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The notion of a rigorous internal symmetry implies an over-all symmetry group G that contains the in-
homogeneous Lorentz group as a proper subgroup. Such a rigorous symmetry does not automatically require
degenerate mass multiplets. But over-all symmetry groups that are compatible with mass splittings are
severely restricted as follows. Assume the generators of G are the Lorentz generators and the generators of
either a semisimple or a compact Lie group. If the Cartan subalgebra of its semisimple part is Lorentz
invariant, then all the generators of the internal symmetry are Lorentz invariant and therefore there can be
no mass splitting. In particular, if the internal symmetry is SU(3) and T, and F are Lorentz invariant, then
all the generators of SU(3) are Lorentz invariant.

~ 'HE known mesons, baryons, and their resonances
have been successfully identified with irreducible

representations of the group SU(3). The members of
an SU(3) multiplet all have the same mass. This
degeneracy can be resolved by introducing a mass term
that is not invariant under SU(3). Lorentz invariance
is treated completely separately from the internal
symmetry.

An alternative approach that has been considered'
is to search for an over-all symmetry group G that
contains SU(3) and the inhomogeneous Lorentz group
2 as subgroups but is not a direct product, so that at
least one of the generators of SU(3) does not commute
with all the Lorentz generators. Then an irreducible
representation of G will already contain different masses.
The usual classification can be retained only by re-
quiring that the s component T, of the isotopic spin„
the magnitude T', and the hypercha, rge I"commute with
all the Lorentz generators.

We shall show that there are severe restrictions on
such combined groups. ' In particular, if the generators
of the group G are assumed to consist only of the
generators of SU(3) and 2, and if T, and V commute
with all the generators of 2, then

G= SU(3) 2.
We shall prove a more general result. Let the internal
symmetry group be assumed to be a semisimple group'
of rank /; The canonical set of generators H; and E
satisfy the commutation relations

The B;, provide the commuting observables that label
states. [For SU(3), l=2, so there are two quantum
numbers that are linear in the generators of the sym-
metry group. ]Let the generators of the inhomogeneous
Lorentz group be L, (p=1, ,10) and

[L„L.]=Q,),.'L„
where X, ' are the structure constants of the Lorentz
group. Let us assume that the quantum numbers are
Lorentz invariant, i.e.,

[8;,L,]=0.

We then prove that

[E.,L,]=0,

so that Eq. (1) holds.
I'roof: The most general expression for [E„,L,] is

[E~)Lp] Zsx~p Es+ZO+p 82+Z~~~p

Consider the Jacobi identity

[[E.,L,],8;]+[[L„H;]E.]+[[8;,E.]L,]=0. (g)

From the commutation relations (2), (3), (5), and (7),
we have

Pp(x ps'„(P) —x p~R;(rr))Es
—P,y„&R;(n)8;—Q,a., 'R; (n)L,=0. (9)

For every n, R;(n) &0 for at least one value of i, and
R;(cr) &R„.(P) for at least one value of i if u&P. Therefore

[8;,8;]=0 (i,j=1, ,/),

[8;,E.]=A;(n)E. .
(2)

(3) and

y,&=0, u, =0,
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Xp=6 Xp.P — P

Next consider the Jacobi identity

l[L„L.]&-I+ l[L.,E-]L.l+ l[E-,I-.]I.1
=o (12)

Evaluation of the terms yields

Q,Xp. 'x.,E. x.x.„E +x —px„.L~'. —
= —Q,X„,'x, „E =0. (13)
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Since, for every 7, we can choose p and a. so that A„'/0
and X„"=0 for r'&r, we conclude from (13) that
x,=0. Thus [E,L,]=0 and Eq. (1) holds.

The theorem also holds for any compact internal
symmetry group. ' Then, if the group is not semisimple,
it is the direct product of a semisimple group and an
Abelian group (toroid). The generators of the toroid
commute with all the generators of the internal sym-

L. Pontryagin, Topological Groups (Princeton University Press,
Princeton, New Jersey, 1939), p. 282.

metry group, and the proof of Eq. (6) remains un-
changed.

