,1,1)X (8,1,1).This example illustrates
the incompatibility of the group G with the asymptotic
condltlon.

The paradox may be resolved by requiring the group
G to be valid only for states which extend over a limited
region in space where interaction takes place. Then, if
we consider, for example, the collision of a baryon and
an antibaryon with the production of a pseudoscalar
meson and a vector meson we can write the sequence

(uP)o+ (Pn)o ~ (*,y,s)„=i~ (nn)o+ (PP)o, (III25)

where the intermediate stage refers to the interaction
region and (PP)o denotes the vector meson nonet. In
(III25) we must decompose both the initial and the final
states into compound states (x,y, s)„ i which are repre-
sentations of the group G. Clearly, only the compound
states with x=8, y=3, and a=3 are involved in the
process. Some of the particular results for p+ p reactions
have already been discussed in Sec. III.

(5) Restricting ourselves to the P particles and their
bound. state ~4,&') representing the nine vector mesons
we may interpret the validity of the group G'= SUB&(SU3
as the mathematical expression of the stability of these
bound states. Indeed, if we assume that P and P are
bound by a neutral 6eld y transforming like a unitary
singlet, then the annihilation and recombination proc-
ess such as

po+po ~ X ~ po+po (III26)

T[p )=eoxp(ip) [po). (III22)

It follows that the matrix element (P ~Po,Po) is invariant
under T while the matrix element (Po~Po, g) is not.
Thus, the process

&po+ po, — (III23)

would contribute to the singlet state (PP)i and not to
the state (PP) o, thus lifting the degeneracy between the
nine members of the vector meson multiplet. The Bethe-
Salpeter type approximations for the two-body ampli-
tude assume implicity that the contributions from the
process (III26) are negligible, thus regarding the com-
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pound system (PsPs) as stable (independent of its mass
value). Such an approximation leads immediately to
the degeneracy of the nine mesons. The validity of the
group 6' (and G in general) thus emerges as an approxi-
mate dynamical group describing the independence of
the (PP) binding forces from the unitary spin together
with the stability of the nonet.

APPENDIX IV

In this Appendix we list the simplest models involving
one fundamental triplet. If no singlets are allowed, one
is led to Gell-Mann's "quark" scheme" with noninteger
charge g and baryon number rs (unless the definitions
of charge and baryon number are modified for each
multiplet). The requirement of integer q and t2 leads one
to consider schemes with at least one singlet o. and one
triplet P. The triplet components Ps, Pr and Ps are as-
sumed to have, respectively, the charges (q, q+1, q)
and q is called the charge of the triplet. The case in
which rr and p have q= 0, n being a baryon and p a 22= 0
fermion triplet has already been studied by Gell-
Mann. "This is model I' in our table. A variation on
this model, in which the baryon number, the charge
and the strangeness are all introduced once is the
model I with p being a 22= 0 boson. Other simple schemes
in which singlets, octets, and decuplets may arise from
the direct product 3&&3)&3 of the fundamental triplet
with itself are provided by models II and III. Finally, in

model IV, which involves one triplet and two singlets
we give an example in which two kinds of octets and
decuplets with the usual charge structure may arise,
one set from 3&(3 and (3&(3)(3&(3) and another set
from (3)&3)&3).We now have the possibility of a selec-
tion rule that prevents a decuplet belonging to the sec-
ond set from decaying into two octets from the first set
through SU3 preserving interactions. In such a scheme
we can have stable multiplets.

The selection rule is connected with the additional
gauge transformation

n~n, p~e' p (IV1)

that becomes possible when a fundamental singlet exists
as well as a triplet P. As long as m-invariant representa-
tions are considered, as in I and I', this gauge group
gives nothing new. However, when baryon multiplets
having different "I"charge exist, as in model IV, a new
selection rule arises.

Simple assumptions concerning the nature of the
binding forces are shown in the table to illustrate how
some of the representations that do not seem to occur
for mesons and baryons can be eliminated on physical
grounds. The other entries in the table are self-
explanatory.

In connection with these simple models it should also
be remarked that the most general Gell-Mann —Okubo
mass splitting within a unitary multiplet is not obtained

TABLE I. A list of other models.

