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A method based on the properties of the propagator which was developed for treating the time-dependent
behavior of almost degenerate unstable particles is used to discuss mixing effects in resonance phenomena.
General equations for the location of the poles and the mixing of states in the production amplitudes are
presented. The method is applied to the mixing of P, or, and p mesons. Mixing coeKcients and poles are
determined explicitly in terms of the elements of the matrix representing the square of the mass. In particular
an expression is given for the complex amplitude, s, of P, op mixing but it is indicated that Ims«Res so that
the usual approximation of treating s as real is probably good enough for most purposes. The 271- and 37i-

production amplitudes due to p and co production are shown to depend strongly on the production mech-
anism, as already noted by Bernstein and Feinberg. For example it is found that production of the 2~
mode will have its maximum at the or pole in a process dominated by p exchange. It is also shown that po
and co masses could be taken to be nearly equal if the apparent splitting of the masses is caused by destructive
interference. It is found that, in general, PT invariance implies that the mass matrix is symmetric.

I. INTRODUCTION

'HE recently discovered existence of a number of
quasistable, strongly interacting particles has

stimulated an interest in mixing eGects between such
systems, ' particularly the mixing of pairs of particles
having nearly the same mass. A discussion of the mixing
due to electromagnetic interactions, with particular
reference to the mixing of p and co particles, has been
presented by Bernstein and Feinberg. ' Their method
was based on the Weisskopf-Wigner perturbation
theory. A more general method' is provided by consider-
ing the properties of the propagator matrix of the
system of almost degenerate particles. The purpose of
this paper is to elucidate this more general approach
and to apply it to several specific problems.

Those properties of the particle needed to describe
its contribution to a scattering matrix are assumed to
be completely expressed by a propagator. This should
be a good approximation for a quasistable particle, that
is, if the lifetime is long enough. The propagator
appears in the scattering amplitude as a factor sand-
wiched between vertex functions referring to the
particular processes in which the unstable particle is
produced and detected. The vertex functions are
assumed to be slowly varying functions of energy over
a range corresponding to a reciprocal lifetime of the
particle (that is, over the width of the resonance).

In order to establish certain general symmetry
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' S. Glashow, Phys. Rev. Letters 7, 469 (1961).' J.Bernstein and G. Feinberg, Nuovo Cimento 25, 1343 (1962).
'R. Jacob and R. G. Sachs, Phys. Rev. 121, 350 (1961). S.

Coleman and H. Schnitzer have also recently noted that the
mixing effects could be discussed in terms of the propagator
(unpublished). In particular they show that the symmetry of the
mass matrix may be obtained from CPT invariance, which is
essentially the same as our argument based on PT invariance for
these neutral particles. See also G. Feldman and P. Matthews,
Phys. Rev. 1M, 823 (1963).

B

properties of the propagator, it is convenient to assume
that, in a space-time representation, it may be formally
written as a vacuum expectation value of a time-
ordered product of local, Heisenberg field operators.
The consequences of I', C, and T invariance are easily
obtained in this way. In particular, it will be shown
later that I'T invariance guarantees that the complex
mass matrix of the coupled particles is symmetric, a
point that was left unsettled by Bernstein and
Feinberg. '

II. ANALYSIS OF THE PROPAGATOR MATRIX

In order to give our notation some physical content,
we may consider the specific problem of to, p, p' mixing,
although it should be clear that the methods are general.
We start from a set of "bare" states which are denoted
by latin indices. These states are then denoted by
~i) where, for the above mentioned case, i= 1 will refer
to the I=O singlet under SU3, whilei =2, 3 refer to the
I=O and I=1 members of the vector meson octet.
Thus, in defining the bare states it is presumed that
both the synunetry breaking and electromagnetic inter-
actions are turned off. Since the latter interaction is
much weaker than the former, these interactions may
be turned on in two steps, However, for the purpose of
the general argument, it is assumed that this is accom-
plished in one step, thereby producing the complete
physical states denoted by a greek index n= p', co, or p.

The propagator is assumed to be given in a repre-
sentation referring to the bare states since it is in this
way that the role of the various symmetry breaking
interactions can be assessed. It is then a 3&3 matrix,
(i~ A&'(k')

~ j) where k is the four-momentum of the
particles and k') 0 is taken to be time-like.

