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Nucleon-nucleon scattering is studied for laboratory scattering energies over the 0 to 320-MeV range for
states with angular momentum l & 1.Our central hypothesis is that the interaction may be represented by a
series of one-boson-exchange potentials. To this end, we attempt to fit the phenomenological models of
Lassila et al. (Yale) and of Hamada and Johnston with the series of one-boson-exchange potentials due to the
p, co, x, and q, with the meson-nucleon coupling constants taken as adjustable parameters. We find that ad-
ditional attraction is required in the central potentials, and we provide this by introducing two scalar mesons
of isotopic spin 0 to 1, respectively. We next consider the nucleon-nucleon phase shifts that have been deter-
mined through phase-shift analysis of the E-E data by several groups. We achieve reasonable fits to the
P, D, and P states with the following searched parameters: g„'=7.0, g '= 11.'7, g '=21.5, g,s=0.68, f,/g,
=1.8, mo ——560 MeV, go'=9.4, m1=770 MeV, and g =6.5; the parameters of the T=O and T=1 scalar
mesons are identified by the subscripts 0 and 1, respectively, and

&'.a"'= (4 )'"g N~YV p + (4 )'"(f,l2ra. )g «""NLS,9, S,9.3—
Predetermined parameters are m, = 760 MeV, m =782 MeV, m =1382 MeV, m„=548 MeV, and f fg =0.
Because of the r behavior of the potentials at the origin, all potentials are set to zero within 0.6 F.This has
(surprisingly) little eGect in most states but does eliminate bound 'P2 and 'F4 states. The eBect of including
the @and the relation to other experiments is discussed.

I. INTRODUCTION

HIS is the second in a series of articles treating the
low-energy nucleon-nucleon interaction in terms

of the new mesons or multipion resonances. The
assumption is that the N-N scattering amplitude is
mainly given by the one-boson-exchange terms, or poles,
of the new mesons. Unitary is introduced by treating
the Fourier transform of each Born term as a potential
(the so-called one-boson-exchange potential) and in-
serting the sum of these potentials in the Schrodinger
equation. The resulting amplitudes resemble the Born
predictions, with the unitarity correction becoming
smaller with increasing angular momentum.

In the first article of this series' (let us designate it I)
we treated the p-p interaction in terms of an effective
vector meson (&d-p), a scalar meson (T=O, 7=0+) and
the pion. The results were suKciently encouraging to
motivate this present analysis of the combined p-p and
ri-p problem. Other authors have also investigated N-N
scattering in terms of one-boson-exchange potentials
(OBEP), particularly McKean, ' Lichtenberg, '
Hoshizaki, Otsuki, Watari, and Vonezawa, ' and
Babiicov. s Ramsay' has studied the P-P interaction in
high-angular-momentum states in terms of just the pole
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contributions of the mesons in I. Sawada, Ueda,
Watari, and Yonezawa' have considered the same
(effective) mesons and extended the p-p fits down to I'
waves, using the E matrix to generate unitarity.

Another school has employed similar Born terms but
used dispersion relations in generating unitarity. Such
an approach embodies essentially the same physics as
the potential approach. Important contributions in
this regard have been made by Scotti and Wong. '
Riazuddin and Moravcsik, ' and Kantor" have also
contributed to this approach.

In the work which follows, we shall investigate the
N-N interaction by first fitting certain phenomeno-
logical N-N potentials with an appropriate sum of one-
boson-exchange potentials. After that we shall 6t the
actual nucleon-nucleon phase shifts. It is advantageous
to first fit the potentials because they constitute a much
more simple problem and it is possible to understand
the role of each meson. The potentials are cast in the
form

V= V&s&+~i ~sV&'&.

This decouples the contribution of the T=O and the
T= I mesons as these may contribute only to V(" and
V('), respectively. The potentials V&" are further broken
down into the form

V"&(r)= Vo&O(r) 1+V &'&(r)ot. a.s

+VT&'&(r)512+ VLS '(r)L' s.
7 S. Sawada, T. Ueda, W. Watari, and M. Yonezawa, Progr.
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In principle, there should be a fifth term (quadratic
spin-orbit), but it is neglected here because the one-
boson-exchange potentials do not have such a term in
the nonrelativistic approximation employed here.
Fortunately, it is still possible to fit the data (excluding
S waves).

The most interesting feature to emerge from this
study is the dynamics of the several contributing
mesons. The pion, of course, provides the long-range
force. The co provides the "hard core" and short-range
spin-orbit attraction in V&" as accurately predicted by
Xambu " Fujii " Breit," Sakurai '4 " and others. A
T=0, J=0+ meson —with the quantum numbers of
the ABC particle —is introduced to provide the inter-
mediate-range attraction necessary for nuclear binding
as well as phase shift fits. The p meson shows up most
clearly in the cancellation of the pion contribution to
Vp(" at short distances; the p's spin-orbit and spin-spin
effects are less pronounced but still important in fitting
the data.

One other meson is postulated, with quantum num-
bers T= 1, J=O+. It is introduced to provide an attrac-
tion observed in the phenomenological form of Vg"'
just as the 7=0, J=0+ meson is introduced to provide
the attraction in Vg(". The 6nal meson considered is
the q, whose principle importance is found to lie in the
cancellation of the tensor contribution of the ~.

There result in all six mesons, three with isospin 1
and three with isospin 0. Each set of three is comprised
of a pseudoscalar, a scalar, and a vector meson. To fit
the phenomenological potentials the meson-nucleon
coupling constant of each of the mesons is adjusted;
also adjusted is the mass of each scalar meson.

After the empirical potentials are matched we
attempt to fit the experimentally determined phase
shifts. These phases are Gt over the 0- to 320-MeV
laboratory-scattering energy range. Only I', D, and Ii

phases are fit. The two 5 states are not investigated
here as these are subject to extreme short-range effects
and should probably be fit with two additional phe-
nomenological parameters each (corresponding to the
scattering length and effective range) after the pole
parameters have been determined by the higher partial
waves. G waves and higher are also not fit, but for a
different reason: Their experimental determination
beyond the pion pole contribution is vague. However,
these waves are taken into account in the sense that g

'
is required to fall in the range determined by the higher
partials through Moravcsik-type analysis" of N-N
data.
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II. THE ONE-BOSON-EXCHANGE POTENTIALS

For the convenience of the reader we repeat the
formulas for the one-boson-exchange potentials which
were given in I. Derivations of these potentials may be
found, for example, in the paper by Hoshizaki, Lin,
and Machida "

For a T= 0, j=0+ meson (S), the interaction
Lagrangian is given by

~ .~= («)'"g,sA4 '"
and the nonrelativistic one-boson-exchange potential is

1m 2

U's'(r) = gs' — 1———4 (msr)
8 M'

1 ms 1 ms
+— 1—— — ~J(msr)L S msc'.

2M' SM'J

Here mal=scalar meson mass, Sf=nucleon mass, and
A'= c.= 7

C (x)= e-*/x
and

J(x)= (1/x)(d/dx)C (x).
For a T=0, j=0 meson (PS), the interaction
Lagrangian is taken to be

~'-~= (4~)'"gpsksA "",
and the one-boson-exchange potential in the non-
relativistic limit becomes

Vt~si(r) =gr s'(A (mpa'/3P)C (mpsr)rr, o,
+ s (mr 8'/3P)x(mi sr)Sis jmi sc'.

Here m~~=pseudoscalar meson mass, and

7C(x) = (-,'+ 1/x+ 1/x')C (x)

The tensor and spin-orbit operators have the usual
meaning

Sis ——3(oi r)(os r) —ot os, L S=-,'L (at+os).

cr~ and e2 are the Pauli spin matrices for nucleons 1 and
2; 1. is the relative angular momentum operator in the
center-of-mass system; r is the interaction separation
distance, with magnitude r and direction r".