Our proof does not exclude the possibility that the
internal symmetry group and the Lorentz group are
embedded in some larger symmetry group. ' If this is
the case, one must face the problem of interpreting the
additional syIIImetry operations associated with this
larger group.

' For a particular attempt, cf. Ref. 1.
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The following processes of 2 octets transforming into 2 octets are discussed on the basis of crossing sym-
metry; I'+8 ~ I'+8, 8+8 —+ 8+8, I'+ V —& I'+V, ~ ~ ~ and their crossed channels, where 8, I', and V
represent baryons, pseudoscalar mesons, and vector mesons, respectively. The relation between channel
amplitudes, the number of independent channel amplitudes, and spin selection rules are systematically
obtained.

A SET of states that transform into one another
under the unitary transformations SU3 will

form multiplets that are labeled by two quantum
numbers (X,lc). In the octet model, " the baryons
8= (1V,Z,A, ), the antibaryons 8, the pseudoscalar
mesons I' = (Ep,r,Z), and the vector mesons V
= (J *,p,cp',Z*) are assigned to the (1,1) representation
of the group SIJs. The amplitude (ab i cd) for the reaction
a+A —&c+d can be described as two octets trans-
forming into two other octets.

Two octets (1,1) can couple together to form the
product representations (2,2), (1,1)„(0,0), (0,3), (3,0),
and (1,1),. The representation (1,1), transforms with a
positive phase whereas the representation (1,1), trans-
forms with a negative phase under an R transformation'
that is independent of SU3. There are thus six channel
amplitudes A27, A8„Ay, A]0, Ago, and A8 which are
diagonal elements of the 5 matrix for the representations
(2,2), (1,1)„(0,0), (0,3), (3,0), and (1,1)„respectively.
There are also two nondiagonal channel amplitudes
A„and A„ that couple the representations (1,1), and
(1,1),.

One can sometimes obtain relations among the channel
amplitudes by use of invariance under time rever-
sal, (ccb~cd) ~ (cd~ah), charge conjugation, (ah~cd) ~
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(ah lcd), and parity operation —all of which hold in the
strong interactions —together with crossing symmetry.
tA'e shall see that most of the relations follow only from
time-reversal invariance in the direct channel (channel
I).

I,et us de6ne the three channels I, II, and III as
follows:

Channel I: (ab i cd), amplitude =A;
(ca

i d5), amplitude= 8;
(cb i ad), amplitude =C.

Channel II:
Channel III:

Then the amplitudes A, 8, and C are related to each
other by crossing symmetry; i.e., A = O&ld and A = 03C,
where the crossing matrices 02 and 03 are' 4

(ab]cd) ~ (ea[db).

This results in A ~ —A, A, ~ —A „C ~ —C, and C, —+
—C„,where A, represents Art), A10, and A8, .

4 The crossing matrix has been considered by R. E. Cutkosky,
Ann. Phys. 23, 405 (1963); D. E. Neville, Phys. Rev. 132, 844
(1963);J. J. de Swart, Nuovo Cimento 31, 420 (1964).We thank
S. Okubo and B.Lee for pointing this out. Equation (1) is read as

=7 1 1 1-1 1
A 27 827+ 88 + 81 810 810 88

40 5 ' 8 12 12 3

The implications of time-reversal in elastic scattering in con-
nection with SU3 have been remarked on by P. G. O. Freund,
H. Ruegg, D. Speiser, and A. Morales, Nuovo Cimento 25, 307
(1962); P. Tarjanne, Ann. Acad, Sci. Fennicae Ser. A VI, 105
(1962).

3 From the crossing matrix for A =028, one can obtain A =03C
in the following way:

(abicd) ~ (ba(cd) ~ (eaibd) -+ (eaidb),