4 The consequences of CP and CPT invariance for the neutralE' mesons have been obtained in this way. R. G. Sachs, Ann. Phys.
22, 239 (1963). The present paper is an extension of the same
methods to situations in which the particle is observed as a
resonance in a reaction process, whereas the earlier discussion was
concerned with explicitly time-dependent processes such as
particle decay.
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The matrix d, s'(k') is given as the boundary value'

as'(k')= lim F(z)
z-+@2+is

of a 3X3 matrix function F (z) which is analytic in the
z plane with a cut on the positive real axis. It is con-
venient to write

F(z)=[z—W(z)] ', (2)

where W(z) is the 3X3 matrix consisting of the sum of
the bare mass and all the proper self-energy contribu-
tions, including those due to electromagnetic and SU3

symmetry breaking effects to the desired order.
The physical particles are characterized by the poles

in F(z) which are nearest the physical sheet. If Eq. (2)
is taken to be the definition of W(z) on unphysical as
well as physical sheets, the location of such a pole z is
determined by the solutions of the equation

det[.„—W(..)]=0. (3)

The solutions of interest are those nearest the physical
sheet (z lP=+ie) since the pole then corresponds to a
decaying particle. ' It is expected that in the m-particle

problem there will be just e of these poles near the

physical region. Henceforth only those e physical poles
are considered. If the particle is observed as a resonance

in a reaction process, then the location of the resonance

is determined by Re(z ) and the width by Im(z ).
According to Eq. (3), we may solve for the left and

right eigenfunctions of 8', which are determined by

[z.—W(z.)]P.=0,
P.t[z.—W(z.)]=O. (4)

Let us now assume that in the vicinity of the pole z,
F (z) has the form

F()=C'-( —-) '+Q-() (5)

where C is a constant matrix and Q is regular at
z=z . Then Eq. (2) implies

(z—z.)-'[z—W(z)]C +[z—W(z) ]Q.(z) = 1

and
(z—z )

—'C [z—W(z)]+Q (z)[z—W(z)]=1.

For these equations to be valid at the singular point
z=z, we must have 4 =P P t. It follows that

4-4-'
F()= Z +Q(),

where Q(z) is well-behaved in the vicinity of the

physical poles z .
It will be shown in the next section that the matrix

5 The formal treatment here is presented for scalar fields. For
the vector Gelds associated with spin-1 particles such as the

p, ~, @ mesons, the propagator contains a factor of the form
S„„k„k„/m' wh—ich is not expressly included here and does not
affect the points under discussion.

W(z) is symmetric if all interactions are FT invariant.
Therefore, for any given z, W(z) may be brought to
diagonal form by a complex orthogonal transformation
Q(z). If we denote the columns of Q(z) by Q (z), then
they are determined by the eigenvalue problem

W(z)Q (z)=X (z)Q (z).

The & (z) are given by the secular equation

(7)

P.=Q.(z.)

it„t=Q (z )=P„,

(10)

where the tilda denotes a, row vector (the transpose
of/ ).

In the case that W(z) may be treated as a constant,
independent of z, over the entire range of interest, the
transformation Q is independent of z and the P are
simply the columns of Q. Therefore, P t and P form an
orthonormal set of vectors under this condition.
Furthermore, as a consequence of trace invariance

P.z.=P.~.= trW (12)

if W is constant. Note that Eq. (12) does not apply in
general if 8' is a function of z since then

P, z =P. 'A. (z.)/trw(z). (13)

III. SYMMETRY OF THE PROPAGATOR MATRIX

In order to determine the symmetry properties of the
propagator, it is convenient to assume that it can be
represented in configuration space in terms of certain
local field operators denoted by y, (x). The assumption
is that y, (x) is a Heisenberg field operator which in the
asymptotic limit, t —+ —~, creates or annihilates a one
particle state having exactly the quantum numbers
denoted by the label i. Then the propagator matrix
takes the form'

&~IA, '(*) I~)=&OI {&,(-;*)&

=0(~)&o I P.(-'~) A( —-'~)
I
o&

+0(—*)&oI (—l ) '(l ) Io&, (14)

where
I
0) is the vacuum state, { )r denotes the time

ordered product and 8(x) is the usual step function in
time.