For a T=0, J= 1 meson (V) the interaction
Lagrangian takes the general form

~'-i= (4~)'"g vs% 4.'"
+ (4rr)'@(f /2m )Po&"$/cl„g„t 1 B„P. —

with 0-&' and the y matrices defined as in Schweber,
Bethe, and de Hoffmann. " For convenience, in the
analysis to follow, we cast the corresponding one-boson-

17 N. Hoshizaki, I. Lin, and S. Machida, Progr. Theoret. Phys.
(Kyoto) 26, 680 (1961).

S. S. Schweber, H. A. Bethe, and F. de Hoffmann, Mesoes
and Fields (Row, Peterson, and Company, Evanston, Illinois,
1956), V01. I.
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NR Born values are systematically 4% higher than the
relativistic (i.e., exact) Born values; that the J= 1 NR
Born values do not err systematically, but are on the
average 6% in error in absolute magnitude for fy/gy= 0,
and 13% in error for fv/gv 2. ——The NR error at 300
MeV may be expected to be twice as great.

To determine the one-boson-exchange potentials for
T=1 mesons, where in the meson field operator p is
replaced by ~.P, it suilices to replace g' by ~i ~sg';
~~ and ~2 are the isotopic spin operators referring to
nucleons 1 and 2.

In solving for the phase shifts due to these one-
boson-exchange potentials, one inserts the sum of
potentials into the Schrodinger equation

—LA'/MgP'+++ U& )(r)g=~
-20

FIG. 1.A&, Rl,z, and R» plotted as functions of the ratio of deriva-
tive to direct vector meson-nucleon coupling constants.

1 Sly
yg„(fy/gy) — L'sC (mvr)er es—X(myr)S)sj

4 3P
3 tsar

+~zs(fv/gv) J(myr)L—S mvc',
2 3P

where
—,'(mv/M) fy

~c(fv/gv)= 1+
1+-', ( m/Mv)'g y

1+-,'(my/M)'fy '
&is(fv/gv)= 1+

—,'(mv/M) gv

4(mv/M) fv fv'
&r,s(fv/gv) =1+ +

z (mv/M)'gv gv'

nay=vector meson mass. It is apparent that each
function R converges to unity as fv/gv ~ 0, as it must.
These functions are displayed in Fig. 1. The formulas
for the vector meson OBEP are correct through order
(my/M)'.

In order to estimate the error incurred in taking the
nonrelativistic approximation, we have calculated the
phase shifts in Born approximation as given by (a) the
NR potentials above, and (b) the exact pole contribu-
tions. "At 150 Mev we find that the J=O and J=O+

'9 J. K. Perring and R. J. N. Phillips, Atomic Energy Research
Establishment Report No. R 4077 Harebell, England, June, 1962
(unpublished); and R. Bryan (unpublished).

exchange potential into a form corresponding to just
"electric" coupling for the vector mesons, modified by
factors due to "magnetic" coupling.

Pl g
v&v)(,)=g, )),(f„ya„)((+ . c(m, r)—

4 3P

and solves for the partial-wave scattering amplitudes.
We take Sf=938.5 MeV, and Ac=197.32 MeV-F. All
tabulated phase shifts are nuclear bar phase shifts as
de6ned in Stapp„Ypsilantis, and Metropolis. '"

III. THE NUCLEON-NUCLEON POTENTIAL

A. The Yale and Hamada-Johnston
Phenomenological Potentials

There exist at present two up-to-date potential model
representations of the 0- to 350-MeV nucleon-nucleon
scattering data. These are the models due to Lassila,
Hull, Ruppel, Mcoonald, and Breit," henceforth
referred to as "Yale," and the model due to Hamada
and Johnston, " to be referred to as "HJ." Both the
Yale and the HJ models reduce to the one-pion-
exchange potential at large internucleon separation
distances. We shall find these models extremely useful
in the construction of our own many-one-meson-
exchange potential.

First, however, we will want to eliminate a large
quadratic spin-orbit potential which appears in each of
these models, as none of the one-boson-exchange
potentials we shall consider has a quadratic JS term of
comparable strength. To eliminate the Yale and HJ
quadratic I-S potentials we shall simply replace the
corresponding quadratic IS operators by a linear
combination of central, tensor, and spin-orbit operators
with coeKcients chosen to yield the same matrix
elements in either I' or D states (whichever applies).
This will, in effect, convert the quadratic I.S potential
into a sum of central, tensor, and spin-orbit potentials.
These will be added to the original central, tensor, and
spin-orbit potentials to yield a new potential which
predicts the same I'- and D-state phase shifts. We shall
refer to this as the "modified" potential.

The modified version will of course predict different
5, F, and G phase shifts than the original, but the Ii

H. P. Stapp, Y. J. Ypsilantis, and N. Metropolis, Phys. Rev.
105, 302 {1957).

2~ K. E.I,assila, M. H. Hull, Jr, , H. M. Ruppel, F.A. McDonald,
and G. Breit, Phys. Rev. 126, 881 {1962)."T.Hamada and I. D. Johnston, Nucl. Phys. 34, 382 (1962).
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In the singlet spin states this operator is equivalent to
—L'. Thus, the total potential acting in the 'D2 state
is 'V, —6'V„ to use the Yale group's notation. We
define this sum to be the modified Yale potential in
singlet even states.

In the case of the triplet even states, we replace the
Yale quadratic LS operator by a linear combination of
central, tensor, and spin-orbit operators which has the
same matrix elements in triplet D states. This operator
is —2 1—(7/4)S)2+-,'-L S. The modified potential in
triplet even states thereby becomes

3V+=3Vc+1+3V2+S)2+3Vzs+L S
+'V,+(—2 1—(7/4)S)2+-,2L S).

One observes that the Yale potential is defined in
terms of singlet and triplet spin projection operators,
S=-', (1—oi o2) and T=-,'(3+oi o2) so that the poten-
tial may be written

V='VcS+ (3Vcl+2V2S)2+'VzsL S)j'.
The one-boson-exchange potentials appear most simply
using the operators 1 and oi o2, however, so we will

want to recast the Yale potential into the form

V= Vcl+ V.,ol'o2+ VTS12+ VLSL'S (3.1)

(with isotopic spin indices suppressed). This amounts
to defining the central and spin-spin potentials V~
and V„as

Vc= ~ 'Vc+3 'Vc
and

V —-' 'Vg —-'- 'Vg

The one-boson-exchange potentials exhibit an isotopic
spin dependence of the form

V((&)+~i.g2 V(i)

where only T=O mesons contribute to V&') and only
T=1 mesons contribute to V&'&. Ke will want to cast
the Yale potential into this same form. This is equiva-
lent to defining

V(0) 3 T 1V+ 2 T 0V=
and

V(1) X r=1V X r=oV

where ~=oV and ~='V are the potentials which act,
respectively, in nucleon-nucleon scattering states of

and 6 phases will not differ greatly because of the short
range of the Yale and HJ quadratic forces. The S-state
predictions will be different, of course, but this will not
affect the present study, as we will be treating only
P states and higher.

In the Yale model the quadratic spin-orbit potential
appears only in even angular momentum states. The
quadratic LS operator takes the form

!I( L)( L)+('L)(- L)3-(LS)'
2 . 2

isotopic spin T=O and T= j.. Both V"' and V(" are
understood to consist of linear combinations of central,
spin-spin, tensor, and spin-orbit potentials, as in
Eq. (3.1). The modified Yale potential thereby takes
the form

V= V ("&1+V.,(')o,+V "&S +V ('&L S
+t Vc")1+V,.")oi o2

+V2 ('&Si,+Vz, s "&L.Sj~i ~2. (3.2)

This potential has been calculated by us and is graphed,
in dashed lines, in Figs. 2 and 3.