Forces
(R= repulsive,

Models E Spin Q A =attractive)
Meson s
(N=O)

Baryons
(117= 1) Remarks

n0

I (singlet)

p
(triplet)

I' (singlet)

P
(triplet)

0 0 0

0

PP(~)
n'72'(A), PP (A)

n P (A), a'p(A)

same

(~'n2)7, (PP)7
(PP) 2

same

~'(Pp)2, ~'(Pp)1
n L(pp) (Pp)31, 8, 10, 27

same

Representations are invariant
under the "u" gauge. Ii pp(A)
is allowed new mesons states--: (Pp)-, (PP), (PPP), ,

Discussed by Gell-Mann {Ref. 19)

II (singlet)

p
(triplet)

III (singlet)

p
(triplet)

IV (singlets)

p
(triplet)

0 0 0

1 ",— 0, —1

0 0 0

PP(&)
~+~'(A), 'P(A)

pj(g)

same

same

(~+~+)7, (PP) 2

(PP) 2

(~ ~ )7, (Pp)7

y~)8

~ (Ppp)7
-+(ppp).
&+(Ppp) 72

--(PPP) 7

--(~en)
-(~a~) o

Possible additional states:
(n+P)2. N=1, Q= (1,0,1)

n+(pp)2, a+(pp)2: iV=0,
Q=(1, 0, —1) containing a
meson with Q= —1, I'= —2

Possible additional states:
(n P)2'. 1l7=1, Q=(—1, 0, —1)
-(PP)6, -(PP)-: g=1

Example of a forbidden decay:
(PPP)10 W & (PP)8+(PP)8
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by simply giving the I=O member Pp of the triplet a
different mass than the I= a members Pi and Ps. An
additional symmetry-breaking interaction Lagrangian
is also needed. Furthermore, in any model which has
only one triplet it is dificult to understand why there

should be nine approximately degenerate spin-1 meson
multiplets while there exist only eight approximately
degenerate pseudoscalar meson states. For this reason,
it appears that the special model discussed in Sec. II
is a more realistic one.
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Explicit Construction of Asymptotic Fields*
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Examination of a separable potential model in Geld theory, when the interaction is attractive enough to
produce bound states, shows that the t = ~ ~ limits of the Heisenberg fields do not always have a particle
interpretation but are superpositions of eigenfields. In this model the commutators of the in-fields of particles
that are well enough localized to have a Gnite interaction energy are operators.

I. INTRODUCTION

A SYMPTOTIC 6ields play a central role in the
axiomatic formulation of 6eld theory given by

Lehmann, Symanzik, and Zimmermann' and in many
discussions of the analyticity of the S matrix based on
their work. The properties of asymptotic fields have
been extensively examined by Zimmermann, Haag,
Nishigima, and Ruelle. ' In order to provide an illustra-
tive example that displays the Heisenberg fields for
large times, the inhelds and their interrelation, we ex-
amined a separable potential model in 6eld theory. '
Within the framework of this model it is shown that:
(a) The limits implied in the formal definition of in-
fields' exist only after taking their matrix elements.
(b) When the interaction is attractive enough to pro-
duce bound states, the Heisenberg field of a particle of
momentum k has two terms which oscillate respectively
with frequencies cp(k) andi'„((ii), as t ~ &~.The first
term has the usual particle interpretation and repro-
duces the scattering states, whereas the second term
cannot be interpreted as a particle since its energy is
below the continuum. The latter term consists of an in-
finite product of fields and vanishes throughout a sub-
space that is free of heavy mesons (the target). (c) The
commutator of the in-fields of those particles which are
well enough localized to have a finite interaction energy
is an operator.

* Work supported in part by the U. S. Atomic Energy Com-
mission.

'H. Lehmann, K. Symanzik, and W. Zimmermann, Nuovo
Cimento 1, 425 (1955).' W. Zimmermann, Nuovo Cimento 10, 597 (1958); R. Haag,
Phys. Rev. 112, 669 (1958); K. Nishigima, ibid. 111,995 (1958);
K. W. Brenig and R. Haag, Fortschr. Physik 7, 183 (1959);
D. Ruelle, Helv. Phys. Acta BB, 17 (1962).

'For other models see, H. Ezawa, Ann. Phys. (N. Y.) 24, 46
(1963); Y. Kato and N. Mugibayaski, Progr. Theoret. Phys.
(Kyoto) BO, 103 (1963).

H p Mpt q+ ——dk&p(k) ~t (k) ti(k),

G= f(k)u(k)dk, (2)

)a(k),at (k') j= 5(k —k'),

Lp, 9'j=1, (k) = (I"+k')".

at(k) and ppt are creation operators for a light boson of
momentum k energy cp(k) and a static boson of mass M,
respectively. From Kqs. (1) and (2)

LH, at(k) j=cp(k)ut(k)+X(pt(pf(k)Gt.

In terms of the quantities defined above, the Heisenberg
fields are

e'~'at(k)e '~'=at(k, t),
aiH tata tHt ~t(])—'

G(t) = f(k)a(k, t)dk.

Since q t y is a constant of the motion it follows from
Eqs. (3) and (4) that

—i(d/dt)at(k, t) =-pp(k)at(k, t)+'Aptyf(k)Gt(t). (5)

This is a linear equation in at(k, t) that can be solved by

II. SOLUTION OF THE EQUATIONS OF MOTION

The Hamiltonian for a light boson that interacts via
a separable potential with a static boson of mass M is

H =H p+X pt yGtG,

where