From the form of Eq. (14), it can be shown that the
propagator matrix is symmetric if all interactions are
invariant under I' T. In that case the Heisenberg fields

For a formal demonstration of this, see the Appendix.

det[W(z) —X„(z)]=0. (g)

F«m Eq. (3) it is clear that the poles z are determined
by the equations

z —l~ (z),
where the ordering of the labels is appropriately pre-
scribed. Furthermore, from Eq. (4),
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satisfy the condition

PT~'(~)(PT) '= ~'(—~).

Since PT is an anti-unitary operator we may write

(15)

Vl

(0I v '(k*)~ (—k*)10)
=&PT(0) I PTq;(-,'x) q;(——,'x)

I
0)*, (16)

where IPT(0))=
I 0) is the PT reversed vacuum state.

Therefore,

&0 I p, (-;*)~;(——;~)
I 0)

= (0 I
PTy;(-,'x) (PT)-'(PT) q, (——,'x) (PT)—'

I
0&*

= &0 I p'( —:*)v»(l~) I
0)*

by Eq. (15).Thus

0
I v, (-,'*)~, (——,'*)

I
0&= &ol &, (-,'~) &, (—-,'-*)

I
0). (1g)

A similar result applies to the second term in Eq. (14)
whence it follows that

(17)

&~ I
~~'(~)

I
j&= &jl ~~'(*)

I ~& (»)
The Fourier transform Ap'(k') of the matrix A~'(x) is
therefore also symmetric and we may take its analytic
continuation F (s) to be a symmetric matrix:

&~IP(s) I j&=(jlP(s) I ~& (2o)

Then since the inverse of a symmetric matrix is
symmetric,

(~l W(s) I
j&= &jl W(s) I ~&,

where W(s) is defined by Eq. (2).

(21)

Iv. PRODUCTION AMPLITUDES

Under the assumptions stated in Sec. I, the produc-
tion amplitude will have the form indicated by the
typical production diagram shown in Fig. 1, that is,
the amplitude is a product of a production vertex
indicated by the shaded box in the diagram, a propa-
gator (jl AF Ii& indicated by the heavy line ij, and a
decay vertex D, . The lines labeled a, b, c, . - are meant
to symbolize an arbitrary set of incoming and outgoing
particles.

D; and V; are assumed to be independent of k' over
the energy range in which the pole terms in the propa-
gator dominate. Then the amplitude for production of
the final state d, for some production process p, which

proceeds via the intermediate particle states la&, is

given, for fixed momentum transfer, by

~"(k') =&',~ »(d)&jl ~~'(k') l~&V'(p) (22)

The factor (jlhz'(k') li& can be rewritten in a more
useful form in terms of the elements of the matrix 5',
by taking matrix elements of Eq. (6). Thus, according
to Eqs. (1), (6), and (11)

(j I
~~'(k')

I
~&=Z- & -&*-/L&' s-3+Q'(k'), (»)—

The amplitude may then be written in the form

Ad„(k') =p. LD (d) V.(p)/(k' —s.)]+Ed,(k'), (24)

where
V=+, P, V,

D =Q, DiP,„

(25a)

(25b)

are the production and decay vertices for particles of
type o., while

~"(k') =2', ~ »(d) Q~'(k') V'(p)

is a slowly varying remainder function.
This amplitude describes a process in which several

resonances are participating. Since z corresponds to
the square of the complex mass, it is convenient to write

(26)

where 3f is the real mass and I' is the width of the
resonance. Since I' is usually much less than 3f, it is
a good approximation to write

M '=Rez,
I' = —3f 'Imz . (27)

V. STRUCTURE OF THE ~, go, P PROPPGATOR

We shall now apply these general considerations to
the specific problems of co, p', p mixing. In accordance
with the notation suggested in Sec. 2, the "bare state"
labels i=1, 2, 3 are defined as follows:

i=1
1=2
1=3

unitary singlet

unitary octet

unitary octet

I=O,
I=O,
I 1

where the charge is zero and S=O for all three states.
Thus i =3 corresponds to the "bare" p' particle, while
i=1 and 2 refer to the "bare" or and p particles. Then
in the

I i& representation the matrix W takes the form

'Wi(s) t(s) e(s)
W(s) = t(s) W2(s) e'(s)

. e(s) e'(s) W, (e).
(2g)

The z dependence of each of the matrix elements may
be determined from the fact that W(s) is expected to
have the form of a complex (mass)' matrix

FrG. 1. Typical diagram for production and decay of unstable
particle. The boxes labeled V; and D; designate arbitrary produc-
tion and decay processes for the unstable particle states denoted
by i, j. Incoming and outgoing particles are designated by a, b,
C ~ ~ ~

W(s) =E(s) i, Q, P, (s) (s—b—,)i., (29)
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where R and P, are slowly varying matrix functions
of s, b, is the threshold for channel c, and the —.,' power
appears because at the threshold for each channel the
outgoing particles are in p states.