Let us next consider the Hamada-Johnston potential.
Since Hamada and Johnston have derived their model
independently of the Yale group, using their own data
selection, it will be interesting to see how closely their
version agrees with Yale's. This will provide us with a
measure of the reproducibility, or uniqueness, of these
phenomenological representations of the nucleon-
nucleon scattering data.

The HJ potential has a quadratic spin-orbit potential
in both the even and the odd angular momentum states,
in contrast to the Yale potential which has a quadratic
LS term only in the even states. The version of the
quadratic LS operator appearing in the Hamada-
Johnston work is

Li,——(oi o,)L'—2L(oi L)(o, L)+(o2 L)(oi L)j
= —2(L S)'—L S+L'+ (oi o,)L'

In singlet states L12 becomes simply —2L'. Thus, the
potentials acting in the singlet states of angular momen-
tum L are

'V+='Vck —2I.(L+1)'Vz,z+

using Hamada and Johnston's notation. We will take
as the modified version those singlet potentials

'V ='Vt.- —O'VL, L,

V+=1U +—121V +

thus choosing for the 'I'~, 'F3, ~ ~ ~ states the interaction
strength previously manifest in the I' states, and for
the 'So, 'D2, 'G4, ~ states the strength previously
manifest in the 'D2 state.

In the triplet spin states, the operator L~2 becomes
—2(L S)'—L S+2L'. A linear combination of oper-
ators which has the same matrix elements in the triplet
P states is the quantity -', 1+-',Si2 (the LS operator
happens to have zero coeKcient). We take as the
modified version of the HJ potential for triplet odd
states

3V ='Vc 1+ Vz
—Si2+'V—zs LS—+'Vzz (-,

—1+-,'S„). —

For the triplet D states, the linear combination of
operators which yields the same matrix elements as L»
is the operator 4 1+2S22. Therefore we shall take as
the effective Hamada-Johnston potential for triplet
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even states

'V+='Vo+I+'Vr+R, +'Vrs+L S+sVrz+(4 I+,'Rs). -
The modified HJ potential is cast in the form of

Eq. (3.2). This potential has been calculated by us an
is presented in Figs. 2 and 3 in the form of alternately
long- and short-dashed lines.

Note hoer closely the Yale and HJ potentials agree.
It appears that Lassila et al. and Hamada and Johnston
have found a single-potential model solution to the
nucleon-nucleon scattering data.

B. The N-N Isoscalar Potential and
the T=O Mesons

Let us first consider the T=o mesons andd the
henomenological isoscalar potentia

'
l V"'. It is desired

to adjust the meson parameters such that the summ of

corresponding one-boson-exchange potentials re ro-
duces the empirical Yale and Hamada-Johnston
potentials. Actually, agreement will only be required
for internucleon distances greater than one F. S waves
will not be treated in this analysis, and the next most
sensitive waves to the inner region, I' waves, impact no
closer than one F at the highest energy treated in this
analysis (320 MeU). Further discussion on the insensi-
tivity o wavesf I' and higher to the inner interaction
may be found in Sec. IV.

The mesons whose OBEP are to match the isoscalar
henomenological potentials are the g, the 0.0, and the co.p eno

F o examination of the formulas for t ese OBEP
given in Sec. II one sees that the co OBEP includes aall

analysis
the t) OBEP include just two terms each, I and L for
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the o.o, and S1&and o1 o-2 for the g. Thus, the central and
spin-orbit potentials are to be given by just the OSEP
of the co and the o.o and the tensor and spin-spin poten-
tials by just the OBEP of the co and the q. These
qualitative facts appear in Table I, The quantum
numbers and masses of the bosons are taken from the
current literature such as summarized in the reports
of Roos" and Harkas and Rosenfeld"

I et us 6rst study the "experimental" potentials Vz &')

and V, ('&. These phenomenological forms are to be
reproduced by the S» and o& o2 terms of the g and cv

OBEP. The leading contributing terms are

Vr ' —— g„'', (m„'/M')x (m„r—)m~-
+g„'-,' (m„'/M')x (m„r)m„

"M. Roos, Rev. Mod. Phys. 35, 314 (1963).
24%. H. Barkas and A. H. Rosenfeld, Lawrence Radiation

Laboratory Report, UCRL Report 8030 Rev. , April, 1963 edition
(unpublished) .

and

V.,~'& =g„'-', (m„'/M')C (m„r)m
+g„'—,', (m„'/M')C (m„r)m„,

where we neglect derivative coupling for the
Examination of the Yale and HJ potentials, graphed

yg(P( yLg(P) 'yy(P) y (P) yp(1) @LB(1) yy(1) y 0) T JPg mass

O'P

~ ~

&1
P

0 + 3.9m~
o++ p
1 5.6m~O-- 1.Om0+- ?1-+ 5.4m
1 7.3m'

a G parity is such that every meson listed may be emitted at a nucleon
vertex.

TABLE I.Bosons listed under the terms to which they contribute
in the one-boson-exchange potential approximation. Boson
quantum numbers' and mass listed to the right of the particle.
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~o = 280 MeV

~o = 560M+V

a m,eson giving rise to a central attraction are 2+, for
the OBEP of 0 and 1+ mesons do not have a central
term. '7) Let us designate the postulated meson os. Some
experim, ental evidence in its favor is discussed in Sec. V.

The coupling constants of the ~ and o-p and also the
mass of the O-p, are to be adjusted such that the OBEP
reproduce the phenomenological central and spin-orbit
potentials. The appropriate formulas are, to lowest
order,

Uo&o& =g„'C (m r)m„—go'C'(mor)mo

20
0

0 10 20

Ur, s& & =g„'s (m„'/M') J(m.r)m.
+ go",—(mo'/~') J(m or)»o,

2~o

Pro. 4. Ellipses bounding the region of correlated isoscalar
meson-nucleon coupling constants as predicted from fitting
phenomenological potentials. The "X"'s denote the values
obtained after 6tting experimental phase shifts.

in Figs. 2(c) and 2(d) as dashed and dash-dotted lines,
respectively, shows that for r&1 F the tensor potential
vanishes and the spin-spin potential is positive. The
one-boson-exchange potentials above can satisfy these
requirements: The two S~2 terms above have opposite
signs plus sufficiently equal range (m„=5.6m,
m„=3.9m ), and the two et as terms are both positive.
Some work with a desk calculator reveals that the
values of g„' and g

' which allow the best match between
theory and experiment are approximately 11 and 23,
respectively. The latitude in this estimate is indicated
by means of Fig. 4(a), where g„s and g„' are taken to
be "x" and "y" coordinates and the most probable
correlated values for g„' and g„' span the area within the
ellipse.