We may de6ne a complex mass mj Mj giT, for the
"bare" state denoted by

I j) as the solution of the
equation

W, (mP) =my, (30)

is diagonalized and then H/' is rewritten in the new basis
and the diagonalization is completed. The erst step
serves to define states

I
&p(0)) and I(0&0&) corresponding to

the "physical" p and (0 particles in the absence of the
electromagnetic mixings. The 6nal step produces the
true physical states Ip) and I(0).

VI. DETERMINATION OF (0&0) AND I))(0) STATES

The complex masses of the particles denoted by &&0)

and or(') are determined from the roots s "' of the
secular equation

which are
det[r()(s ('&) —s.&0&(=0, (31)

"'=l[W ( "')+W ( "')+ ( "')3, (32)

S„«&=-',[Wi(S (0&)+We(S„&0))—r(S &0&)], (33)

where we have introduced

r(s) = ([Ws(s) —Wi(s) j'+@'(s)}'
The solutions of the eigenvector equations

which would follow from Eq. (3) if there were no
mixing. The mixing of the singlet and octet states is
governed by the symmetry breaking coupling t, which
is almost of the same order of magnitude as the Wj. On
the other hand, e and e' are electromagnetic couplings
which are expected to be of the order of I/137.

Solution of the eigenvalue problem Eqs. (3) and (4)
for this case is more transparent from a physical point
of view if it is carried out in two steps: erst the sub-
matrix

Wi(s) t(s)
t()(s) =

t(~) 0', (E))

Although from Eq. (29) it is clear that W(s) is
sensitive to s near a threshold, only the imaginary part
of W(s) is significantly affected since the widths, I',
are small compared to the masses 3I . Therefore we
may take Re(W(s)) to be independent of s. Further-
more, we shall show later that $ ', as given by Eq. (37),
is insensitive to the values of ImW;(s) within a reason-
able range. Therefore, for all practical purposes, the s
dependence of W may be ignored in evaluating Eq. (37)
and W, (s) may be replaced by mP, which is given by
Eq. (30). Then

$„'=$~'= $'= (s~&') —mss)/(s0 &'& —mrs) . (39)

Again, since I(s„&0&)—t(sq(0)) is of the order of I', the
sum of Eqs. (38) leads to

S0&0&+S.&0& =mis+mss (40)

Re (mx0') =-,' Re (m0')+4 Re(ms') (42)

provides the value Re(mss) = (0.930 BeV)'. Im mss can-
not be obtained by such direct means, but, as mentioned
earlier, s turns out to be fairly insensitive to its value.
This can be seen from the following tabulation of s' for
a wide variety of values of I'2.

which agrees with Eq. (12).
By means of Eqs. (39) and (40) it is possible to

determine s' from a knowledge of the complex physical
masses (assuming electromagnetic effects are small)
and a presumption about the complex "bare" mass m2.
For example, recent experimental evidence' indicates
that

My=1.018 BeV,
I'p=0.003 BeV,

M„=0.784 BeV,
I'„=0.010 BeV.

From these values, s~"' and s„("may be obtained by
means of Eq. (27) since the difference between s and
s «' for u=(0, p is presumably small. If, in addition, we
assume the Okubo mass formula to hold with the bare
g particle chosen to be a member of the vector meson
octet, then the mass formula

z()(s (0))1t, (0) =s (0)y (0)

are given by the transformations

0-")= (1+$-') '"[II)+$-I2)j,
&e"'= (1+$ ') "'L—$.I1)+ I2)j,

where

(34)

(35)

I'0 ——0.03 BeV, $0 64+0 16.i, $=.0.8+0.1i,

I'0 ——0.01 BeV, $'=0.64+0.03i, $=0.8+0.02i,

F2——0.001 BeV, s'= 0.64—0.03i, s=0.8—0.02i.
(43)

We note that the connection between s and the mixing
parameter sink introduced by Sakurai' is

It is useful to note that
sink= —$(1+$') I (44)

$ [s (0) W (s (0))]/[s (0) Wr(s ( ))j
and also

s «&=W, (s„«&)+I(s &'&)$

s, &o& = W, (s, o ) I (s, o )$, . —

(37) in the approximation that the mass matrix, and there-
fore s, is real. This approximation leads to s=0.8

7 N. Gelfand, D. Miller, M. Nussbaum, J. Ratau, J. Schultz
et al. , Phys. Rev. Letters 11, 436, 438 (1963).

(38) ' J. J. Sakurai, Phys. Rev. Letters 9, 472 (1962).



MIXING EFFECTS FOI& @, o), AND p MESONS

and

V„('&= (1+s') '/'LV1+sV2j,
Vo(') = (1+s2) '/2p —sVi+ V2j, (46a)

D ("=(1+s') '/')Di+sD2jy

Dz( &= (1+s') '/'L —sD1+D2$. (46b)

It is particularly convenient to consider those special
production or decay states for which the vanishing of
some of the vertex functions D or V is guaranteed by
selection rules. For example, consider the case in which
EX pairs are observed as the decay product. Then,
since the unitary singlet does not interact with the EE
system,

Di(EE)=0.
Therefore Eq. (46b) can be simplified to read

D„( ) (EE)=s(1+s ) '/'D2(EE) =sD~( ) (EK) . (47)

Other similar relationships may be found in cases where
analogous selection rules apply.

VII. ELECTROMAGNETIC MIXING

We now consider the full matrix W given by Eq. (28).
The first step is to write 8' in the new representation
which diagonalizes m, namely,

W'(z) =0(') (z) W (z)Q(o) (z) . (48)

In the approximation that the z dependence of W may
be ignored, the matrix 0"& is found from Eq. (35) by
setting s~ =s„=s. Then

with

-z (0)

w'= o
0 q

zg&') q'
q' z, (0).

(49)

and

q= (e+e's) (1+s')—'/',

q'= (—seye') (1+s') '", (50)

the last notation being introduced merely for the sake
of uniformity.

because all the widths involved in the mass matrix are
small. The value s=0.8 leads to X=39' in agreement
with the value obtained by Sakurai.

In the approximation that 8' is constant, the com-
ponents of the states P "& may be obtained from
Eq. (35):

y „(')=(1+s') '/' P "'=s(1+s') '/'

( '= —s(1.+s') '/' P (0)= (1.+s') '/' (45)

From these, the transformed propagator Eq. (23) may
be written down directly. Note that in this approxima-
tion of constant W, the remainder terms Q,; in the
propagator, vanish. We may also obtain the production
and decay vertices for the particles (o(o) and l&)(o) by
applying this transformation to Eqs. (25a) and (25b):

Although the electromagnetic coupling measured by
q and q' is presumably small, the perturbation q will
have a large effect because the p-co mass diGerence is
comparable to their widths. On the other hand, q' may
be treated as a small perturba, tion since the (t mass is
far removed from the other two. The effect of this
perturbation is not large enough to be interesting at
present. Therefore, we need only to consider the
diagonalization of the submatrix

z.(')
q

zp("//
(51)

of 8".Here v' may be treated as a constant independent
of z.

The solutions, z, of the equation

detLv' —z j=0 (52)

where, a,s in Eq. (39),

o'= (z,—z, (")/(z, —z„('&) .

Furthermore, the analog of Eq. (35) is

(55)

where P, "—=
~
3).

The parameter 0. is sensitive to small changes in the
"zero-order" masses z ") and z," because their differ-
ence is comparable to their imaginary parts. Therefore
0- must be treated as an unknown complex mixing
parameter. The location of the poles z„and z, may be
determined from the experimental data by examining
in detail the energy dependence of the 2x and 37t-

production amplitudes. To describe the production
amplitudes, note that, according to Eqs. (55) and (45)
the components of the 1/( are:

1
—(1+K2)

—1 /2 (1+$2)
—1/2

lP =s(1+02) 1/2(].+s2) 1/2

=0-(1+o')—'/'

0 (]+o2)—1/2(1+s2) —1/2

i/2 = 0s(1+0 ) 1—/ (1'+s )
—(1+0 2)