Let us now consider the rem, aining isoscalar potentials
Ug(" and UL, g~". These are to be due to the OBEP of
the co and the oo. The Yale and Harnada-Johnston
versions, graphed in Figs. 2(a) and 2(b), show a strong
short-ranged attraction for VL, q&'~ and a strong short-
ranged repulsion for Ut.-('&. These eBects are character-
istic of the exchange of the J=1—

co, furthermore the
mass of the &o, 782 MeV, is correct for the empirically
determined range of Vl.q~p~. However, there is some

difhculty in 6tting the isoscalar centra/ potential.
Empirically, the strong repulsion at short distances
gives way to a mild attraction at intermediate distances
(the source of the binding of nuclear matter). Appar-
ently some other process has come into play. In keeping
with the spirit of the "pole" model, we assume this to
be due to the exchange of a new meson. In particular,
we assume this meson has quantum numbers T=O,
J=0+, as the OBEP of such a meson has an attractive
central term. " (The next lowest quantum numbers for

"Gupta has also postulated a T= 0, J=0+ meson LS. N. Gupta,
Phys. Rev. Letters 2, 124 (1959)j, but on the basis that such a
meson provides an attractive IS force. In our model, the o-0

provides only about 4 of the isoscalar LS force.

where the mass and coupling constant of the 0-p are rnp

and gp, respectively. mp must be lower than m„ in order
to give an attraction in Vg"~ of longer range than the
repulsion, but it must also be greater than 2m to agree
with the range as given by Yale or Hamada-Johnston.
Some desk calculator work shows that a mass of
mp=4m seems about right, for which g„' and gp' are
about 23 and 10, respectively, but if we take ms= 2m,
then g„' and gp' are about 28 and 1, respectively.
Fig. 4(b) gives further information. The most likely
correlated values for g„' and gp' are to be found within
the ellipses.

It is reassuring to note that the values of g„' just
determined are reasonably independent of the mass of
the O.p. The reason for this is that the co OBEP makes
the largest contribution to the LSpotential so variations
in the 0-p contribution do not vary the co contribution,
i.e., g„', very much percentagewise.

In summing up the results of the three OBEP Qt to
the isoscalar phenomenological potentials, the most
significant points seem to be (1) that the OBEP of the
g, the co and the 0-p can indeed fit the Yale and Hamada-
Johnston curves, and (2) that the &d-nucleon coupling
constant determined through the Ug&'& —Ul.g(') 6t is
consistent with the value determined through the
U„t"—Uz "& fit. That is, the ellipses in Fig. 4(b) fall
a]most entirely within the dashed lines depicting the
maximum extent of the ellipse in Fig. 4(a). Apparently
derivative coupling is not needed for the co. One set of
approximate values for the q, ~, and O.

p which produce a
ht to the empirical potentials in Born approximation
are g 23) gg 11) gp =10, and mp=4m~.

C. The N-N Isovector Potentials
and the T=1 Mesons

The N-N isovector potential is assumed to be given
by the sum of the one-boson-exchange potentials of
three T=1 mesons: the m, the p, and the J=O+ cri. The
gross features of these OBKP are listed in Table I. Note
that the p OBEP contributes to U~(", Ul, g&", U~(", and
V,&'~, but that the m OBEP contributes only to V&&"

and V„&'&, and that the 0.
p OBEP only to U &'& and
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V~8&'~ Thus, the p and the m are the source of Vp&"

and V "~, while the p and the o.
~ are the source of Vg("

and Vl, g('~.

The potentials Vz(" and V,"' will be considered
6rst. The appropriate meson theory contributions are

Ur~'&= gp'R—„(fp/gp) ,'(mp'-/M')g(mar)mp

+g.'-', (m.'/M')x(m r)m
and

U.. '~ =g.'R .(f,/g, )-:(,'/M')~(;),
+g, —,', (m. /M')C (m, r)m. .

40

29 R

10

tal
20

15

9 R f')t' LS
gp

10

I

(b)

Observe that the p meson has been assumed to couple
to the nucleon both "electrically" and magnetically, "
as evidenced by the term R» in the above equations.
(See Sec. II for definitions. ) This more general coupling
turns out to be necessary in order for the p OBEP to 6t
the empirical Vg&" and Vl.~(" potentials as well as the
empirical Vp&'~ and V, &'& potentials. Insofar as the
present treatment of Vp&'~ and V, ('~ is concerned,
however, it will only be necessary to search for the best
value of the product g,'R»—the determination of
individual term, s g,' and R» need be carried out only
after we analyze Vg"& and Vl.q"&.

The Yale and Hamada —Johnston work indicates that
Vz &" is attractive at short distances, but has a positive,
long-range tail, and that V,&'~ is always positive, but
decreases rapidly with distance. These features m, ay be
observed in Figs. 3(c) and 3(d), in which the Yale and
the Hamada-Johnston potentials are graphed as dashed
and dash-dotted lines, respectively. The characteristics
of these empirical potentials can be reproduced qualita-
tively by the x and the p one-boson-exchange potentials;
i.e., for the tensor potential, the x OBEP provides a
long-range repulsion (this comes as no surprise the
Yale and HJ versions incorporate the ~ OBEP) while
the p OBEP provides a short-range attraction, and in
the case of the spin-spin potential, both mesonic contri-
butions are positive. There is som, e slight trouble in
achieving a quantitative 6t, however. When g, R» is
adjusted to provide suf6cient short-range negative
cancellation of the tensor force of the m m,eson OBEP,
the concom, itant spin-spin contribution is too positive.
Still, a not unreasonable compromise is possible for

g,'R» =30 and g
' =11.Other possible correlated values

for g„' and g,'Ri2 are indicated in Fig. 5(a) as falling
within the boundary of the plotted ellipse. Note that
the range of values for g

' is somewhat below the
customarily quoted 6gure of 14 to 15.

There remain the central and spin-spin potentials to
be determined. The Yale and Hamada-Johnston ver-
sions of these potentials are graphed in Figs. 3(a) and
3(b). Observe that both Uc"& and Ui, s"' are attractive
and quite short-ranged. The short-range attraction in
the spin-orbit potential may be ascribed in a natural
way to the p OBEP. Not only is the p contribution of
the right sign, but the range is also correct. The short-

I I t

10 20

9

I

10 20

FIG. 5. Ellipses bounding the region of correlated isovector
meson-nucleon coupling constants as predicted from fitting
phenomenological potentials. The "X"'s denote the values
obtained after Gtting experimental phase shifts.

range attraction in Vg"', however, is something of a
mystery. The p OBEP contribution must necessarily be
repulsive, and no other known m, eson contributes here
in Born approxim, ation. We are lead therefore to intro-
duce another meson, or one-boson-exchange potential,
to provide the required attraction in the central poten-
tial. The choice of quantum numbers is again 0+, 2+, and
other states with J&2 as discussed before in connection
with the conjecture of the o-0. As before, we select the
quantum number 0+, as J=O is the lowest value
consistent with our requirements. The mass of the
meson should be in the range of 5.5m in order to
provide the correct short-range attraction. I et us
designate this meson the o-&, in analogy to the o.o

previously introduced. Further discussion on the o.i

may be found in Sec. V.
The p and the o.

~ contribute in Born approximation
to Vg(" and V1,8('& as follows:

Uc "&=g,'Re(f, /g, )C (m, r)m, gi'4 (mir)mi—

Urs~'~ =gp'Rrs(fp/gp)2 (m, '/M') J(m, r)m,
+gi2-,'(mi2/M') J(m, r)mi,

where g~ and mi are the o-~ coupling constant and mass,
respectively.

The factors Rg and Rl, q arise as a consequence of
taking both direct and derivative coupling for the p
meson. These functions are defined in Sec. II and
graphed in Fig. 1 over the range —4(f,/g, (4. In
6tting the OBEP to empirical potentials Vg&'& and
Vz, ~('& it will be necessary to search for both g,'Rg and

g,'Rr, s, or alternately, for both g,' and f,/g, . For the
present, however, we shall assume that f,/g, =0,
corresponding to the case of direct coupling only. Some
desk calculator work then reveals that the Yale and
Hamada —Johnston potentials can be reasonably fit
taking g,'=6 and gi2=14 with mi ——770 MeV. Recalling
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that Rc=Rrs=Rts= 1 for f /g, =0, we see that this fit
predicts g,'R»= 6. But this result is clearly at variance
with the determination of gp E» from the analysis of
Uz ('& and U, &" where it was found to be approximately
30.