—1/2

and the components of Pq are the same as those of Pz('&.
These components may be inserted into Eq. (23) to
obtain the complete expression for the transformed
propagator. The production and decay vertices are

are then, to a good approximation, the desired poles.
In analogy to Eqs. (38), they are found to be

z„=z„('&+go,

(53)
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found from Eqs. (25a) and (25b):

V (1+&2)—112LV (0)+&V&g

V.=(1+ ') '"L-—V-"'+V j (57a)

and
D = (1+0 ) i~2$D ( i+0'Dsj

D,= (1+0')-'~'L —oD„"&+D3j,

D, =D,&o&,

where y„t'0&, I/'~('&, D () and D~& ) are given by
Eqs. (46).

VIII. SOME APPLICATIONS TO PRODUCTION
AMPLITUDES

The production amplitudes are given by Eq. (24) in
terms of the V and D which, in turn, maybe obtained
from Eqs. (57) and (46). We shaH focus our attention
on the behavior of the amplitudes near one of the
resonances so that the slowly varying remainder term
in Eq. (24) will be dropped. In this approximation, the
production amplitude takes the form

Ag„(k') =D-(d) V-(p) D.(~)V.(p) D~(d) V~(p)+ +
k GQ) k sp k' —sq

where

Ag (k') =O.Dp(27r)U„

A 3 (k') =D„(3m) V.

»k Sp k SQp»

—o2i' 1

k' —
op

k' —s„

(60a)

(60b)

f= Vp/o V .
Equations (60) can then be further simplified to

(61)

where sp ——s~('&.

%hen the 2x and 3m decay modes of the co and p are
considered, the expressions Eq. (57) are simplified by
the fact that the states P„&'i, P@ioi cannot decay into
the Zn. state and the state

~
3)—=P, &'i ca,nnot decay into

the 3' state. Therefore

D„(Zm) =OD„(Zm),

D, (3~)= —a.D„(3m),

Dp(Zm) =0.
In the immediate neighborhood of the p and ~ poles,

the contribution of the P pole may be treated as a
constant which is ignored along with other nonresonant
contributions that have been dropped. Then the
amplitudes for production of the 2~ and 3m modes given
by Eq. (58) are

The form of these amplitudes is particularly simple.
Each is the product of two Breit-Wigner resonance
curves in the square of the energy times an inverse
Breit-Wigner curve or a "dip."The location and width
of the two resonant peaks are independent of the mixing
parameter 0- and the production process and are given
simply by s„and sp. The location, nsq, and width, 1 q, of
the dip depend on the production process and the
mixing parameter as well as the masses and lifetimes.

without attempting to fit data, certain qualitative
remarks can be made. If one pion exchange processes
dominate in the reaction n=+ p ~ 3n.+n, then it follows
that the corresponding production vertex V„('~=0 and
hence, according to Eqs. (57a) and (61), |= 1/0'.
Therefore the coeKcients of the first and second terms
in Eq. (60b) are equal and opposite with the result that
the numerator in Eq. (62b) is constant. The shape of
that spectrum will then be dominated by the resonance
curve of smaller width.

Similarly if one studies ~ +p~ 2~+v and selects
only those events proceeding through one-p exchange
processes as shown in Fig. 2, then V3——0 and i = —1.
Hence the two terms in Eq. (60a) have equal and
opposite coefficients, and the spectrum is again domi-
nated by the narrower resonance. Since the ~ width is
considerably smaller than the p width, the term
1/Lk' —s„jwill dominate and the Zm. mass spectrum will
peak at k'=m '.

It is obvious from the above that the position of the
peaks and the shape of the curve depend on the produc-
tion mechanism, and hence on the momentum transfer.
Therefore a variation in the apparent location of reso-
nance with momentum transfer is to be expected as
noted by Bernstein and Feinberg. ~

It is interesting to note that even if the co and p
masses are nearly degenerate, a mass splitting can be
induced by the interference dip to give masses in agree-
ment with experiment. Thus the curves shown in
Figs. 3 and 4 of the 2z and 3~ mass spectrum, assuming
on the one hand (Fig. 3) a near degeneracy of the p and
&a masses and on the other hand (Fig. 4) that s, and z„
are close to the experimentally observed peaks, bear a
close resemblance to one another.