Apparently direct coupling alone for the p meson is
incompatible with a simultaneous fit to all four isovector
potentials. 1A"hat is required, , rather, is an enhancement
of the p tensor contribution with respect to the spin-
orbit contribution. This is possible and occurs for
f,/g, = 1, 2, 3 or more, as may be seen in Fig. 1. For
each ratio f,/g„one redetermines g,' and gts by fitting
the Yale and HJ potentials Vot'& and Vl.st". One then
computes g,'R~2 and compares it with 30—the predic-
tion from the tensor and spin-spin analysis.

It turns out that indeed reasonable values for gp'E»
are to be found for f,/g, in the range 1(f,/g, (3.
Negative values for f,/g, do not lead to useful results:
With f,/g, & —2.9, g,'R isis much too large. For
—2.9&f,/g, & —0.3, Rl, s is negative and g,' assumes
negative, thereby unphysical, values.

A set of parameters for the p which leads to a reason-
ably good fit to all four phenomenological isovector
potentials is f,/g, =2 and g,'=0.7. The corresponding
0-~ parameters are g~'= 7 and m~= 770 MeV. The mass
of the fT& is taken to be 770 MeV in order to yield the
range of the empirical Vz('&. Actually nz& could vary as
much as 150 MeV either up or down.

In Fig. 5(b) there are plotted ellipses circumscribing
the estimated correlated values for gp EJ.Q and g~' for

f,/g, =0, 1, and 3, and one may observe that g,'RI, s is
reasonably independent of g~'. A similar graph, but
for mi ——560 MeV (not shown), indicates that g,'Rr, s
assumes nearly the same values for each ratio f,/g, as
it does in the case of mt =770 MeV. Thus, the p analysis
is insensitive to the m, ass of the 0-~. It therefore appears
that the parameters thus deduced for the p are inde-
pendent of the |7~ hypothesis much as the ~ parameters
are independent of the 0.0 hypothesis.

In summing up, the analysis of Sec. III reveals the
following facts: It is possible to fit the modified Yale
and Hamada-Johnston isovector potentials with the
m, p, and 0-& OBEP, just as it is possible to fit the iso-
scalar potentials with the g, or, and o.o OBEP. In each
case, it proves necessary to introduce a scalar meson,
the T=1 0.

~ for the isovector potentials, and the T=O
00 for the isoscalar potentials. One difference in the two
analyses is that it proves necessary to introduce
derivative coupling for the p but not so for the co.

Apparently, the nucleon-nucleon data are consistent
with zero "magnetic" coupling for the co. One set of
parameters which allows a fit to the Ducleon-nucleon
empirical potentials is g„'=11, g„'=23, f„/g„=0,
gs2=10, ms ——4m, g '=11, gp' ——0.73, fp/g =2 g '=7
and mi ——5.5m. .

Iv. THE NUCLEON-NUCLEON PHASE SHIFTS

The second phase of the research is the adjustment
of the poles to fit the experimentally determined phase
shifts over the 0- to 320-MeV laboratory scattering
energy range. The determination in the previous section
of the necessary number of mesons and concomitant
parameters provides a useful starting point. Indeed, if
the preceding fit to the potential models is valid,
additional adjustment of the parameters should be
minor.

It is fortunate that there is an abundance of nucleon-
nucleon data over the nonrelativistic scattering energy
range, and that these data have been reduced to a
unique set of phase shifts through the combined efforts
of several di6erent groups. A principal factor in achiev-
ing this unique solution has been the introduction by
Moravcsik" of his modified method of analysis in which
the higher partial waves are given by the pion pole
contribution. This single solution for the lower partials
is commonly referred to as "type 1," at least for the
T=1 states. In the T=O states there has appeared in
the literature just one solution consistent with the T= 1

type 1 solution. (Actually, there exists another T=1
solution, called "type 2."This solution crops up at some
energies, but type 1 is the only solution which can be
realistically extended over the entire 0- to 320-MeV
range. )

For our pole fit, we select the following type 1
modified phase-shift solutions to represent the experi-
mental data:

(1) A T= 1 energy-dependent solution spanning the
10- to 345-MeV range due to Breit, Hull, Lassila, Pyatt,
and Ruppel. " This solution is called YLAM by the
authors, and we shall refer to it likewise. The authors
assume g '=14. This solution is graphed as a dashed
line in Figs. 6, 7, and 8, for the I', D, and F states,
respectively. The other phase-shift solutions to be listed
below will also be graphed in Figs. 6 through 8 for I'
through F states.

(2) A T=O energy-dependent solution to go with
the T=1 solution YLAM. This solution, due to Hull,
Lassila, Ruppel, McDonald, and Breit,"spans the 14-
to 350-MeV range. The authors designate this solution
YLAN3M and we shall likewise. It is graphed as a dashed
line.

'(3) A T= 1, 0- to 400-MeV energy-dependent
solution due to Stapp, Noyes, and Moravcsilz. 28 The
authors provide a family of similar solutions and we
select the one designated MrDpox 1103 as this one seems
to have the most reasonable energy dependence. This
solution is graphed as a dash-dot curve.

G. Breit, M. H. Hull, Jr., K. E. Lassila, and K. D. Pyatt, Jr.,
Phys. Rev. 120, 2227 (1960); 128, 826 (1962).

2 M. H. Hull, Jr., K. E.Lassila, H. M. Ruppel, F.A. McDonald,
and G. Breit, Phys. Rev. 122, 1606 (1961);128, 830 (1962).

'8H. P. Stapp, H. P. Noyes, and M. J. Moravcsik (to be
published). We wish to thank Dr, Moravcsik for making available
to us the results of this analysis prior to publication.
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FIG. 6. Prechcteg nucleon-nucleon p phase parameters (present) as compared ~vith several phase shift analyses over the 0- to 320-MeV
energy range (see text); nuclear bar parametrization is employed.

(4) A series of single-energy solutions due
K.azarinov and Silin.""These are simultaneous T=1
and T= 0 solutions. We select solutions at 95, 147, 210,
and 310 MeV, designated by the authors as "Set 1',"
"Set 1 (f' fixed), " "Set 1," and "Set 1," respectively,
in Ref. 30. The pion-nucleon coupling constant is
searched upon and found to be 12.8~1.5, 14.4&0.8,
and 16.2+1.3 at 95, 210, and 310 MeV, respectively.
At 147 MeV, g

' is fixed at 14.4. (However, the authors
list another type 1 solution at this energy wherein g

' is
searched upon and found to be 11.6~1.2. We list this
information because it will be useful later in estimating
the range of g

' predicted by the higher nucleon-nucleon

2 Y. M. Kazarinov and I.N. Silin, Zh. Eksperim. i Teor. Fiz. 43,
692 (1962) t English transl. : Soviet Phys. —JETP 16 491 (1963)]."Y.M. Kazarinov and I. N. Silin, Zh. Eksperim. i Teor. Fiz.
43, 1385 (1962) (English transl. : Soviet Phys. —JETP 16, 983
(1963)j.

partial waves. ) These solutions are designated "KS"
and are plotted as square symbols.

(5) A series of single energy solutions due to Perring. "
He provides T= 1 solutions at several energies, and we
select the solutions at 68.3 and 98 MeV identified in
Ref. 31 as "Solution 1"and "Solution 1' (seven param-
eter), " respectively. g

' is taken to be 14. Perring also
provides a combined T=1 and T=O solution at 142
MeV." We select the solution with twelve T= 1
parameters. g

' is again assumed to be 14. The Perring
solutions are plotted as circles and are designated "P."

(6) A single-energy combined T= 1 and T=0
solution at 142 MeV due to MacGregor, Amdt, and
Dubow. "We select the solution designated DT.:cK D in

3' J. K. Perring, Xucl. Phys. 30, 424 (1962).
32 J. K. Perrjng, Nucl. Phys. 42, 306 (1963).
33 M. H. MacGregor, R. A. Amdt, and A. A. Dubois (to be

published).
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Flo. 7. Predicted nucleon-nucleon D-phase parameters (present) as compared with several phase shift
analyses over the 0- to 320-MeV energy range.

Table X of Ref. 33. g
' is a search parameter and takes

the value 13.0. This solution is designated MAD and is
plotted as triangles.

(7) A single-energy T= 1 solution at 51.8 MeV due
to Signell, Yoder, and Miskovsky. '4 Ke select their
solution opz(6) and plot it as hexagons. Also of note
is a T=1 solution at 142 MeV due to Signell and
Marker, "designated opz(11) by them. Ke would plot
this solution but there is not sufhcient space. However,
it can be stated that this solution is very close to the
MacGregor, Amdt, and Dubow solution. AVe shall
refer to both the aforementioned solutions as pENN.

g
-'is taken to be 14.4 at both energies. (Note, however,

'4 P. Signell, N. R. Yoder, and N. M. Miskovsky (to be pub-
lished).

s' P. Signell and D f, Marker, Ph. ys. Rev. 134, 8365 (1964).

that when g
' is released in the 142-MeV search, it

assumes the value 11.8&2.5, according to Fig. 13 of
Ref. 35.)

The picture that emerges from an over-all view of the
combined analyses as graphed in Figs. 6, 7, and 8 is that
of a well-defined T=1 solution —to within a degree or
two in nearly every instance —and a less well defined
but still unique T=O solution —with the most poorly
defined states being the 'I'] 6]p D3 and F3 This data
is nevertheless sufficient to provide a stringent test of
the pole model, much more stringent, incidently, than
provided by the phenomenological potential data in

the previous section.
Let us now consider some aspects of the use of the

Schrodinger equation to generate unitarity. The partial-
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wave equations are solved by a Runge-Kutta numerical
integration procedure on a Minneapolis Honeywell 800
digital computer. Nuclear bar phase shifts are found by
matching the computed wave functions to Coulomb
functions for T= 1 states (Ae/e'= 137.04) and to
spherical Bessel functions for T=0 states at a maximum
radius, so chosen that all signihcant contributions of the
OBEP are obtained. Mesh widths of 0.02 from 0 to
1.0 F, and 0.05 from 1.0 to the maximum radius are
used for all runs presented. It is found that all phase
shifts thereby obtained are accurate to better than
0.5% with the exception of e&, which may be accurate
only to 1% in some instances.

Actually, the Schrodinger equation cannot always be
solved using the one-boson-exchange potentials. For the
parameters, estimated in Sec. III, the Schrodinger
equation is insoluble in the 'E'2 and 'F4 states. This is

due to the 1/r' singularity in the OBEP tensor and
spin-orbit parts, and the fact that the matrix elements
in the 'I'2 and 'Il 4 states lead to an attractive potential
at the origin.

Physically meaningful phase shifts can still be ob-
tained for the states, however, through the use of cutoff.
Fig. 9 illustrates the effect of one type of cutoff in which
the complete potential is set to zero within a distance sp,
left unchanged beyond sp. The phase shifts plotted in
Figs. 9(a), (b), and (c) are the P, D, and F states,
respectively. The calculation is carried out at 320 MeV,
using for definiteness the pole parameters to be ulti-
mately determined in this paper (presented in Table II).
It may be seen that I' phase shifts are insensitive to
variations in ss so long as it is less than 0.5 F (with the
exception of the 'Ps state), similarly that D phase shifts
are insensitive so long as ss is less than 0.7 F, and
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similarly that F states are insensitive so long as zo is
less than 1.1 F or more (with the exception of the 'F4
state).

The 'F4 state is also stable so long as so exceeds 0.5 F.
Kithin that distance this state is bound and the phase
shift jumps through 180', a phenomenon familiar from
the work of Levinson. "By taking so&0.5 F, however,
one preserves the Born character of the phase shift.

The 'E'2 phase shif t exhibits similar behavior although
there is not such a Oat plateau in the value of the phase
shift beyond 0.5 F. Such a Rat plateau does exist even
for the 'P~ state, however, when the calculation is
carried out at 40 MeV. This may be seen in Fig. 3 of
paper I. A zero cutoff radius of 0.6 F would seem to
avoid the resonant behavior of the 'I'& state and yet
preserve the Born character of the pole 6t. For further
discussion of zero cutoG see paper I, Sec. III.

Zero cutoff appears to provide a satisfactory solu-
tion'7" to the bound-state problem and we adopt this

¹ Levinson, Kgl. Danske Videnskab. Selskab, Mat. Fys.
Medd. 25, No. 9 (1949).

37 For S states this may not be such a good procedure: Both the
'S0 and the '$1 phase shifts decrease monotonically with increasing
energy. In the case of the 'S0, in. fact, the phase shift decreases
to —48' at 657 MeV, according to the analysis due to Hoshizaki
and Machida (Ref. 38). To provide the repulsion thus evidenced
at very short distances, it would be better to impose cutoff in

form of cutoff in the succeeding calculations. The new
potential V' is therefore defined. to be

0, 0&r&a,

V(r), sp(r.

sp is taken to be 0.6 F. (incidentally, the symbol "sp" is
adopted to make it explicit that this is a zero-cutoff
radius, not a hard core radius. To use a hard core would
defeat a major purpose of this work, that being to
account for the inner repulsion through the pp field. )

Kith the one-boson-exchange potentials suitably
regularized, the meson parameters are adjusted to
provide a fit to the phenomenological phase shift. s in a
straightforward manner. The six one-boson-exchange
potentials described in Sec. III are summed and inserted
in the Schrodivger equation. The nuclear bar phase
shifts are calculated and compared with graphs of the
experimental phase shifts. Adjustments are made in
the parameters and further comparisons are made until
a reasonable fit to the phase-shift data is secured.

momentum space. In fitting P states and higher, however, either
cutoff should work equally well up tn 320 MeV.

38 N. Hoshizaki and S. Machida, Progr. Theoret. Phys. (Kyoto)
29, 185 (1963).
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TABLE II. Parameters of the six-meson 6t,'

Searched parameters.

g~ = 11.7
gp =6.5
mj. =770 MeV
gp' ——0.68

f,/g, =1.8

g„'=7.0
gp' ——9.4
mp=560 MeV
g„'=21.5

Predetermined parameters.
m„=548 MeV m„=138.2 MeV
m„=782 MeV m, =760 MeV

f~lg&

' All potentials set equal to zero within 0.6 F.

The six mesons whose one-boson-exchange potentials
comprise the net potential are the co, 00, q, p, a z, and m,

as described in Sec. III. The parameters varied are g„',
go', ~o, g„', f,/g„g, ', gi2, mi, and g '. The mass of the
co, g, p, and ~ are taken from experiment, such as
summarized in Refs. 24 and 25, and listed in Table II.
Note that the mass widths of the particles are neglected.

f /g„ is taken to be zero.
The meson parameters were primarily determined

by fitting the I' and the D state phase shifts. The Ii

state data only helped fix g
' and neo. This is because

the F states are much less sensitive than the I' or D
states to the high-mass mesons, and have little weight
in the over-all adjustment of the high-mass parameters.
Previous experience has shown that a low mass for the
o.o meson, say 280 MeV, would make the F phase shifts
several degrees too positive at 320 MeV, however,
so mo was fixed at 4m . g

' was restricted to the range
11 to 16 to conform with the value of the pion-nucleon
coupling constant determined by the higher partial
waves in Moravcsik-type modified phase-shift analyses.
Various determinatioos of g are listed earlier in this
section.