However the 2~ amplitude drops oQ more slowly
outside the resonance region in the degenerate case,
which leads to an apparent broadening of the peaks.
Since the interference of the resonances with back-
ground e8ects has not been taken into account, these
details are not to be taken too seriously and the result
is to be looked upon as the suggestion of a qualitative
effect.

k' mg'+i nzgI'd—
0C

P' —s,)[k'—s.)
k' md'2+in—g'I'g'

oc

Lk2 —s,]fk'—s„j

(62a)

(62b)

FrG. 2. Diagram iIIus-
trating 2~ production
in ~-p interaction pro-
ceeding via one-rho
exchange.



MIXING EFFECTS FOR @, co, AND po MESONS

(63)As„(k') =

It is known' that the p7r decay rate of the physica, l Q

state is strongly inhibited, that is, the ratio of px to EE
intensities in an arbitrary production process appears to

Equation (58) may also be applied to the study of
the relationship between co and d production processes.
In this case, attention is directed to resonance states
with G= —1; hence, the contributions of the p pole
term in Eq. (58) may be dropped and the relevant
production amplitude is

D-(d) ~-(P) D4(d) Vs(P)

Sa

S
2

4l

I I I I720 750 740 750
I I I I I

780 TSQ 8QQ

cs
I 2-
L

FIG. 4. Production amplitudes for 2'. and 3x assuming non-
degenerate p, ca masses, calculated from Kq. (62) using: si, =730
MeV, F,=50 MeV, m =790 MeV, I'„=20 MeV, my=760 MeV,
Fq ——60 MeV, mq'=705 MeV, Fq' ——40 MeV, and a common value
of s, U„, and V~.

may account for the experimental result if ImDs(ps. )/
Dt(ps. ) is also small. In view of the contribution of the
imaginary parts, the existence of a weak pm mode of
decay of the P particle would be expected.

I I I I I I I IT20 730 740 750 760 770 780 790 800

MeV

FiG. 3. Production amplitudes for 2~ and 3'- with nearly
degenerate p, &o masses, calculated from Eq. (62) using: m, =755
MeV, 7~=90 MeV, m =765 MeV, I'„=60 MeV, my =760 MeV,
Fq-—30 MeV, mq'=745 MeV, Fq'=30 MeV, and a common value
of s, V„, and U, .

be very small near k'=s&. This ratio is proportional to

I
Ds(p~)l'

IDsV«) I'
(64)

The value of Ds(EX) is given by Eqs. (57b) and (47)
while De(p7r) is given by Eqs. (57b) and (46). From
the experimental evidence that Ds(ps.) is very small it
may be concluded from Eq. (46) that

s = Ds(prr)//Di (ps ) . (65)

This result appears to involve Neo accidental equali-
ties, one for the real and the other for the imaginary
parts of the expressions on the two sides of the equa-
tions. However, since Im(s) appears to be very small,
as indicated in Eq. (43), the condition

Re[D2 (p7r)/Di (ps )g (66)
'P. L. Connolly, E. L. Hart, K. W. Lai, G. London, G. C.

Moneti sI al. , Phys. Rev. Letters 10, 371 (1963).

requires a generalization of the usual de6nition of the
Heisenberg fields q, (x) since the character of the bare
particle "i"changes in time due to particle mixing. In
principle, a more direct procedure would be to define
the propagator in the physical particle representation,
denoted by labels n, in which there is no mixing. How-
ever it is just the transformation to these states which
we seek and we wish to express it in terms of the states

I j) for which the quantum numbers, such as SUs
representation and isotopic spin, are well de6ned. It is
possible to define a field rp,

'"(x) that'develops in time
like a free 6eld, and therefore may be used to dehne
states having the quantum numbers j. Then the
Heisenberg 6elds labeled with j may be defined as those
Acids q;(x) which satisfy the equations of motion
governed. by the full Hamiltonian and the boundary
conditions

[s (x)3=-.=[sf' (x)J (A2)

in the usual sense of Lehmann, Symanzik, and Zimmer-
mann. The connection between the fields may then be
expressed by the formal equation

vr(x)= v" (x)= U(I ~)v~* (x)~(—~ I) (A3)

APPENDIX

The formal expression Eq. (14) for the propagator
matrix,

&&l~~'(x' —*)
I
j)=(ol &I '(x')I (x)&&lo)
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