In fitting the I' and D phase shifts it developed that
g,'Ei2 had been overestimated (Sec. III): It turns out
that it is more important to match V,.&') im the middle
region than V~&" near one F.The remaining parameters
came out more or less as expected.

The best set of parameters achieved is listed in
Table II. The corresponding phase shifts are tabulated
in Table III. (G states are also given for those who may
be interested —the phase shifts are given primarily by
the pion pole. ) The phase shifts are graphed as solid
lines in Figs. 6, 7, and 8 where they may be compared
with the results of phase-shift analysis. Also, the
summed one-boson-exchange potentials corresponding
to the Table II parameters are graphed as solid lines
in Figs. 2 and 3. There they may be compared with the
modified Yale and Hamada-Johnston potentials.
Finally, the parameters of Table II are plotted in
Figs. 4 and 5 with an "X"so they may be compared
with our earlier estimates in Sec. III.
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V. DISCUSSION

A. The Nucleon-Nucleon Predictions

The six-pole fit to the nucleon-nucleon data accounts
for the I', D, and F phase shifts fairly well, according
to Figs. 6, 7, and 8. Most of our predicted curves fall
between or quite close to the experimental values. Since
many states are involved we will discuss each in turn.

'E~. The predicted curve is in agreement with rather
widely scattered data.

~&. Experimentally, the least well determined state.
Hull et al."were not even able to determine the sign
of e~ at low energies. Our curve shows the predominant
effect of the pion contribution. Note the over-all
qualitative agreement with YLAN3M. The monotonic
increase in e& indicated by the KS points seems in error.

'I'o .. The pole-predicted curve agrees well with phase
shift analysis except in the range 50 to 100 MeV. Here
our curve is consistently below the average experimental
value. This is probably due to the lower value of g

'
used in this analysis.

'E~. A reasonably good fit here, but with the pre-
dicted curve a degree or two high in the middle energy
region.

'E&. A reasonably good fit here.
'D2. Agreement her" -although the predicted curve

may be a degree or two high at 300 MeV.
e~. Good agreement.
'D~. Good agreement.
'D~. Apparently qualitative disagreement here. Our

predicted curvature seems too small. Still, the curve
straddles ~LAN3M and ES at 95 MeV, matches both
at 210 MeV, and seems only completely in error at
310 MeV. However, it is not clear that the experimental
data are that good at 310 MeV.

'D3. An interesting case. There is good agreement
with KS but not with m, AN3M. It would help to have
another phase-shift analysis of the experimental data-
as well as more data —at the high end of the energy
spectrum.

'J 3 .. Prediction consistent with rather scattered data
points. Note, however, that the F phase shifts are
magnified four times with respect to the I' or D phase
shifts on the ordinate of Fig. 8.

e3. Experimentally, this phase parameter is not very
well determined above 100 MeV. All phase shift
analyses except m.AN3M assume pion pole values
(indicated by "x" 's inside the symbol). This is prob-
ably not correct at high energies. Furthermore, the
value of g

' used in the pole fit can vary by as much
as 30/q. Our curve generally agrees with vr. aN3M.

'F2. Reasonable agreement with somewhat scattered
data.

'F&. Reasonable agreement, only data scattered even
more.

'J"4. Fair agreement. Our curve climbs somewhat
above the range of experimental values at 300 MeV.

In summing up, it appears that quite a lot of data
have been correlated by relatively few parameters. The
greatest disagreement occurs in the predictions for the
sr, 'Ps, and 'Ds phase parameters. (No attempt has
been made to fit the '50 and '5& states, but it may be
reassuring to note that their qualitative behavior—
positive at low energy and monotoDically decreasing
with increasing energy —is nonetheless reproduced.
Quantitatively, the 'Ss is found to be too positive and
the '5& too negative throughout the energy range. )

It may now be of interest to look at the potentials
corresponding to the predicted set of meson parameters.
These potentials are in surprisingly good agreement
with the models of Lassila et al. and Hamada and
Johnston for distances greater than 1.2 F. But perhaps
this agreement should not be so surprising: Yale and
HJ agree, and since our potential predicts about the
same l& 1 phases, it should agree with these too, for the
phase shifts are quite sensitive to variations in the
potentials beyond 1.2 F, and a single phase-shift
solution will bring the several potentials together.

Perhaps the most interesting potential is the isoscalar
central potential, Vg&'&. Since it results from averaging
over the spin and isospin of the two-nucleon potential,
it is really the heart of the N-N interaction. Note that
the inner repulsion and outer attraction, resulting from
the convicting fields of the cv and the 0-0, provide a
simple mechanism for nuclear saturation and average
binding. This reminds us of the work of Johnson and
Teller, "and Duerr, ' who based nuclear calculations on
the idea of counteracting vector and scalar fields.

B. Re1ation to Other Experiments

Although the meson parameters have been deter-
mined just from fitting the nucleon-nucleon data, they,
of course, relate to other physical processes as well.

Thus, we may make predictions for those experiments
involving the same vertices as the N-N system.

Let us first consider the vector meson-nucleon inter-
actions. From Table II, the predicted parameters are
seen to be g„'=21.5, g,'=0.68, and f,/g, = 1.8; f„/g„ is
implicitly determined to be 0. Note that the co meson
couples more strongly to the nucleon than any other
meson considered in this study. However, we have
ignored any possible contribution from the p meson,
and as it has exactly the same quantum numbers as
the co, there is the strong possibility that some of the
interaction strength attributed to the ~ is really due to
the g. Nevertheless, we do not expect the p to be too
important because of its high mass, which will limit its
effect on all but 5 states. A reasonable estimate of
isoscalar vector meson effects can be made by requiring
that the spin-orbit potential be equal in strength to the
phenomenological potential Vl, q") near 1.2 F. Equiva-

8s M. H. Johnson and E. Teller, Phys. Rev. 98, 783 (1955).
"H. Dnerr, Phys. Rev. 103, 469 (1956); 109, 117 (1958).
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0.30ge'+g„'= 21.5. (5 1)

From the above estimate it can be seen that g„' is not
likely to be small even if the p is coupled strongly. For
example, if g~'= g„', both coupling constants will be 17.

Our estimate for the p-nucleon coupling constant
does not seem unreasonable. However, our actual value
of g,' is lower than expected on the basis of universal p
coupling to the isospin current, e.g., Sakurai estimates
g,'= 2 from p decay. "Our value of 0.68 may not be all
that well determined. In an earlier estimate (which did
not fit the phase shifts too badly) we found for the N-N
pole parameters

go =2~ fo/go=1~ g~ =24~

g&'= 2.75, m~= 560 MeV,

go'= 10.25, mo= 560 MeV, g~'= 41, g„'= 1]..

Thus, a value of g„'= 2 does not seem inconsistent with
the N-N pole fit. (Actually the more stable p parameter
seems to be f,', Axed at about 2.)

The vector meson parameters also relate to electron-
proton scattering. If the nucleon electromagnetic form
factors are assumed to be dominated by the to, the p,
and the p, then the isovector form factor data are
consistent with our value of f„/g, =1.8, both in sign
and in magnitude. The isoscalar parameters are less
well known but are consistent with f„/g„=0 (On these.
points see, e.g. , the results of de Vries, Hofstadter, and
Herman. ") This agreement is very encouraging. It
seems to be convincing evidence that it is indeed the p
and co (and g) which are responsible both for short-range
N-N eRects and nucleon electromagnetic structure.

A more specific estimate of the vector meson coupling
constants based on the electromagnetic form factor
data has been made by Coleman and Schnitzer4' using
their "vector mixing" approximation and the predic-
tions of unitary symmetry. Their estimates for the @
and &o (direct) coupling constants seem too large, but
agree in order of magnitude with our findings. Their
estimate for the p-nucleon parameters, on the other
hand, are as close to ours as we should expect: Their

"J.J. Sakurai, in Proceedhngs of the Internateonal Conference on
Hi gh-E~rlergy ENclear Physics, CERE, edited by J. Prentki
(CERN, Geneva, 1962), p. 176."C. de Vries, R. Hofstadter, and R. Herman, Phys. Rev.
Letters 8, 381 (1962).

4' S. Coleman and H. J. Schnitzer (to be published).

lently, we require that the sum of the spin-orbi;t
potentials due to the co and the p be equal to the spin-
orbit potential produced by the co alone in the previous
work. Ke have, therefore, that

yeas(~)(g s 1 2 F)gyes(t)(g s 1 2 F)
= Vz, s l

"& (g„'=21.5, 1.2 F) .

This equation may be evaluated according to the
formulas of Sec. II to yield

values, converted according to our definitions, read

g,'= 1.2 and f,/g, = 2.1. $1n this connection we remind

ourselves that the nonrelativistic approximation in-

voked in taking the one-boson-exchange potentials
brings about the greatest error in the case of the p
(see Sec. II). Although this should. not eRect our
qualitative conclusions, it makes us wary of percentage
comparisons. ]

Let us now consider the scalar mesons. Since these
mesons have not been established experimentally, their
introduction must certainly remain controversial.
Perhaps, for example, the O-o, which decays strongly
into two pions, only represents some average effect of a
two-pion uncorrelated contribution such as calculated
by Amati, Leader, and Vitale" or Cottingham and
Vinh Mau. 4' There is at least evidence for a strong
S-wave ~x interaction, however, so our particle repre-
sentation may have some basis.

There is, for example the well-known "ABC" eRect:
Booth and Abashian have studied the reaction

p+tf ~ He'+2z- and have observed a peaking in the 2z.

effective mass spectrum near 310 MeV."However, this
mass seems to be too low to be consistent with our o.o

mass of 560 MeV.
Kirz, Schwartz, and. Tripp '~ have studied the re-

action 7r +p —+ sr++sr +I for several different incident

pion energies ranging from 360 to 780 MeV (lab). In
the case of the 360-MeV incident beam, they observe
a strong peaking in the 2m eRective mass spectrum near
40o MeV. They deduce that this effect occurs in the
T=O state because similar peaking fails to appear in
the reactions sr +p —+ z. +sr'+p, observed by Barish,
Kurz, Perez-Mend. ez, and Solomon, ' or in the reaction
sr++p —+z++z.++st, observed by themselves. + The
T'=0 eRect seems to be d.iRerent from that of a reso-

nance, however, because as the pion beam energy is
increased, the dipion peak shifts over to higher effective
mass values —tending toward the kinematic limit —and

diminishes in strength. In any case, the peak for low-

pion beam energies is observed in other laboratories.
Blokhintseva et al.5' observe the same peak in this
reaction using incident pions of 340-MeV energy. Also,
in the same reaction but for 240-MeV incident pions,

44 D. AInati, E. Leader, and B. Vitale, Nuovo Cimento 17, 68
(1960); 18, 409, 458 (1960); Phys. Rev. 130, 750 (1963).

4'K. N. Cottingham and R. Vinh Mau, Phys. Rev. 130, 735
(1963).

~e N. E. Booth and A. Abashian, Phys. Rev. 132, 2314 (1963)~
and earlier work cited therein.

J. Kirz, J. Schwartz, and R. D. Tripp, Phys. Rev. 130, 248&
(&963).' R. J. Kurz, B. C. Barish, V. Perez-Mendez, and J. Solomon,
Bull. Am. Phys. Soc. 7, 280 (1962), and private communication.' J. Kirz, J. Schwartz, and R. D. Tripp, Phys. Rev. 126, 763
(1962).

5'T. D. Blokhintseva, V. G. Grebinnik, V. A. Zhukov, G.
Libman, L. L. Xemenov, G. I. Selivanov, and Y. Jun-I'ang,
Zh. Experim. i Teor Fiz. 44, 116 (1963) LEnglish transl. : Soviet
Phys. —JETP 17, 80 (1963)g.
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Batusov eI al."observe a displacement in the 2x mass
spectrum toward the high-mass values, limited kine-
matically to a maximum of 350 MeV in this instance.

There is less experimental evidence for a T= 1, J=O+
meson. This meson will decay strongly into five pions,
given sufhcient energy. Otherwise it decays into two or
four pions violating G parity. S. Zorn" has observed a
peak in the dipion mass spectrum near 570 MeV in the
reaction p+p —+ d+rr++7r'. Lichtenberg' has studied
this and other data and concluded that the evidence is
consistent with the two-pi decay of a T= 1, J=0+
meson. However, as there have not been confirming
experiments for this peak, the meson remains in doubt.

We would like to remark before going on that there
is at least one qualitative argument in favor of the 0-».

If the bosons are thought to be bound states of the S-N
system (Fermi-Yang model), ss 1:hen the r) and the z. are
the T=O and T= 1 '50 E-N states and the ~ and the p
are the T=0 and T= 1 '5» states. The 0.0, if it exists, is
the T=O 'Po bound state. Hut then there should be a
nearby T= 1 'Po level. This will be the 0.».

Let us now discuss the pseudoscalar meson param-
eters. g„' is probably not determined too well. Although
the present estimate is g„'=7.0 (Table II), g„' was
earlier estimated to be =11 (Sec. III). Perhaps we

should not be surprised if later analysis places g„' some-
where between these two estimates.

The pion-nucleon coupling constant has been deter-
mined to be 11.7 in this analysis. This is a lower value
than is customarily quoted on the basis of pion-nucleon
scattering, e.g. , Hamilton and Koolcock'4 determine

(m /2M)'g '=0.081&0.002, or, taking the charged pion
mass, g '=14.7~0.4. On the other hand, our value is

5~V. A. Batusov, S. A. Bunyatov, V. M. Sidorov, and V. A.
Yarha, Zh. Eksperim. i Teor. Fiz. 43, 2013 (1962) LEnglish transl. :
Soviet Phys. —JETP 16, 1422 (1963)]."B.Sechi Zorn, Phys. Rev. Letters 8, 282 (1962).

~~ E. Fermi and C. N. Yang, Phys. Rev. 76, 1739 (1949)."J.Hamilton and W. S. Woolcock, Rev. Mod. Phys. 35, 737
(1963).

consistent with g
' as 6xed by the Ã-X higher partial

waves in Moravcsik-type phase-shift analyses. Referring
to Sec. IV, we observe the following values for g

' for
those cases where it is allowed to vary in the search:
(1) 11.6&1.2, KS, 147 MeV; (2) 11.8~2.5, PENN,

142 MeV; (3) 13.0, MAn, 142 MeV; (4) 12.8%1.5, KS,
95 MeV; (5) 14.4&0.8, KS, 210 MeV; (6) 16.2+1.3,
KS, 310 MeV. In the first two cases cited, the authors
chose to redo the analysis with g

' fixed near 14. How-

ever, it is not unreasonable that g '=12 may be more

appropriate to lV-lV scattering than the higher value.
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